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Abstract

We describe all the quasi-bialgebra structures of a group algebra over a torsion-free
abelian group. They all come out to be triangular in a unique way. Moreover, up to
an isomorphism, these quasi-bialgebra structures produce only one (braided) monoidal
structure on the category of their representations. Applying these results to the algebra of
Laurent polynomials, we recover two braided monoidal categories introduced in [CG] by
S. Caenepeel and I. Goyvaerts in connection with Hom-structures (Lie algebras, algebras,
coalgebras, Hopf algebras).
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1 Introduction

Let C be a category. In [CG, Section 1], S. Caenepeel and I. Goyvaerts introduce the so called
Hom-category H (C) in order to investigate Hom-structures (Lie algebras, algebras, coalgebras,
Hopf algebras) from the monoidal categorical point of view. More exactly, if C is the category
of modules over a commutative ring, then H (C) admits a symmetric monoidal structure with
respect to which (co)algebras in H (C) coincide with Hom-(co)algebras, Hopf algebras with
Hom-Hopf algebras and Lie algebras with Hom-Lie algebras, respectively.

Now, fix a field k and denote by M the category of k-vector spaces. The category H (M)
has objects pairs (V, fV ) with V ∈ M and fV ∈ Autk(V ). A module over the polynomial ring
k [X] is a k-vector space V together with an element gV ∈ Endk (V ) . In order to have gV
invertible, as in the case of H (M), the ring k [X] must be replaced with the algebra of Laurent
polynomials k

[
X,X−1

]
or, equivalently, with the group algebra k [Z]. These facts suggest a

connection between the category H(M) and the category of k [Z]-modules. They are actually
isomorphic, and this will be proved in Proposition 4.
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As a matter of fact, it was proved in [CG] that the category H (M) has two different braided

monoidal structures, denoted by H(M) and H̃(M), respectively. This leads us to consider
braided monoidal structures on the category of k [Z]-modules. We restrict ourselves to the case
when these structures are induced by the strict monoidal structure of M. It comes out that
in this case we have to compute the quasi-bialgebra structures of the group algebra k[Z], cf.
Theorem 1. We will do this in a wider context, by replacing Z with a torsion-free abelian
group. In fact, our arguments are valid for any abelian group G with the property that, for
any natural number n ∈ {1, 2, 3}, the group of units of the group algebra k[Gn] is trivial (that
is, any invertible element of k[Gn] is a nonzero scalar multiple of an element in Gn), where Gn

stands for the direct product of n copies of G. But, if this is the case then by [Pa, Lemma
1.1] we have that G is torsion-free (note that the exceptions listed in the Lemma have |G| = 2
and hence they fulfill the requirement only for n = 1). For the other way around, if G is a
torsion-free abelian group then by [GH, Corollary 2.5], inductively, it follows that k [Gn] has
the group of units trivial. (Note that this can be obtained also from [Pa, Lemmas 1.6, 1.7 &
1.9(ii)]).

Now, for a torsion-free abelian group we show that the third Harrison cohomology group
H3

Harr(k[G],k,Gm) is trivial (Proposition 2). Moreover, any Harrison 3-cocycle on k[G] is
uniquely determined by a pair (h, g) of elements of G, and this allows us to describe, up
to an isomorphism, all the quasi-bialgebra structures on the group algebra k[G]. When we
specialize this for the multiplicative cyclic group 〈g〉 ∼= Z we obtain that the quasi-bialgebra
structures on the group algebra k[〈g〉] are, up to an isomorphism, completely determined by
triples (q, a, b) ∈ (k\{0}) × Z × Z, see Theorem 2. Furthermore, all of them are deformations
of the ordinary bialgebra structure of k[〈g〉] by an invertible element in k[〈g〉]⊗ k[〈g〉], and so,
up to an isomorphism, the category k[〈g〉]M admits a unique (strict) monoidal structure. The
same is valid for the braided situation, and this is mostly because the ordinary bialgebra k[〈g〉]
has a unique quasi-triangular (actually triangular) structure (Corollary 5).

As we have already explained, the categories H(M) and k[〈g〉]M are isomorphic. Conse-
quently, we have a one to one correspondence between the (braided) monoidal structures on
H(M) and the (braided) monoidal structures on k[〈g〉]M. In Theorem 4 we endow H (M) with
the symmetric monoidal category structures induced by those of k[〈g〉]M that we previously
computed. In general, such a structure depends on a triple (q, a, b) ∈ (k\{0}) × Z × Z, and
this is why we denoted it by Ha,bq (M). We have isomorphisms of symmetric monoidal cate-

gories, k[〈g〉]M ∼= k[〈g〉]a,bq M ∼= Ha,bq (M), see Corollary 6. Since H0,0
1 (M) and H1,−1

1 (M) can be

identified, as symmetric monoidal categories, with H(M) and H̃(M), respectively, we obtain

that H(M) and H̃(M) are isomorphic as symmetric monoidal categories (Proposition 5 and
Corollary 7). We recover in this way [CG, Proposition 1.7], in the particular case when the
base category is M.

2 Preliminaries

In this section, we shall fix some basic notation and terminology.

Notation 1. Throughout this paper k will denote a field. All vector spaces will be defined over
k. The unadorned tensor product ⊗ will denote the tensor product over k if not stated otherwise.
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The category of vector spaces will be denoted by M.

Monoidal Categories. ([Ka, Chap. XI]) Recall that a monoidal category is a category
M endowed with an object 1 ∈ M (called unit), a functor ⊗ : M×M →M (called tensor
product), and functorial isomorphisms aX,Y,Z : (X ⊗ Y )⊗Z → X ⊗ (Y ⊗Z), lX : 1⊗X → X,
rX : X ⊗ 1→ X, for every X,Y, Z in M. The functorial morphism a is called the associativity
constraint and satisfies the Pentagon Axiom, that is the following relation

(U ⊗ aV,W,X) ◦ aU,V⊗W,X ◦ (aU,V,W ⊗X) = aU,V,W⊗X ◦ aU⊗V,W,X

holds true, for every U, V,W,X in M. The morphisms l and r are called the unit constraints
and they obey the Triangle Axiom, that is (V ⊗ lW ) ◦ aV,1,W = rV ⊗W , for every V,W in M.

A monoidal functor (also called strong monoidal in the literature)

(F, φ0, φ2) : (M,⊗,1, a, l, r)→ (M′,⊗′,1′, a′, l′, r′)

between two monoidal categories consists of a functor F :M→M′, an isomorphism φ2(U, V ) :
F (U) ⊗′ F (V ) → F (U ⊗ V ), natural in U, V ∈ M, and an isomorphism φ0 : 1′ → F (1) such
that the diagram

(F (U)⊗′ F (V ))⊗′ F (W )

a′F (U),F (V ),F (W )

��

φ2(U,V )⊗′F (W ) // F (U ⊗ V )⊗′ F (W )
φ2(U⊗V,W ) // F ((U ⊗ V )⊗W )

F (aU,V,W )

��
F (U)⊗′ (F (V )⊗′ F (W ))

F (U)⊗′φ2(V,W ) // F (U)⊗′ F (V ⊗W )
φ2(U,V⊗W ) // F (U ⊗ (V ⊗W ))

is commutative, and the following conditions are satisfied:

F (lU ) ◦ φ2(1, U) ◦ (φ0⊗′F (U)) = l′F (U), F (rU ) ◦ φ2(U,1) ◦ (F (U)⊗′φ0) = r′F (U).

