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Introduction

The aim of this paper is to introduce and investigate a new category whose objects are the
bounded modular lattices and whose morphisms are the so called linear morphisms.

In Section 0 we present some notation and terminology on lattices. Section 1 is devoted
to the introduction of a special class of maps between lattices that evoke the morphisms of
modules, and for this reason we call them linear morphisms.

In Section 2 we show that the class of all bounded modular lattices together with mor-
phisms between two such lattices as linear morphisms has a natural structure of a category we
denote LM. We also describe the monomorphisms and epimorphisms of this category and the
subobjects of any of its objects.

In Section 3 we present a latticial version of the concept of an injective module with respect
to a class of modules, namely that of a linear C-injective lattice, where C is a nonempty class
of lattices, by using the linear morphims defined in Section 1. In particular one obtains the
concept of a linear injective lattice; when restricting to bounded modular lattices, the linear
injective lattices are precisely the injective objects of the category LM investigated in Section
2. Then, we define the concept of a linear C-injective hull of a lattice and show that it is unique
up to a lattice isomorphism.



34 Toma Albu and Mihai Iosif

Section 4 provides some examples and counter-examples of linear C-injective lattices and in-
vestigates the connection between linear C-injectivity and C-injectivity. Several open questions
on these concepts are also presented.

0 Preliminaries

All lattices considered in this paper are assumed to have a least element denoted by 0 and a last
element denoted by 1, in other words they are bounded. For a lattice L and elements a < b
in L we write

bja:=[a,bj={xz€eLl]la<z<b}.

An initial interval (resp. a quotient interval) of b/a is any interval c¢/a (resp. b/c) for some
¢ € b/a. In particular, ¢/0 (resp. 1/c¢) is an initial (resp. quotient) interval of L = 1/0 for
any c € L.

We denote by £ (resp. M) the class of all lattices (resp. modular lattices). Throughout
this paper, a lattice will always mean a member of £, and (L,<,A,V,0,1), or more simply,
just L, will always denote such a lattice.

The class L is in fact a category, whose morphisms are the usual lattice morphisms. If the
lattices L and L’ are isomorphic (in the category L) we denote this by L ~ L’. Note that a
surjective lattice morphism, in particular a lattice isomorphism, preserves both the least and
last elements. This is not the case in general as the following simple example shows: the map
f:10,1] — [0, 3] between the intervals [0, 1] and [0, 3] of the set R of real numbers defined by
f(z) =x+1, 2 €[0,1], is a morphism of complete lattices, that preserves neither the least nor
the last elements.

For all undefined notation and terminology on lattices, the reader is referred to Birkhoff [3],
Crawley and Dilworth [4], and/or Grétzer [5].

Throughout this paper R will denote an associative ring with nonzero identity element, and
Mod-R the category of all unital right R-modules. The notation Mp will be used to designate
a unital right R-module M, and N < M will mean that N is a submodule of M. The lattice
of all submodules of a module Mg will be denoted by L(MEg).

1 Linear lattice morphisms

In this section we define the concept of a linear morphism between lattices, that evokes the
property of a linear map ¢ : M — N between modules Mpr and Ng to have a kernel Ker ¢
and to verify the Fundamental Theorem of Isomorphism: M /Ker ¢ ~ Im .

Definitions 1.1. Let f: L — L' be a map between the lattice L with least element 0 and
last element 1 and the lattice L' with least element 0/ and last element 1’.

(1) f is called alinear morphism if there exist k € L, called a kernel of f, and o' € L' such
that the following two conditions are satisfied.
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i) f(x)= f(xVEk),VxelL.
ii) f induces an isomorphism of lattices f:1/k —= a’'/0', f(x) = f(z), Yz € 1/k.

(2) f is called a linear monomorphism (resp. essential linear monomorphism) if there exists
an a' € L' (resp. an essential element a’' € L") such that f induces an isomorphism of
lattices f: L — a' )0, f(z) = f(x), Va € L.

