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Filippov lemma for a certain differential inclusion of fourth-order
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Abstract

We consider a boundary value problem for a fourth-order nonconvex differential inclu-
sion and we establish some Filippov type existence results for this problem.
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1 Introduction

This paper is concerned with the following boundary value problem for fourth-order differential
inclusions

L4x(t) + a(t)x(t) ∈ F (t, x(t)) a.e. ([0, T ]), (1.1)

Lix(0) = Lix(T ), i = 0, 1, 2, 3, (1.2)

where L0x(t) = a0(t)x(t), Lix(t) = ai(t)(Li−1x(t))′, i = 1, 2, 3,
L4x(t) = (a3(t)(a2(t)(a1(t)(a0(t)x(t))′)′)′)′, a(.), ai(.) : [0, T ] → R are continuous mappings,
a0(t) ≡ 1, a(t) ≥ 0, ai(t) > 0, i = 1, 2, t ∈ [0, T ], a1(t) ≡ a3(t) and F (., .) : [0, T ] × R → P(R)
is a set-valued map.

The present paper is motivated by relatively recent papers of Švec ([15]) and Arara, Ben-
chohra, Ntouyas and Ouahab ([3]), where several existence results for problem (1.1)-(1.2) are
provided. In [15], by means of the Ky Fan fixed point theorem it is obtained an existence result
for problem (1.1)-(1.2), when F (., .) is upper semicontinuous and has convex compact values.
In [3] the situation when F (., .) has nonconvex values is investigated and two existence results
are obtained using the Covitz and Nadler multivalued contraction principle and the Bressan
and Colombo selection theorem for lower semicontinuous set-valued maps with decomposable
values.

The aim of our paper is to present two additional existence results for problem (1.1)-(1.2)
which are Filippov type existence results for this problem. The first one is obtained by the
application of the set-valued contraction principle in the space of derivatives of solutions instead
of the space of solutions as in [3]. In addition, as usual at a Filippov existence type theorem,
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our result provides an estimate between the starting ”quasi” solution and the solution of the
differential inclusion. The idea of applying the set-valued contraction principle in the space of
derivatives of the solutions belongs to Tallos ([11,16]) and it was already used for other classes
of differential inclusions.

In our second approach we show that Filippov’s ideas ([10]) can be suitably adapted in
order to obtain the existence of solutions for problem (1.1)-(1.2). Recall that for a differential
inclusion defined by a lipschitzian set-valued map with nonconvex values, Filippov’s theorem
([10]) consists in proving the existence of a solution starting from a given ”quasi” solution.

For the motivation of study of problem (1.1)-(1.2) we refer to [3,15] and references therein.
Several qualitative properties of the solutions of forth-order differential equations and inclusions
may be found in [1,2,5,8,9,12,14] etc..

The paper is organized as follows: in Section 2 we recall some preliminary results that we
need in the sequel and in Section 3 we prove our main results.

2 Preliminaries

In this short section we sum up some basic facts that we are going to use later.
Let (X, d) be a metric space and consider a set valued map T on X with nonempty values

in X. T is said to be a λ-contraction if there exists 0 < λ < 1 such that:

dH(T (x), T (y)) ≤ λd(x, y) ∀x, y ∈ X,

where dH(., .) denotes the Pompeiu-Hausdorff distance. Recall that the Pompeiu-Hausdorff
distance of the closed subsets A,B ⊂ X is defined by

dH(A,B) = max{d∗(A,B), d∗(B,A)}, d∗(A,B) = sup{d(a,B); a ∈ A},

where d(x,B) = infy∈B d(x, y).
The set-valued contraction principle ([7]) states that if X is complete, and T : X → P(X) is

a set valued contraction with nonempty closed values, then T (.) has a fixed point, i.e. a point
z ∈ X such that z ∈ T (z).

We denote by Fix(T ) the set of all fixed points of the set-valued map T . Obviously, Fix(T )
is closed.

Proposition 2.1 ([13]) Let X be a complete metric space and suppose that T1, T2 are λ-
contractions with closed values in X. Then

dH(Fix(T1), F ix(T2)) ≤ 1

1− λ
sup
z∈X

d(T1(z), T2(z)).

Let I = [0, T ], we denote by C(I,R) the Banach space of all continuous functions from
I to R with the norm ||x(.)||C = supt∈I |x(t)| and L1(I,R) is the Banach space of integrable

functions u(.) : I → R endowed with the norm ||u(.)||1 =
∫ T

0
|u(t)|dt. If J ⊂ R is an interval,

by ACi(J,R), i = 0, 1, 2, 3 we denote the space of i-times differentiable functions x(.) : J → R
whose ith derivative x(i)(.) is absolutely continuous.
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A function x(.) ∈ AC3(I,R) is called a solution of problem (1.1)-(1.2) if there exists a
function f(.) ∈ L1(I,R) with f(t) ∈ F (t, x(t)) a.e. (I) such that Lix(0) = Lix(T ), i = 0, 1, 2, 3.