The monoidal functor is called strict if the isomorphisms φ0, φ2 are identities of M′. A
braided monoidal category (M, c) is a monoidal category (M,⊗,1) equipped with a braiding
c, that is an isomorphism cU,V : U ⊗ V → V ⊗ U , natural in U, V ∈ M, satisfying, for all
U, V,W ∈M,

aV,W,U ◦ cU,V⊗W ◦ aU,V,W = (V ⊗ cU,W ) ◦ aV,U,W ◦ (cU,V ⊗W ),

a−1W,U,V ◦ cU⊗V,W ◦ a
−1
U,V,W = (cU,W ⊗ V ) ◦ a−1U,W,V ◦ (U ⊗ cV,W ).

Such a category is called symmetric if we further have cV,U ◦cU,V = IdU⊗V for every U, V ∈M.
A (symmetric) braided monoidal functor is a monoidal functor F :M→M′ such that

F (cU,V ) ◦ φ2(U, V ) = φ2(V,U) ◦ c′F (U),F (V ).

More details on these topics can be found in [Ka, Chapter XIII].

Quasi-Bialgebras. The following definition is not the original one given in [Dr, page
1421]. We adopt the more general form of [Dr, Remark 1, page 1423] (see also [Ka, Proposition
XV.1.2]) in order to comprise the case of Hom-categories.
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Definition 1. A quasi-bialgebra is a datum (H,m, u,∆, ε, φ, λ, ρ) where

• (H,m, u) is an associative algebra;

• ∆ : H → H ⊗H and ε : H → k are algebra maps;

• λ, ρ ∈ H are invertible elements;

• φ ∈ H ⊗H ⊗H is a counital 3-cocycle i.e. it is an invertible element and satisfies

(H ⊗H ⊗∆) (φ) (∆⊗H ⊗H) (φ) = (1H ⊗ φ) (H ⊗∆⊗H) (φ) (φ⊗ 1H) ,

(H ⊗ ε⊗H) (φ) =ρ⊗ λ−1;

• ∆ is quasi-coassociative and counitary i.e. it satisfies

(H ⊗∆) ∆ (h) = φ · (∆⊗H) ∆ (h) · φ−1,
(ε⊗H) ∆ (h) = λ−1hλ , (H ⊗ ε) ∆ (h) = ρ−1hρ.

A morphism of quasi-bialgebras (see [Ka, page 371])

Ξ : (H,m, u,∆, ε, φ, λ, ρ)→ (H ′,m′, u′,∆′, ε′, φ′, λ′, ρ′)

is an algebra homomorphism Ξ : (H,m, u)→ (H ′,m′, u′) such that

(Ξ⊗ Ξ)∆ = ∆′Ξ , ε′Ξ = ε , (Ξ⊗ Ξ⊗ Ξ) (φ) = φ′ , Ξ (λ) = λ′ , Ξ (ρ) = ρ′.

It is an isomorphism of quasi-bialgebras if, in addition, it is invertible.
We will use the following standard notation

φ1 ⊗ φ2 ⊗ φ3 := φ (summation understood).

In the case when φ is not trivial (that is, a nonzero scalar multiple of 1H ⊗ 1H ⊗ 1H) and
λ = ρ = 1H we call H an ordinary quasi-bialgebra. If φ is trivial and λ = ρ = 1H we then land
at the classical concept of bialgebra.

The definition of a quasi-bialgebra is based on the formalism of monoidal categories. More
exactly, if H is a k-algebra and ∆ : H → H ⊗ H and ε : H → k are two algebra morphisms
then the category of left H-representations, HM, endowed with the tensor product defined by
∆ and with unit object k considered as left H-module via ε is monoidal if and only if H is a
quasi-bialgebra. As we will see later on, the existence of the above two morphisms ∆, ε is not
needed, as it is implied by the fact that the monoidal structure on M restricts to a monoidal
structure on HM. For further use, at this moment recall only the monoidal structure on HM
produced by a quasi-bialgebra H.

Let (H,m, u,∆, ε, φ, λ, ρ) be a quasi-bialgebra. It is well-known, see [Ka, page 285 and
Proposition XV.1.2], that the category HM becomes a monoidal category via the following
structure. Given a left H-module V , we denote by µ = µlV : H ⊗ V → V, µ(h⊗ v) = hv, its left
H-action. The tensor product of two left H-modules V and W is a module via diagonal action
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i.e. h (v ⊗ w) = h1v ⊗ h2w. The unit is k, which is regarded as a left H-module via the trivial
action i.e. hκ = ε (h)κ, for all h ∈ H and κ ∈ k. The associativity and unit constraints are
defined, for all V,W,Z ∈ HM and v ∈ V,w ∈W, z ∈ Z, by

aV,W,Z((v ⊗ w)⊗ z) := φ1v ⊗ (φ2w ⊗ φ3z),
lV (1⊗ v) := λv and rV (v ⊗ 1) := ρv.

The monoidal category we have just described will be denoted in what follows by (HM,⊗,k, a, l, r).
If (H,m, u,∆, ε, φ, λ, ρ) is a quasi-bialgebra and α ∈ H ⊗ H is an invertible element then

we can define a new quasi-bialgebra Hα = (H,m, u,∆α, ε, φα, λα, ρα), where

∆α (h) = α ·∆ (h) · α−1,
φα = (1H ⊗ α) · (H ⊗∆) (α) · φ · (∆⊗H)

(
α−1

)
·
(
α−1 ⊗ 1H

)
,

λα = λ · (εH ⊗H)
(
α−1

)
, ρα = ρ · (H ⊗ εH)

(
α−1

)
.

By [Ka, Lemma XV.3.4], for every invertible element α ∈ H ⊗ H, the identity functor Id :

HM → HαM induces a monoidal category isomorphism Γ (α) = (Id, α0, α2) : HM → HαM,
where α0 = Idk and α2 (V,W ) (v ⊗ w) := α−1 (v ⊗ w). The inverse is Γ

(
α−1

)
.

Notice also that for a quasi-bialgebra H there is always an invertible element u ∈ H ⊗ H
such that Hu is an ordinary quasi-bialgebra, and so HM is always monoidal isomorphic to a
category for which the unit object and the left and right unit constraints are those of M (see
[Dr] or the proof of Proposition 1 below).