By definition, a linear monomorphism of lattices is an injective morphism of lattices, but
the converse is false. For example, the canonical inclusion map of the set @Q of all rational
numbers into the set R of all real numbers is an injective morphism of lattices, but it is not a
linear monomorphism of lattices.

Note that any lattice isomorphism is a (bijective) linear morphism and for any linear mor-
phism f:L — L’ one has f(L) =a'/0', where o’ = f(1).

Examples 1.2. (1) Let ¢ : Mp — M}, be a morphism of modules, and consider the map
fiL(Mg) — L(Mp) defined by f(N) = ¢(N) for every N < M. Then f is a linear morphism
with kernel Ker . g

(2) For any lattice L and any a < b in L, the map p : b/0 — b/a, p(x) := z Va, is a
surjective linear morphism with kernel a, as it can be easily seen. This linear morphism is the
latticial counterpart of the canonical surjective map from any module Mg to the factor module
M/N, where N is any submodule of M. O

Examples 1.2 (1) show that a linear morphism is not necessarily a morphism of lattices.
However, it is a morphism of join-semilattices, as this is shown in the next result.

Proposition 1.3. The following assertions hold for a linear morphism f : L — L' with a
kernel k.

(1) For z,ye L, f(z)=f(y) <= zVk=yVk.

(2) f(k) =0 and k is the last element of L having this property; so, the kernel of a linear
morphism s unique.

(3) If a € L is such that f(a) =0, then [ induces a linear morphism

h:l/a— L', h(z) = f(z),Vx € 1/a.

(4) f(xVvy) = f(@)V f(y),Vz,y € L.

Proof: By definition, there exists a’ € L' such that f induces an isomorphism of lattices
f:1/k = d /0, f(z)=f(z),Vz € 1/k.

(1) “==" Suppose that f(z) = f(y) for z, y € L. Then f(zVk)= f(yV k). Since zVk
and yV k are both in 1/k, it follows that f(x V k) = f(y V k). But f is an isomorphism, so
zVk=yVk.

Y =7 We have f(z) = f(zV k)= flyVFE)=f(y)
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(2) Since f:1/k —a’/0" is an isomorphism of lattices for some a’ € L, we have f(k) =
f(k) = 0'. If I € L is such that f(I) = 0’, then f(k) = f(I). Using now (1) we obtain
=kVk=IVEk,and so | < k.

(3) Since f(a) = 0, we have a < k by (2); so, we can take h :=io fop, where p is the
canonical linear morphism p: 1/a — 1/k, p(z) = x V k,Va € 1/a, described in Examples
1.2 (2) and i:4a'/0" — L’ is the canonical inclusion map. Indeed,

k

hz) = (io fop)(x) = f(p(x)) = flVE) = flxVEk)=f(z), Vo € 1/a,
so h is a linear morphism with kernel k.

(4) Set 1 =2V k and y; =y V k. Notice that z; € 1/k and y; € 1/k, so 21 Vy1 € 1/k.
We have

flavy) = fleVyVk)= flz1Vy) = flz1 V).
Since f is an isomorphism of lattices, it follows that
fler V) = flz) vV Fn)
Thus - ~
flavy) = flz)V fly1) = fleVE)V flyVEk)= f(z)V fy),

as desired. 0

Corollary 1.4. A linear morphism f: L — L' between two lattices is an increasing map.

Proof: Let < y in L. Then, f(y) = f(xVy) = f(z)V f(y) by Proposition 1.3 (4), so
f@) < f(y)- 0

Corollary 1.5. For any linear morphism f:L — L' one has f(0) =0".

Proof: Let k be the kernel of f. Then 0’ < f(0) < f(k) =0’ by Corollary 1.4 and Proposition
1.3 (2),s0 f(0)=0" 0

Corollary 1.6. The following assertions are equivalent for a map f : L — L' between two
lattices L and L'.