Lemma 2.2 ([15]) The boundary value problem

L4x(t) + a(t)x(t) = 0, (2.1)

Lix(0) = Lix(T ), i = 0, 1, 2, 3, (2.2)

has only the trivial solution x(t) ≡ 0 on I.
Therefore, if f(.) : [0, T ] → R is an integrable function, there exists the Green function

G(., .) for problem
L4x(t) + a(t)x(t) = f(t), (2.3)

Lix(0) = Lix(T ), i = 0, 1, 2, 3, (2.4)

and the solution of problem (2.3)-(2.4) is given by

x(t) =

∫ T

0

G(t, s)f(s)ds. (2.5)

According to [15] the Green function G(., .) is bounded. Let G0 := supt,s∈I |G(t, s)|.

3 The main results

We study first problem (1.1)-(1.2) with fixed point techniques. In order to do this we introduce
the following hypothesis.

Hypothesis 3.1 (i) F (., .) : I×R→ P(R) has nonempty closed values and for every x ∈ R,
F (., x) is measurable.

(ii) There exists L(.) ∈ L1(I,R+) such that for almost all t ∈ I, F (t, .) is L(t)-Lipschitz in
the sense that

dH(F (t, x), F (t, y)) ≤ L(t)|x− y| ∀ x, y ∈ R.
(iii) d(0, F (t, 0)) ≤ L(t) a.e. (I)

Denote L0 :=
∫ 1

0
L(s)ds.

Theorem 3.2 Assume that Hypothesis 3.1 is satisfied and G0L0 < 1. Let y(.) ∈ AC3(I,R)
be such that Liy(0) = Liy(T ), i = 0, 1, 2, 3 and there exists q(.) ∈ L1(I,R+) with d(L4y(t) +
a(t)y(t), F (t, y(t))) ≤ q(t), a.e. (I).

Then for every ε > 0 there exists x(.) a solution of problem (1.1)-(1.2) satisfying for all t ∈ I

|x(t)− y(t)| ≤ G0

1−G0L0

∫ T

0

q(t)dt+ ε.

Proof. For u(.) ∈ L1(I,R) define the following set-valued maps

Mu(t) = F (t,

∫ T

0

G(t, s)u(s)ds), t ∈ I,
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T (u) = {φ(.) ∈ L1(I,R); φ(t) ∈Mu(t) a.e. (I)}.

It follows from Lemma 2.2 that x(.) is a solution of problem (1.1) if and only if L4x(.) +
a(.)x(.) is a fixed point of T (.).

We shall prove first that T (u) is nonempty and closed for every u ∈ L1(I,R). The
fact that the set valued map Mu(.) is measurable is well known. For example the map

t→
∫ T

0
G(t, s)u(s)ds can be approximated by step functions and we can apply Theorem III. 40

in [6]. Since the values of F are closed with the measurable selection theorem (Theorem III.6
in [6]) we infer that Mu(.) admits a measurable selection φ. One has

|φ(t)| ≤ d(0, F (t, 0)) + dH(F (t, 0), F (t,

∫ T

0

G(t, s)u(s)ds)) ≤

≤ L(t)(1 +G0

∫ T

0

|u(s)|ds),

which shows that φ ∈ L1(I,R) and T (u) is nonempty.
On the other hand, the set T (u) is also closed. Indeed, if φn ∈ T (u) and ||φn − φ||1 → 0

then we can pass to a subsequence φnk
such that φnk

(t)→ φ(t) for a.e. t ∈ I, and we find that
φ ∈ T (u).

We show next that T (.) is a contraction on L1(I,R).
Let u, v ∈ L1(I,R) be given and φ ∈ T (u). Consider the following set-valued map:

H(t) = Mv(t) ∩ {x ∈ R; |φ(t)− x| ≤ L(t)|
∫ T

0

G(t, s)(u(s)− v(s))ds|}.

From Proposition III.4 in [6], H(.) is measurable and from Hypothesis 3.1 ii) H(.) has
nonempty closed values. Therefore, there exists ψ(.) a measurable selection of H(.). It follows
that ψ ∈ T (v) and according with the definition of the norm we have

||φ− ψ||1 =

∫ T

0

|φ(t)− ψ(t)|dt ≤
∫ T

0

L(t)(

∫ T

0

|G(t, s)|.|u(s)− v(s)|ds)dt

=

∫ T

0

(

∫ T

0

L(t)|G(t, s)|dt)|u(s)− v(s)|ds ≤ G0L0||u− v||1.