Definition 2. We refer to [Ka, Proposition XV.2.2] but with a different terminology (cf. [Dr,
page 1439]). A quasi-bialgebra (H,m, u,∆, ε, φ, λ, ρ) is called quasi-triangular whenever there
exists an invertible element R ∈ H ⊗H such that, for every h ∈ H, one has

(∆⊗H) (R) =

[ (
φ2 ⊗ φ3 ⊗ φ1

) (
R1 ⊗ 1⊗R2

) (
φ1 ⊗ φ3 ⊗ φ2

)−1(
1⊗R1 ⊗R2

) (
φ1 ⊗ φ2 ⊗ φ3

) ]
(2.1)

(H ⊗∆) (R) =

[ (
φ3 ⊗ φ1 ⊗ φ2

)−1 (
R1 ⊗ 1⊗R2

) (
φ2 ⊗ φ1 ⊗ φ3

)(
R1 ⊗R2 ⊗ 1

) (
φ1 ⊗ φ2 ⊗ φ3

)−1
]

(2.2)

∆cop (h) = R∆ (h)R−1 (2.3)

where φ := φ1 ⊗ φ2 ⊗ φ3, R = R1 ⊗R2.
A morphism of quasi-triangular quasi-bialgebras is a morphism Ξ : H → H ′ of quasi-

bialgebras such that (Ξ⊗ Ξ) (R) = R′.

By [Ka, Proposition XV.2.2], HM = (HM,⊗,k, a, l, r) is braided if and only if there is an
invertible element R ∈ H ⊗H such that (H,m, u,∆, ε, φ, λ, ρ,R) is quasi-triangular. Note that
the braiding is given, for all X,Y ∈ HM, by

cX,Y : X ⊗ Y → Y ⊗X : x⊗ y 7→ R2y ⊗R1x.

Moreover HM is symmetric if and only if we further assume

R2 ⊗R1 = R−1. (2.4)



252 Alessandro Ardizzoni, Daniel Bulacu and Claudia Menini

Such a quasi-bialgebra will be called a triangular quasi-bialgebra. A morphism of triangular
quasi-bialgebras is just a morphism of the underlying quasi-triangular quasi-bialgebras struc-
tures.

Given an invertible element α ∈ H⊗H, if H is (quasi-)triangular then so is Hα with respect
to

Rα =
(
α2 ⊗ α1

)
Rα−1

where α := α1⊗α2. This depends on the fact that the monoidal category isomorphism Γ (α) =
(Id, α0, α2) : HM → HαM induces a (symmetric) braided structure on HαM. In particular we
have

cHαH,H = α−12 (H,H) ◦ F
(
cHH,H

)
◦ α2 (H,H) .

By [Ka, Proposition XV.2.2], cHαH,H is of the form cHαH,H (x⊗ y) = R2
αy ⊗ R1

αx for all x, y ∈ H
where

R2
α ⊗R1

α = cHαH,H (1H ⊗ 1H) =
(
α−12 (H,H) ◦ F

(
cHH,H

)
◦ α2 (H,H)

)
(1H ⊗ 1H)

=
(
α−12 (H,H) ◦ F

(
cHH,H

)) (
α−1 (1H ⊗ 1H)

)
=
(
α−12 (H,H) ◦ F

(
cHH,H

)) (
α−1

)
= α−12 (H,H)

(
R2
(
α−1

)2 ⊗R1
(
α−1

)1)
= α

(
R2
(
α−1

)2 ⊗R1
(
α−1

)1)
= α1R2

(
α−1

)2 ⊗ α2R1
(
α−1

)1
and hence Rα = R1

α ⊗R2
α = α2R1

(
α−1

)1 ⊗ α1R2
(
α−1

)2
=
(
α2 ⊗ α1

)
Rα−1 as claimed above.

3 Quasi-triangular quasi-bialgebra structures on a group algebra of a torsion-free
abelian group

Let k be a field and G a torsion-free abelian group. We are interested in classifying the (braided)
monoidal structures on the category of left modules over the group algebra k[G] induced by
that of M. We shall see that this is equivalent to the classification, up to deformation by an
invertible element, of (quasi-triangular) quasi-bialgebra structures on the group algebra k[G].

We start with the monoidal case. In general, for H a k-algebra, we say that the monoidal
structure on M restricts to a monoidal structure on HM if

(a) for any two left H-modules X,Y the tensor product X ⊗Y in M admits a left H-module
structure;

(b) the tensor product in M of two left H-module morphisms is a morphism in HM, and so
⊗ induces a functor from HM× HM to HM;

(c) k, as a trivial k-module, admits a left H-module structure;

(d) there exist functorial isomorphisms

a = (aX,Y,Z : (X ⊗ Y )⊗ Z → X ⊗ (Y ⊗ Z))X,Y,Z∈HM ,
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l = (lX : k⊗X → X)X∈HM and r = (rX : X ⊗ k→ X)X∈HM in HM such that the
Pentagon axiom and the Triangle Axiom are satisfied.

The next result is a slightly improved version of [Ka, Proposition XV.1.2] and can be viewed
as a reconstruction type theorem for quasi-bialgebras.

Theorem 1. Let k be a field and H a k-algebra. Then there exists a one to one correspondence
between

• monoidal structures on HM induced by the strict monoidal structure of M;

• quasi-bialgebra structures on H.

Proof: Assume that the strict monoidal structure on M induces a monoidal structure on HM.
In particular, this implies that we have a left H-module structure · : H ⊗ (H ⊗H) → H ⊗H
on H ⊗H. If we define ∆ : H → H ⊗H given by ∆(h) = h · (1H ⊗ 1H), for all h ∈ H, we then
claim that ∆ is an algebra map. Indeed, it is clear that ∆(1H) = 1H ⊗ 1H . To see that ∆ is
multiplicative we proceed as follows. Let X ∈ HM and fix x ∈ X. Then ϕx : H 3 h 7→ hx ∈ X
is a left H-module morphism. Similarly, for Y ∈ HM and y ∈ Y define ϕy : H → Y , a left
H-module morphism. According to (a) and (b) we have ϕx ⊗ ϕy : H ⊗ H → X ⊗ Y a left
H-linear morphism, hence

(ϕx ⊗ ϕy)(h · (h′ ⊗ h′′)) = h · (h′x⊗ h′′y),

for all h, h′, h′′ ∈ H. If we take h′ = h′′ = 1H and denote ∆(h) = h1⊗h2 (summation implicitly
understood), we then get that h · (x ⊗ y) = h1x ⊗ h2y, for all h ∈ H, and so ∆ determines
completely the left H-module structure on the tensor product X⊗Y . It follows now easily that
∆ is multiplicative, providing that H ⊗H has the usual componentwise algebra structure.

We look now at the condition (c). We show that giving a left H-module structure on k is
equivalent to giving an algebra map ε : H → k. Indeed, let · : H ⊗ k → k be a left H-module
structure on k. Since · is k-linear we have h · κ = h · (κ1k) = κ(h · 1k) = (κh) · 1k, for all κ ∈ k
and h ∈ H. So if we define ε : H → k given by ε(h) := h ·1k, for all h ∈ H, then κε(h) = ε(κh),
for all h ∈ H and κ ∈ k. Otherwise stated, ε is k-linear and h · κ = (κh) · 1k = ε(κh) = κε(h),
for all κ ∈ k and h ∈ H. Now, ε is multiplicative since, for all h, g ∈ H,

ε(hg) = (hg) · 1k = h · (g · 1k) = h · ε(g) = ε(ε(g)h) = ε(h)ε(g).