(1) f is a linear monomorphism.
(2) f is an injective linear morphism.
(3) f is a linear morphism with kernel zero.
Proof: (1)=(2): By definition.
(2)=(3): Let k be the kernel of f. Then f(0)= f(0V k)= f(k), so k=0 because f is
injective.
(3)=(1): If k is the kernel of f, then k = 0 by hypothesis, so 1/k =1/0 = L ~ a'/0/
for some a’ € L', and then, f is a linear monomorphism by definition. 0
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2 The category LM of linear modular lattices

In this section we show that the class M of all (bounded) modular lattices becomes a category,
denoted by LM, and called the category of linear modular lattices, with morphisms between
two such lattices as linear morphisms. Then, we describe the monomorphisms and epimorphisms
of this category and the subobjects of any of its objects. Note that the concept of a linear
lattice appears sometimes in the literature with a completely other meaning than ours (see,
e.g., Gritzer [5, p. 467]).

Lemma 2.1. Let L, L', L” be lattices, and let f: L — L', g: L' — L" be linear morphisms
(resp. essential linear monomorphisms). If the lattice L' is modular, then go f is also a linear
morphism (resp. essential linear monomorphism).

Proof: Let k be the kernel of f and k' the kernel of g. Then, 3a’ € L', " € L” such that
Vexe L,z € L' we have

f(x)=f(xVvk) and 1/k=~d /0,
g’y =g VEK) and 1/k ~ad"/0".

Denote by f:1/k — a//0 the lattice isomorphism induced by f and by g:1'/k' — a” /0"
the lattice isomorphism induced by g. Set o' := k' Ad’, ¢’ := g(a’), and [ := f~1(t/). We
claim that

(go f)lxVi)=(go f)(z), Va €L,

and go f induces a lattice isomorphism 1/l ~ ¢”/0".
Indeed, if we set 2’ := f(x), by Proposition 1.3 (4) and Corollary 1.4, we have

(go Nxvi)=g(f(x) v (1)) =g(a" V) =gV ({E Nd)) <gla"VE)=g() = (g0 f)(z)

On the other hand, again by Corollary 1.4, we have

(go f)(x)=g(f(x) <g(f(z)V (1)) =g@" V)= (go f)(zVI).

This shows that
(gofi(xVvi)=(go f)(z),VrelL,

as desired.
We are now going to prove that go f induces a lattice isomorphism

1/1=~c"/0",
where ¢’ := g(a’) = g(a’ VK'). Since g:1'/k' — a” /0" is the lattice isomorphism induced
by the increasing map g, it produces by restriction an isomorphism (a’ V k')/k' ~ ¢”/0".
Using the modularity of L', we deduce the following lattice isomorphisms induced by the linear
morphisms g and f:

N ~(d VE) K ~d [(d NE)=d b ~1]l,
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which shows that go f is a linear morphism.

Finally, we show that if f and g are both essential linear monomorphisms, then so is also
go f. First, observe that, by Corollary 1.6, the linear morphism go f is a linear monomorphism.
Clearly, we have k =0 and k¥’ = 0'. Then o' = 0/, and so | = k = 0. To finish the proof, we
have to show that and ¢ = g(a’) is an essential element of L”. Indeed, since a’ is an essential
element of L' = 1'/0’, using the lattice isomorphism g : 1'/0’ — a”/0” induced by g, we
deduce that ¢’ = g(a’) = g(a’) is an essential element of a”/0”. On the other hand, a” is an
essential element L” = 1”/0"” because ¢ is an essential linear monomorphism by hypothesis.
Since the relation of “being essential” is transitive, we conclude that ¢” is an essential element

of L =1"/0", as desired. a0

Proposition 2.2. The following statements hold.

(1) The class M of all (bounded) modular lattices becomes a category, denoted by LM, if
for any L, L' € M one takes as morphisms from L to L' all the linear morphisms from
L to L.

(2) The isomorphisms in the category LM are exactly the isomorphisms in the full category
M of the category L of all (bounded) lattices.

(3) The monomorphisms in the category LM are exactly the injective linear morphisms, i.e.,
the linear monomorphisms defined in 1.1.

(4) The epimorphisms in the category LM are exactly the surjective linear morphisms.

(5) The subobjects of L € LM can be taken as the intervals a/0 for any a € L.