We deduce that
d(φ, T (v)) ≤ G0L0||u− v||1.

Replacing u by v we obtain

dH(T (u), T (v)) ≤ G0L0||u− v||1,

thus T (.) is a contraction on L1(I,R).
We consider next the following set-valued maps

F1(t, x) = F (t, x) + q(t)[−1, 1], (t, x) ∈ I × R,
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M1
u(t) = F1(t,

∫ T

0

G(t, s)u(s)ds),

T1(u) = {ψ(.) ∈ L1(I,R); ψ(t) ∈M1
u(t) a.e. (I)}, u(.) ∈ L1(I,R).

Obviously, F1(., .) satisfies Hypothesis 3.1.
Repeating the previous step of the proof we obtain that T1 is also a G0L0-contraction on

L1(I,R) with closed nonempty values.
We prove next the following estimate

dH(T (u), T1(u)) ≤
∫ T

0

q(t)dt. (3.1)

Let φ ∈ T (u) and define

H1(t) = M1
u(t) ∩ {z ∈ R; |φ(t)− z| ≤ q(t)}.

With the same arguments used for the set valued map H(.), we deduce that H1(.) is mea-
surable with nonempty closed values. Hence let ψ(.) be a measurable selection of H1(.). It
follows that ψ ∈ T1(u) and one has

||φ− ψ||1 =

∫ T

0

|φ(t)− ψ(t)|dt ≤
∫ T

0

q(t).

As above we obtain (3.1).
We apply Proposition 2.1 and we infer that

dH(Fix(T ), F ix(T1)) ≤ 1

1−G0L0

∫ T

0

q(t)dt.

Since v(.) = L4y(.) + a(.)y(.) ∈ Fix(T1) it follows that for any ε > 0 there exists u(.) ∈
Fix(T ) such that

||v − u||1 ≤
1

1−G0L0

∫ T

0

q(t)dt+
ε

G0
.

We define x(t) =
∫ T

0
G(t, s)u(s)ds, t ∈ I and we have

|x(t)− y(t)| ≤
∫ T

0

|G(t, s)|.|u(s)− v(s)|ds ≤ G0

1−G0L0

∫ T

0

q(t)dt+ ε

which completes the proof.

The assumption in Theorem 3.2 is satisfied, in particular, for y(.) = 0 and therefore, via
Hypothesis 3.1 (iii), with q(.) = L(.). We obtain the following consequence of Theorem 3.2.

Corollary 3.3 Assume that Hypothesis 3.1 is satisfied and G0L0 < 1. Then for every ε > 0
there exists x(.) a solution of problem (1.1)-(1.2) satisfying for all t ∈ I

|x(t)| ≤ G0L0

1−G0L0
+ ε. (3.2)
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Remark 3.4 Corollary 3.3 is an improvement of Theorem 3.3 in [3]. According to Theorem
3.3 in [3] if Hypothesis 3.1 is satisfied, G0L0 < 1 and F (., .) has compact values then problem
(1.1)-(1.2) has at least a solution. Obviously, in Corollary 3.3 we do not assume that the values
of F (., ) are compact. Moreover, in (3.2) we obtained a priori bounds for the solution.

We present next the main result of this paper. Its proof uses Filippov’s construction of
successive approximations ([10]).

Theorem 3.5 Assume that Hypothesis 3.1 (i), (ii) is satisfied and G0L0 < 1. Let y(.) ∈
AC3(I,R) be such that Liy(0) = Liy(T ), i = 0, 1, 2, 3 and there exists q(.) ∈ L1(I,R+) with
d(L4y(t) + a(t)y(t), F (t, y(t))) ≤ q(t), a.e. (I).

Then there exists x(.) a solution of problem (1.1)-(1.2) satisfying for all t ∈ I

|x(t)− y(t)| ≤ G0

1−G0L0

∫ T

0

q(t)dt. (3.3)

Proof. The set-valued map t→ F (t, y(t)) is measurable with closed values and

F (t, y(t)) ∩ {L4y(t) + a(t)y(t) + q(t)[−1, 1]} 6= ∅ a.e. (I).

It follows (e.g., Theorem 1.14.1 in [4]) that there exists a measurable selection f1(t) ∈
F (t, y(t)) a.e. (I) such that

|f1(t)− L4y(t)− a(t)y(t)| ≤ q(t) a.e. (I) (3.4)

Define x1(t) =
∫ T

0
G(t, s)f1(s)ds and one has

|x1(t)− y(t)| ≤ G0

∫ T

0

q(t)dt.