In addition, ε(1H) = 1H · 1k = 1k, and therefore ε is an algebra morphism.
Conversely, if ε : H → k is an algebra map then clearly k is a left H-module via the structure

defined by h ·κ = ε(h)κ, for all h ∈ H and κ ∈ k. It is immediate that the two correspondences
defined above are inverses of each other. As far as we are concerned, retain that (c) implies the
existence of an algebra map ε : H → k such that h · κ = ε(h)κ, for all h ∈ H and κ ∈ k.

Concluding, the desired monoidal structure on HM is induced by a triple (H,∆, ε) as in the
statement of [Ka, Proposition XV.1.2]. Thus (H,∆, ε, φ, λ, ρ) is a quasi-bialgebra, where

φ = aH,H,H(1H ⊗ 1H ⊗ 1H) , λ = lH(1k ⊗ 1H) and ρ = rH(1H ⊗ 1k) ,

respectively. For the other way around see the comments made after Definition 1.
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If we restrict ourself to the strict monoidal case we then get the following well-known result.

Corollary 1. Let H be a k-algebra. Then there is a one to one correspondence between

• the strict monoidal structures on HM such that the forgetful functor U : HM → M is
strict monoidal;

• bialgebra structures on H.

If H is a quasi-bialgebra then the forgetful functor U : HM→M is not necessarily monoidal,
although the monoidal structure on HM is induced by the strict monoidal structure on M. More
exactly, we have the following situation.

Proposition 1. Let (H,m, u,∆, ε, φ, λ, ρ) be a quasi-bialgebra. Then the forgetful functor U :

HM→M is monoidal if and only if there exists an invertible element f ∈ H ⊗H such that Hf

is an ordinary bialgebra.

Proof: Let us start by noting that, without loss of generality, we can assume λ = ρ = 1H .
This observation is due to Drinfeld [Dr] and reduces the study of quasi-bialgebras to those of
this type.

Indeed, applying ε⊗ε to the both sides of (H⊗ε⊗H)(φ) = ρ⊗λ−1 we get ε(φ1)ε(φ2)ε(φ3) =
ε(ρ)ε(λ−1). On the other hand, it follows from ε(h1)h2 = λ−1hλ that ε(h1)ε(h2) = ε(h), for
any h ∈ H. Therefore, applying ε⊗ ε⊗ ε⊗ ε to the both sides of

(H ⊗H ⊗∆)(φ)(∆⊗H ⊗H)(φ) = (1H ⊗ φ)(H ⊗∆⊗H)(φ)(φ⊗ 1H)

and using that ε(φ1)ε(φ2)ε(φ3) is invertible in k we obtain ε(φ1)ε(φ2)ε(φ3) = 1. Correlated to
ε(φ1)ε(φ2)ε(φ3) = ε(ρ)ε(λ−1) this yields ε(λ) = ε(ρ).

Let us denote c := ε(λ) = ε(ρ). If u = c−1ρ⊗ λ then one can see easily that u is invertible
and λu = ρu = 1H . Thus Hu is a quasi-bialgebra for which λu = ρu = 1H . Furthermore,
Γ(u) : HM→ HuM is a monoidal category isomorphism and Uu ◦ Γ(u) = U, where we denoted
by Uu : HuM → M the corresponding forgetful functor. Since a composition of monoidal
functors is monoidal as well, we get that U is monoidal if and only if Uu is so. So we reduced
the problem to the case when λ = ρ = 1H , as desired.

Assume now that (U, φ0, φ2) : HM→M is a monoidal functor, and take v = φ2(H,H)(1H⊗
1H) ∈ H ⊗H. We first show that v is invertible, and that it determines completely φ2. To this
end, let X,Y be two left H-modules and fix x ∈ X and y ∈ Y . If ϕx : H → X and ϕy : H → Y
are the left H-module morphisms defined in the proof of Theorem 1 then by the naturalness of
φ2 we obtain

(ϕx ⊗ ϕy)φ2(H,H) = φ2(X,Y )(ϕx ⊗ ϕy).

Evaluating the above equality in 1H ⊗ 1H we get φ2(X,Y )(x ⊗ y) = v1x ⊗ v2y, where v =
v1 ⊗ v2 ∈ H ⊗H.

By similar arguments applied now to φ−12 , the inverse of φ2, we deduce that w = φ−12 (H,H)(1H⊗
1H) ∈ H⊗H determines completely φ−12 . More exactly, for X,Y ∈ HM we have φ−12 (X,Y )(x⊗
y) = w1x⊗ w2y, for all x ∈ X and y ∈ Y , where w = w1 ⊗ w2. Since φ2 and φ−12 are inverses
it follows now that v is invertible with v−1 = w.



Quasi-bialgebra Structures and Torsion-free Abelian Groups 255

Finally, the commutativity of the diagram involving φ2 in the definition of a monoidal
functor comes out as

(H ⊗∆)(v) · (1H ⊗ v) · (x⊗ y ⊗ z) = φ · (∆⊗H)(v) · (v ⊗ 1H) · (x⊗ y ⊗ z),

for all X,Y, Z ∈ HM and x ∈ X, y ∈ Y and z ∈ Z. Clearly this is equivalent to the fact that
φv−1 = 1H ⊗ 1H ⊗ 1H .

Likewise, if φ0 : k → k is a k-linear isomorphism then there is a nonzero ς ∈ k such that
φ0(κ) = ςκ, for all κ ∈ k. Consequently, the required equations for φ0 in the definition of a
monoidal functor are equivalent to ςε(v1)v2 = 1H = ςε(v2)v1, and so λς−1v−1 = ρς−1v−1 = 1H .
Since φς−1v−1 = φv−1 = 1H ⊗ 1H ⊗ 1H we conclude that for the invertible element f = ς−1v−1

of H ⊗H the quasi-bialgebra Hf is actually an ordinary bialgebra, as needed.
The converse is immediate since if f ∈ H ⊗ H is invertible such that Hf is an ordinary

bialgebra then, according to Corollary 1, the forgetful functor Uf : Hf
M → M is monoidal.

Corroborated to the fact that Γ(f) : HM → Hf
M is a monoidal category isomorphism such

that Uf ◦ Γ(f) = U this leads us to the desired conclusion. So our proof is finished.

We shall apply the above results to the group algebra k[G]. By Theorem 1, the monoidal
structures on k[G]M induced by that of M are given by the quasi-bialgebra structures on k[G].
We next see that these structures are built on the ordinary bialgebra structure of the group
algebra k[G], providing that G is torsion-free and abelian.

Lemma 1. Let G be a torsion-free abelian group and k[G] the group algebra over the field k
associated to it, and endowed with the ordinary bialgebra structure, that is, endowed with the
coalgebra structure given by

∆(g) = g ⊗ g, ε(g) = 1,

for all g ∈ G, extended by linearity and as algebra morphisms. Suppose that the group algebra
k[G] admits a quasi-bialgebra structure given by the comultplication ∆̃, counit ε̃ and elements

φ, λ and ρ. Then (k[G], ∆̃, ε̃) is a bialgebra isomorphic to the ordinary bialgebra structure of
k[G].

Proof: First note that, by [GH, Corollary 2.5], if G is a torsion-free abelian group then the
invertible elements in k [G] are exactly those of the form qh where q ∈ k\ {0} and h ∈ G. Now,
since

k[G]⊗ k[G] 3 h⊗ g 7→ (h, g) ∈ k[G×G],

extended by linearity, defines a bialgebra isomorphism and G × G is a torsion-free abelian
group as well, we deduce that the invertible elements in k[G]⊗k[G] are of the form qh⊗ g with
q ∈ k\ {0} and h, g ∈ G.

Suppose now that the group algebra k[G] admits a quasi-bialgebra structure given by the

comultplication ∆̃, counit ε̃ and elements φ, λ and ρ. Denote k[G] with this quasi-bialgebra

structure by k̃[G]. Since ∆̃ is an algebra map, we get that ∆̃ (g) is invertible in k̃[G]⊗ k̃[G], so

we can write ∆̃ (g) = qgx⊗ y for some qg ∈ k\ {0} and x, y ∈ G. From(
ε̃⊗ k̃[G]

)
∆̃ (h) = λ−1hλ,

(
k̃[G]⊗ ε̃

)
∆̃ (h) = ρ−1hρ, for every h ∈ k̃[G]
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and k̃[G] commutative, we have that(
ε̃⊗ k̃[G]

)
∆̃ (h) = h,

(
k̃[G]⊗ ε̃

)
∆̃ (h) = h, for every h ∈ k̃[G].

Thus ∆ is counital and we have g = qg ε̃ (x) y, and hence y = q−1g ε̃(x−1)g. Similarly, from

g = qg ε̃ (y)x we get x = q−1g ε̃(y−1)g. Summing up we deduce that ∆̃ (g) = (qg ε̃(x)ε̃(y))−1g⊗g =

ε̃(g−1)g⊗g, for all g ∈ G. It is clear now that k̃[G] has actually an ordinary bialgebra structure,

and that k̃[G] 3 g 7→ ε̃(g)g ∈ k[G], extended by linearity, is a bialgebra isomorphism. So we
are done.

So if G is a torsion-free abelian group then, up to an isomorphism, the quasi-bialgebra struc-
tures on the group algebra k[G] are built on the ordinary bialgebra structure (only φ, λ, ρ can
be non-trivial) of k [G], by considering it as a quasi-bialgebra via a so called Harrison 3-cocycle,
see for instance [BCT]. Thus our problem reduces to the computation of H3

Harr(k [G] ,k,Gm).
In the sequel we will prove that this cohomology group is trivial. Actually, we will prove that
Hn

Harr(k [G] ,k,Gm) is trivial for all n ≥ 2 and G a torsion free-abelian group.

First, we recall from [Ca, & 9.2] the definition of the Harrison cohomology over a commu-
tative bialgebra over a field.

Let H be a commutative k-bialgebra and for n ∈ N denote by H⊗n the tensor product
over k of n copies of H. By convention H⊗0 = k. For a fixed n ∈ N define the maps
f0, · · · , fn+1 : H⊗n → H⊗n+1 given, for all h1, · · · , hn ∈ H, by

f0(h1 ⊗ · · · ⊗ hn) = 1H ⊗ h1 ⊗ · · · ⊗ hn,
fi(h1 ⊗ · · · ⊗ hi) = h1 ⊗ · · ·hi−1 ⊗∆(hi)⊗ hi+1 ⊗ · · · ⊗ hn, for i = 1, · · · , n,
fn+1(h1 ⊗ · · · ⊗ hn) = h1 ⊗ · · · ⊗ hn ⊗ 1H .

Let Gm be the functor from the category of commutative k-algebras to the category of
abelian groups that maps a commutative k-algebra A to its group of units, Gm(A). At the
level of morphisms Gm sends an algebra map f : A→ B to its restriction and corestriction at
Gm(A) and Gm(B), respectively.

If we set δn =
n+1∏
i=0

Gm(fi)
(−1)i , for all n ∈ N, then we get a complex

1→ Gm(k)
δ0→ Gm(H)

δ1→ Gm(H⊗2)
δ2→ · · ·

By Hn
Harr(H,k,Gm), n ≥ 1, we denote the cohomology groups associated to this complex.

Hn
Harr(H,k,Gm) is called the nth Harrison cohomology group of H with values in Gm.

Proposition 2. Let G be a torsion-free abelian group and k[G] the group algebra of G, endowed
with the ordinary bialgebra structure. Then H0

Harr(k[G],k,Gm) = k\{0}, H1
Harr(k[G],k,Gm) =

G and Hn
Harr(k[G],k,Gm) = 1, for all n ≥ 2.
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Proof: As in the proof of Lemma 1, inductively, we obtain that the units of k[G]⊗n are of the
form qx1 ⊗ · · · ⊗ xn, for a certain q ∈ k\ {0} and x1, · · · , xn ∈ G.

Therefore, the complex that defines the Harrison cohomology of k[G] with coefficients in Gm
has as spaces Gm(k) = k\{0} and Gm(k[G]⊗n) = (k\{0})G⊗n, n ≥ 1, and boundary morphisms
given by

δ0(q) = 1, δ1(qh) = q1⊗ 1, δ2(qh⊗ g) = h−1 ⊗ 1⊗ g,
δ2n(qx1 ⊗ x2 ⊗ · · · ⊗ x2n)

= x−11 ⊗ 1⊗ x2x−13 ⊗ 1⊗ · · · ⊗ x2n−2x−12n−1 ⊗ 1⊗ x2n, for n ≥ 2,

δ2n+1(qx1 ⊗ x2 ⊗ · · · ⊗ x2n+1)

= q1⊗ x2 ⊗ x2 ⊗ x4 ⊗ x4 ⊗ · · · ⊗ x2n ⊗ x2n ⊗ 1, for n ≥ 1,

for all q ∈ k\{0} and h, g, x1, · · · , x2n+1 ∈ G. We leave the verification of these details to the
reader. Notice only that we considered G written multiplicatively and denoted by 1 its neutral
element.

Hence, the kernels and the images of the morphisms δi, i ≥ 0, are

Ker(δ0) = k\{0}, Im(δ0) = 1, Ker(δ1) = G, Ker(δ2) = Im(δ1) = k1⊗ 1,

and, for n ≥ 1,

Ker(δ2n) = Im(δ2n−1)

= {q1⊗ x2 ⊗ x2 ⊗ · · · ⊗ x2n−2 ⊗ x2n−2 ⊗ 1 | q ∈ k\{0}, x2i ∈ G},
Ker(δ2n+1) = Im(δ2n) = {x1 ⊗ 1⊗ x3 ⊗ · · · ⊗ 1⊗ x2n+1 | x2i+1 ∈ G}.

From here we conclude that

Hn
Harr(k[G],k,Gm) = Ker(δn)/Im(δn−1) =

 k\{0} if n = 0
G if n = 1
1 if n ≥ 2

,

as claimed.