We claim that it is enough to construct the sequences xn(.) ∈ C(I,R), fn(.) ∈ L1(I,R),
n ≥ 1 with the following properties

xn(t) =

∫ T

0

G(t, s)fn(s)ds, t ∈ I, (3.5)

fn(t) ∈ F (t, xn−1(t)) a.e. (I), n ≥ 1, (3.6)

|fn+1(t)− fn(t)| ≤ L(t)|xn(t)− xn−1(t)| a.e. (I), n ≥ 1. (3.7)

If this construction is realized then from (3.4)-(3.7) we have for almost all t ∈ I

|xn+1(t)− xn(t)| ≤
∫ T

0

|G(t, t1)|.|fn+1(t1)− fn(t1)|dt1 ≤

G0

∫ T

0

L(t1)|xn(t1)− xn−1(t1)|dt1 ≤ G0

∫ T

0

L(t1)

∫ T

0

|G(t1, t2)|.
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|fn(t2)− fn−1(t2)|dt2 ≤ G2
0

∫ T

0

L(t1)

∫ T

0

L(t2)|xn−1(t2)− xn−2(t2)|dt2dt1

≤ (G0)n
∫ T

0

L(t1)

∫ T

0

L(t2)...

∫ T

0

L(tn)|x1(tn)− y(tn)|dtn...dt1 ≤

≤ (G0L0)nG0

∫ T

0

q(t)dt.

Therefore {xn(.)} is a Cauchy sequence in the Banach space C(I,R), hence converging
uniformly to some x(.) ∈ C(I,R). Therefore, by (3.7), for almost all t ∈ I, the sequence {fn(t)}
is Cauchy in R. Let f(.) be the pointwise limit of fn(.).

Moreover, one has

|xn(t)− y(t)| ≤ |x1(t)− y(t)|+
∑n−1

i=1 |xi+1(t)− xi(t)| ≤
G0

∫ T

0
q(t)dt+

∑n−1
i=1 (G0

∫ T

0
q(t)dt)(G0L0)i =

G0

∫ T
0

q(t)dt

1−G0L0
.

(3.8)

On the other hand, from (3.4), (3.7) and (3.8) we obtain for almost all t ∈ I

|fn(t)− L4y(t)− a(t)y(t)| ≤
∑n−1

i=1 |fi+1(t)− fi(t)|+ |f1(t)− L4y(t)

−a(t)y(t)| ≤ L(t)
G0

∫ T
0

q(t)dt

1−G0L0
+ q(t).

Hence the sequence fn(.) is integrably bounded and therefore f(.) ∈ L1(I,R).
Using Lebesgue’s dominated convergence theorem and taking the limit in (3.5), (3.6) we

deduce that x(.) is a solution of (1.1)-(1.2). Finally, passing to the limit in (3.8) we obtained
the desired estimate on x(.).

It remains to construct the sequences xn(.), fn(.) with the properties in (3.5)-(3.7). The
construction will be done by induction.

Since the first step is already realized, assume that for some N ≥ 1 we already constructed
xn(.) ∈ C(I,R) and fn(.) ∈ L1(I,R), n = 1, 2, ...N satisfying (3.5), (3.7) for n = 1, 2, ...N and
(3.6) for n = 1, 2, ...N − 1. The set-valued map t → F (t, xN (t)) is measurable. Moreover, the
map t→ L(t)|xN (t)− xN−1(t)| is measurable. By the lipschitzianity of F (t, .) we have that for
almost all t ∈ I

F (t, xN (t)) ∩ {fN (t) + L(t)|xN (t)− xN−1(t)|[−1, 1]} 6= ∅.

Theorem 1.14.1 in [4] yields that there exist a measurable selection fN+1(.) of F (., xN (.))
such that

|fN+1(t)− fN (t)| ≤ L(t)|xN (t)− xN−1(t)| a.e. (I).

We define xN+1(.) as in (3.5) with n = N + 1. Thus fN+1(.) satisfies (3.6) and (3.7) and
the proof is complete.

Remark 3.6 Obviously, Theorem 3.5 extends Theorem 3.2. We do not suppose that
d(0, F (t, 0)) ≤ L(t) a.e. (I) and the estimate in (3.3) is better than the one in Theorem
3.2.
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Even if Theorem 3.5 improves Theorem 3.2, we chosen to present both results; on one hand
because the methods used in their proofs are different and on the other hand to show that there
exists situations when the fixed point approaches are less powerful.
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