The computations made in the proof of Proposition 2 allow us to determine all the quasi-
bialgebra structures on a group algebra of a torsion-free abelian group.

Corollary 2. Let k be a field and G a torsion-free abelian group. Then, up to an isomorphism,
to give a quasi-bialgebra structure on the group algebra k[G] is equivalent to give an element of
(k\{0}) × G × G. More exactly, a quasi-bialgebra structure on k[G] is given by the ordinary
bialgebra structure of k[G],

φh,g = h⊗ 1⊗ g, λ = qg−1 and ρ = qh, (3.1)

for a certain triple (q, h, g) ∈ (k\{0})×G×G. Furthermore, the only ordinary quasi-bialgebra
structure that can be built on the ordinary bialgebra structure of k[G] is the trivial one, in the
sense that it coincides with the ordinary bialgebra structure of k[G].
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Proof: By the comments made after Lemma 1 we have that, up to an isomorphism, the quasi-
bialgebra structures built on the group algebra k[G] are in a one to one correspondence with the
Harrison 3-cocycles on the ordinary bialgebra k[G], with coefficients in Gm. Since an element
of Ker(δ3) is of the form h⊗1⊗g, for some h, g ∈ G, we deduce that the desired quasi-bialgebra
structures are completely determined by φh,g := h ⊗ 1 ⊗ g and λ, ρ ∈ (k\{0})G such that
(H ⊗ ε ⊗ H)(φh,g) = ρ ⊗ λ−1. The latest condition is clearly equivalent to the existence of
a nonzero scalar q such that ρ = qh and λ = qg−1. The converse is obvious: for any triple
(q, h, g) ∈ (k\{0}) × G × G and φh,g, λ and ρ as in (3.1) we have that (k[G], φh,g, λ, ρ) is a
quasi-bialgebra.

Now, the ordinary quasi-bialgebra structures built on the algebra structure of k[G] are those
for which ρ = λ = 1. This forces q = 1 and h = g = 1, and therefore we land at the ordinary
bialgebra structure of k[G].

Observe that for k[G]h,gq := (k[G], φh,g, λ, ρ) as in (3.1) the invertible element u that deforms
this quasi-bialgebra structure in an ordinary one is u = qh ⊗ g−1. A simple inspection shows
that (k[G]h,gq )u = k[G], and so k[G]h,gq = k[G]u−1 is a deformation by an invertible element of
the ordinary bialgebra structure of k[G]. In particular this implies the following result.

Corollary 3. Let G be a torsion-free abelian group and k[G] the group algebra over k associated
to G. Then any monoidal structure on the category k[G]M induced by that of M is monoidal
isomorphic to the strict monoidal category of left representations over the ordinary bialgebra
k[G].

Proof. By Theorem 1, any monoidal structure on the category k[G]M induced by that of M is
determined by a quasi-bialgebra structure on k[G]. By Corollary 2, up to isomorphism, these
structures are of the form k[G]h,gq as above. Since (k[G]h,gq )u = k[G] for u = qh⊗ g−1, we get a
monoidal category isomorphism Γ (u) : k[G]h,gq

M→ k[G]M.

A first example of torsion-free abelian group is Z, the group of integers. In the following we
will adopt the multiplicative notation 〈g〉 for the group Z, where g is a generator.

Theorem 2. Let (k[〈g〉],∆, ε, φ, λ, ρ) be a quasi-bialgebra structure on the group algebra k[〈g〉].
Then, up to an isomorphism, the quasi-bialgebra structure of k[〈g〉] is completely determined by
some fixed elements q ∈ k\ {0} and a, b ∈ Z, in the sense that

∆ (g) = g ⊗ g, ε (g) = 1,

φ = ga ⊗ 1H ⊗ gb,
λ = qg−b, ρ = qga.

Furthermore, if we denote this quasi-bialgebra structure on k[〈g〉] by k[〈g〉]a,bq then k[〈g〉]a,bq =
k[〈g〉]q−1g−a⊗gb . Consequently, up to a monoidal category isomorphism, there is only one
monoidal structure on the category of left representations over the group algebra k[〈g〉] that
is induced by the strict monoidal structure of M. Namely, the one corresponding to the ordi-
nary bialgebra structure of k[〈g〉].
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Proof: Follows from Corollaries 2 and 3, specialized for the case G = Z.

We move now to the quasi-triangular case. We prove that there is exactly one braided
monoidal structure (actually symmetric) on the category of representation of a group algebra
associated to a torsion-free abelian group.

Proposition 3. Let G be a torsion-free abelian group, q ∈ k\{0} and h, g ∈ G. If k[G]h,gq
is the group algebra k[G] equipped with the quasi-bialgebra structure from Corollary 2 then
Rh,g = gh⊗(gh)−1 is the only matrix that makes k[G]h,gq a quasi-triangular (actually triangular)

quasi-bialgebra. Moreover, (k[G]h,gq , Rh,g)= (k[G], 1⊗1)q−1h−1⊗g, as triangular quasi-bialgebras.

Proof: If u = qh⊗g−1 then we have seen that k[G]h,gq = k[G]u−1 . Thus, if R̃ ∈ k[G]h,gq ⊗k[G]h,gq
endows k[G]h,gq with a quasi-triangular structure then R̃u is an R-matrix for (k[G]h,gq )u =
k[G]. Likewise, if R is an R-matrix on k[G] then Ru−1 defines a quasi-triangular structure
on k[G]u−1 = k[G]h,gq . So we have to compute the quasi-triangular structures of the ordinary
bialgebra k[G].

The definition of a quasi-triangular bialgebra can be obtained from that of a quasi-bialgebra
by considering φ = 1⊗ 1⊗ 1. So we are looking for an invertible element R ∈ k[G]⊗ k[G] such
that (2.3) holds and

(∆⊗ k[G])(R) = (R1 ⊗ 1⊗R2)(1⊗R1 ⊗R2) ,

(k[G]⊗∆)(R) = (R1 ⊗ 1⊗R2)(R1 ⊗R2 ⊗ 1) .

Note that, since k[G] is both commutative and cocommutative, equation (2.3) is always true.
Since R is invertible, it is of the form R = tx⊗ y for some t ∈ k\ {0} and x, y ∈ G. So we have

tx⊗ x⊗ y = t2x⊗ x⊗ y2 and tx⊗ y ⊗ y = t2x2 ⊗ y ⊗ y.

The above equalities imply R = 1 ⊗ 1, thus the bialgebra k[G] admits only one R-matrix,
the trivial one. From the above we get that k[G]h,gq has a unique quasi-triangular (actually
triangular) structure given by

Rh,g := Ru−1 = (q−1g ⊗ h−1)(qh⊗ g−1) = gh⊗ (gh)−1.

Clearly (k[G]h,gq , Rh,g) = (k[G], 1⊗ 1)q−1h−1⊗g as triangular quasi-bialgebras, and this finishes
the proof.

Notation 2. Consider the quasi-bialgebra k[G]h,gq . In view of Proposition 3, there is a unique

element R, namely Rh,g = gh ⊗ (gh)−1, such that
(
k[G]h,gq , R

)
is a quasi-triangular (in fact

triangular) quasi-bialgebra. By abuse of notation, the datum
(
k[G]h,gq , Rh,g

)
will be simply

denoted by k[G]h,gq .

From the braided monoidal categorical point of view, up to isomorphism, k[G]h,gq is the
“unique” (quasi)triangular quasi-bialgebra structure that can be built on the group algebra
k[G], in the case when G is a torsion-free abelian group.
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Corollary 4. Let G be a torsion-free abelian group. Then, up to a braided monoidal category
isomorphism, we have a unique braided monoidal structure (actually symmetric) on the category
of representations over the group algebra k[G], considered monoidal via a structure induced by
that of M. Namely, the one induced by the trivial (quasi)triangular structure of the ordinary
bialgebra k[G].

If we take G = Z and keep the notations as in the statement of Theorem 2 we then get the
following.

Corollary 5. Up to isomorphism, to give a (quasi)triangular quasi-bialgebra structures on the
group algebra k[〈g〉] is equivalent to give a triple (q, a, b) ∈ (k\{0}) × Z × Z. For such a triple
(q, a, b) we have a unique (quasi)triangular quasi-bialgebra structure on the group algebra k[〈g〉],
and this is k[〈g〉]a,bq equipped with the R-matrix Ra,b := ga+b ⊗ g−a−b. Furthermore,

(k[〈g〉]a,bq , Ra,b) = (k[〈g〉], 1⊗ 1)q−1g−a⊗gb ,

and so, up to a braided monoidal category isomorphism, the category k[〈g〉]M admits a unique
braided monoidal (actually symmetric) structure, if it is considered monoidal via a structure
induced by that of M. Namely, the one obtained from the trivial (quasi)triangular structure of
the ordinary bialgebra k[〈g〉].

4 The Hom-category

Let G be a free abelian group. It can be shown that a representation of the group algebra
k[G] identifies with a pair (M, (fg)g∈S), where M is a k-vector space and (fg)g∈S is a family
of commuting k-automorphisms of M indexed by a set of generators of G. This gives us a
new description of the category k[G]M. In the case when G = 〈g〉 is the infinite cyclic group
we will see that this description of k[〈g〉]M coincides with a so called Hom-category, previously
introduced in [CG, Section 1]. This will allow us to describe, up to an isomorphism, all the
braided monoidal structures on the Hom-category of M.

Definition 3. Let C be an ordinary category. We associate to C a new category H (C) as follows.
Objects are pairs (M,fM ) with M ∈ C and fM ∈ AutC(M). A morphism ξ : (M,fM )→ (N, fN )
is a morphism ξ : M → N in C such that

fN ◦ ξ = ξ ◦ fM . (4.1)

The category H (C) is called the Hom-category associated to C.

In the case when C = M we have the following description for H (C).

Proposition 4. We have a category isomorphism W : k[〈g〉]M→ H (M), given on objects by

W (X,µX : k[〈g〉]⊗X → X) = (X, fX : X → X) ,

where fX (x) := µX (g ⊗ x) , for all x ∈ X, and on morphisms by Wξ = ξ.
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Proof: It can be easily seen that

Algk (k[〈g〉],Endk (V )) ∼= Grp (〈g〉 ,Autk (V )) ∼= Autk (V ) .

Therefore, to a left k[〈g〉]-module (V, µV ) corresponds a pair (V, fV ), where V is a k-vector
space and fV ∈ Autk (V ) . The correspondence is given by

gv := fV (v) , for all v ∈ V.

A morphism ξ : (V, µV ) → (W,µW ) of left k[〈g〉]-modules corresponds to a k-linear map ξ :
V → W such that, for every v ∈ V, ξ (gv) = gξ (v) , i.e., for every v ∈ V , ξ (fV (v)) = fW ξ (v)
or, equivalently, ξ ◦ fV = fW ◦ ξ.

Theorem 3. Let (A,⊗,1, a, r, l) be a monoidal category, let A′ be a category and let W : A →
A′ be a category isomorphism. For every X ′, Y ′, Z ′ ∈ A′ we set X := W−1 (X ′) , Y := W−1 (Y ′)
and Z := W−1 (Z ′), and define

X ′ ⊗′ Y ′ := W (X ⊗ Y ) , 1′ := W (1) ,

l′X′ :=
(
1′ ⊗′ X ′ = W (1⊗X)

WlX−→ WX = X ′
)
,

r′X′ :=
(
X ′ ⊗′ 1′ = W (X ⊗ 1)

WrX−→ WX = X ′
)
,

a′X′,Y ′,Z′ := ((X ′ ⊗′ Y ′)⊗′ Z ′ = W ((X ⊗ Y )⊗ Z)

WaX,Y,Z−→ W (X ⊗ (Y ⊗ Z)) = X ′ ⊗′ (Y ′ ⊗′ Z ′)
)
.

Then (A′,⊗′,1′, a′, r′, l′) is monoidal and

(W,w0, w2) : (A,⊗,1, a, r, l)→ (A′,⊗′,1′, a′, r′, l′)

is a strict monoidal isomorphism functor. Furthermore, if (A,⊗,1, a, r, l, c) is (symmetric)
braided then so is (A′,⊗′,1′, a′, r′, l′, c′) , where

c′X′,Y ′ =

(
X ′ ⊗ Y ′ = W (X ⊗ Y )

WcX,Y−→ W (Y ⊗X) = Y ′ ⊗X ′
)
,

and via these structures (W,w0, w2) becomes a strict isomorphism of (symmetric) braided monoidal
categories.

Proof: It is straightforward, cf. [SR, 4.4.3 and 4.4.5].

Theorem 4. Up to isomorphism, the monoidal structures on the category H(M) induced by the
strict monoidal structure of M are completely determined by triples (q, a, b) ∈ (k\{0})×Z×Z.
Explicitly, if (H(M),⊗, (k, fk), a, l, r) is such a structure then there exists (q, a, b) ∈ (k\{0})×
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Z × Z such that H(M) = Ha,bq (M) as monoidal category, where by Ha,bq (M) we denote the
category H(M) equipped with monoidal structure given by

(X, fX)⊗ (Y, fY ) = (X ⊗ Y, fX ⊗ fY ) , (k, Idk) ,

a(X,fX),(Y,fY ),(Z,fZ) ((x⊗ y)⊗ z) = faX (x)⊗
(
y ⊗ f bZ (z)

)
,

l(X,fX) = lX : (k⊗X, Idk ⊗ fX)→ (X, fX), lX (κ⊗ x) = κqf−bX (x) ,

r(X,fX) = rX : (X ⊗ k, fX ⊗ Idk)→ (X, fX), rX (x⊗ κ) = κqfaX (x) ,

for all x ∈ X, y ∈ Y , z ∈ Z, κ ∈ k. Moreover, the monoidal category Ha,bq (M) admits a unique
braided (actually symmetric) monoidal structure, given by the braiding c(X,fX),(Y,fY ) = cX,Y :
(X ⊗ Y, fX ⊗ fY )→ (Y ⊗X, fY ⊗ fX),

cX,Y (x⊗ y) = f−a−bY (y)⊗ fa+bX (x) ,

for all x ∈ X and y ∈ Y . Consequently, the functor W defined in Proposition 4 produces a
strict symmetric monoidal category isomorphism

(W,w0, w2) : k[〈g〉]a,bq M→ Ha,bq (M) .

Proof: By Proposition 4 we have a category isomorphism W : k[〈g〉]M→ H (M) . By Theorem
3 the monoidal structures on H(M) are in a one to one correspondence with those of k[〈g〉]M.
So, according to Theorem 1, the monoidal structures on H (M) induced by the strict monoidal
structure of M are given by the quasi-bialgebra structures of k[〈g〉]. Using Theorem 2 we get
that, up to isomorphism, the desired monoidal structures on H(M) are completely determined
by triples (q, a, b) ∈ (k\{0})× Z× Z as follows.

Let (X, fX) , (Y, fY ) , (Z, fZ) be objects in H (M). The tensor product in H (M) is then
given by

(X, fX)⊗ (Y, fY ) := W ((X,µX)⊗ (Y, µY )) = W (X ⊗ Y, µX⊗Y ) = (X ⊗ Y, fX⊗Y ),

where

fX⊗Y (x⊗ y) = µX⊗Y (g ⊗ (x⊗ y)) = g (x⊗ y) = ∆ (g) (x⊗ y)

= gx⊗ gy = fX (x)⊗ fY (y) = (fX ⊗ fY ) (x⊗ y) ,

and so (X, fX)⊗ (Y, fY ) = (X ⊗ Y, fX ⊗ fY ) . The unit is W (k,µk) = (k, Idk) since

fk (κ) := µk (g ⊗ κ) = g · κ = ε (g)κ = κ,

for all κ ∈ k. The left unit constraint is given, for every κ ∈ k, x ∈ X, by

l(X,fX) (κ⊗ x) =
(
Wl(X,µX)

)
(κ⊗ x) = l(X,µX) (κ⊗ x)

= κl(X,µX) (1k ⊗ x) = κ (λx) = κ
(
qg−bx

)
= κqf−bX (x) .

Likewise, the right unit constraint is given, for every κ ∈ k, x ∈ X, by

r
(X,fX)

(x⊗ κ) =
(
Wr(X,µX)

)
(x⊗ κ) = r(X,µX) (x⊗ κ)

=
(
r(X,µX)

)
(x⊗ 1k)κ = (ρx)κ = κ (qgax) = κqfaX (x) .
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In a similar manner we compute that the associativity constraint is given, for every x ∈ X,
y ∈ Y , z ∈ Z, by

a(X,fX),(Y,fY ),(Z,fZ) ((x⊗ y)⊗ z)
=

(
Wa(X,µX),(Y,µY ),(Z,µZ)

)
((x⊗ y)⊗ z)

= a(X,µX),(Y,µY ),(Z,µZ) ((x⊗ y)⊗ z) = φ1x⊗
(
φ2y ⊗ φ3z

)
= gax⊗

(
y ⊗ gbz

)
= faX (x)⊗

(
y ⊗ f bZ (z)

)
.

Thus if we transport through W the monoidal structure of k[〈g〉]a,bp M what we get on H(M) is

the monoidal structure of H(M)a,bp , as needed.
Since k[〈g〉]a,bp M has a unique braided (actually symmetric) monoidal structure by the above

comments it follows that H(M)a,bp has a unique braided (actually symmetric) monoidal struc-
ture, too. It is given by the braiding defined, for every x ∈ X, y ∈ Y , by

c(X,fX),(Y,fY ) (x⊗ y) =
(
Wc(X,µX),(Y,µY )

)
(x⊗ y) = c(X,µX),(Y,µY ) (x⊗ y)

= R2y ⊗R1x = g−a−by ⊗ ga+bx = f−a−bY (y)⊗ fa+bX (x) .

The last assertion follows easily from Theorem 3.

Corollary 6. Let q ∈ k\ {0} and a, b ∈ Z. We have isomorphisms of symmetric monoidal
categories

Ha,bq (M) ∼= k〈g〉a,bq
M ∼= k[〈g〉]M ∼= H0,0

1 (M) .

Proof: By Theorem 4 we haveHa,bq (M) ∼= k〈g〉a,bq
M, and by Corollary 4 that k〈g〉a,bq

M ∼= k[〈g〉]M.

Both of them are isomorphisms of symmetric monoidal categories.

Definition 4. Let (C,⊗,1, a, l, r) be a monoidal category. By [CG, Section 1], the category
H (C) becomes a monoidal category H (C) = (H (C) ,⊗, (1, Id1) , a, l, r) . Here by abuse of nota-
tion we denote with the same letters the constraints of C regarded as morphisms in H (C) (thus,
for instance a(M,fM ) is aM regarded as a morphism in H (C)). The tensor product of (M,fM )
and (N, fN ) is given by the formula

(M,fM )⊗ (N, fN ) = (M ⊗N, fM ⊗ fN ) .

At the level of morphisms, the tensor product is the tensor product of morphisms.
In [CG, Proposition 1.1], a modified version H̃ (C) of the monoidal category H(C) was given.

Namely, H̃ (C) =
(
H (C) ,⊗, (1, Id1) , ã, l̃, r̃

)
, where the associativity constraint ã is defined, for

(M,fM ), (N, fN ), (P, fP ) ∈ H (C), by the formula

ã(M,fM ),(N,fN ),(P,fP ) = aM,N,P

(
(fM ⊗N)⊗ f−1P

)
=
(
fM ⊗

(
N ⊗ f−1P

))
aM,N,P ,
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while the unit constraints l̃ and r̃ are defined by

l̃(M,fM ) = fM ◦ lM = lM ◦ (1⊗ fM ) and r̃(M,fM ) = fM ◦ rM = rM ◦ (fM ⊗ 1) .

Furthermore, by [CG, Proposition 1.2], if (C,⊗,1, a, l, r, c) is a braided monoidal category then

so is H̃ (C) =
(
H (C) ,⊗, (1, Id1) , ã, l̃, r̃, c

)
.

Hence, by [CG, Proposition 1.7], we deduce that (H (C) ,⊗, (1, Id1) , a, l, r, c) is braided as
well.

As a consequence of Theorem 4, we have an alternative description for the symmetric
monoidal categories given in Definition 4, providing that C = M.

Proposition 5. We have the following equalities of braided monoidal categories

H (M) = H0,0
1 (M) and H̃ (M) = H1,−1

1 (M) .

The result below gives a more conceptual proof for [CG, Proposition 1.7], in the particular
case when C = M.

Corollary 7. We have the following isomorphisms of symmetric monoidal categories,

H (M) ∼= k〈g〉0,01
M ∼= k[〈g〉]M ∼= k〈g〉1,−1

1
M ∼= H̃ (M) .

Proof: It follows by Corollary 6. See also Proposition 5.
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