Proof: (1) First, notice that the identity map 17 of any L € M is clearly a linear morphism.
Then, use Lemma 2.1 to deduce that LM is indeed a category.

(2) is obvious.

(3) Let L, L' € LM, and let f: L — L’ be an injective linear morphism, i.e., a linear
monomorphism by Corollary 1.6. Then clearly f is a monomorphism in the category LM.

Assume now that f: L — L’ is a monomorphism in the category £M and show that it
is an injective map. By Corollary 1.6, it is sufficient to show that the kernel k& of f is zero.
Assume that k # 0, and denote K := k/0. Counsider the diagram

K=1L1,

where ¢ is the inclusion map and o is the zero map o(z) = 0, Vo € K. Note that ¢ and
o are linear morphisms and fo:t = foo since 0 < (fo)(x) = f(z) < f(k) = 0 and
(foo)(z)=f(0)=0,Vz € K, by Corollary 1.5. But ¢ # o because we assumed that k # 0,
which contradicts the fact that f is a monomorphism in £M. This proves that f is an injective
map, as desired.
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(4) Clearly, any surjective linear morphism is an epimorphism in the category £LM. Con-
versely, let f : L — L’ be an epimorphism in the category LM and prove that it is an
surjective map. Then, f(L)=a'/0' for some a’ € L’ because f is a linear morphism, so it is
sufficient to show that ¢’ =1’. Assume that ¢’ <1’ and set C :=1'/a’. Consider the diagram

where p: L' — 1'/d’, p(¢') = 2’ V @', is the canonical surjective linear morphism defined in
Examples 1.2 (2), and « is the linear morphism a(z’) = a/, V2’ € L’. We have po f =a«ao f
because o’ < (po f)(z) = p(f(x)) < p(a’) = d = (ao f)(z), YV € L, but p # « because
1" = p(1’) # «(1’) = d'; this contradicts the fact that f is an epimorphism in LM, and so, f
is necessarily a surjective map.

(5) Let (S,«) be a subobject of L € LM. This means that S € M and a : S — L
is a “representing” monomorphism in the category LM. By definition, « induces a lattice
isomorphism S ~ a/0, and so, in the equivalence class of (S, a) we may choose the representing
monomorphism (a/0,%), where ¢ is the inclusion map a/0 — L. 0

Remark 2.3. We have seen in Section 1 that for any linear morphism f : L — L’ the
kernel k of f and the element f(1) = o’ € L’ such that f induces a lattice isomorphism
f:1/k =5 a’/0" are uniquely determined by f. For this reason, in analogy with the usual
notation from Module Theory, we may denote

Ker f :=k, Im f :=a’, Coim f:=1/k, Coker f:=1"/d .

So, though the category LM is far to be pre-additive, it satisfies the axioms AB 1) and AB 2)
of Grothendieck.

3 Linear injective lattices

Recall that a module Qg is said to be M-injective, where Mp is another module, if for every
submodule N < M, every morphism N — @) can be extended to a morphism M — Q. If
A is a nonempty class of right R-modules, then @ is called A-injective if it is M-injective for
every M € A.

When thinking to obtain latticial counterparts of these module-theoretical concepts, there
are at least two options, depending on what kind of morphisms are we taking into account:
usual lattice morphisms or linear morphisms of lattices. The closest latticial counterpart to the
module case is however the second option because the main feature of module morphisms are
modeled, in our opinion, by linear morphisms of lattices.

The purpose of this section is to define and investigate the concept of a linear C-injective
lattice, where C is a nonempty class of lattices.
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Definitions 3.1. Let Q, L € L. The lattice @ is said to be linear L-injective if for every
element a € L, every linear morphism a/0 — @ can be extended to a linear morphism
L— Q.

The lattice @ is said to be L-injective if for every sublattice S of L, every lattice morphism
S — @ can be extended to a lattice morphism L — Q.

If C is a nonempty class of lattices, then @Q is said to be linear C-injective (resp. C-
injective) if it is linear L-injective (resp. L-injective) for every L € C.

The lattice @ 1is called linear injective (resp. injective) if it is linear L-injective (resp.
L-injective). O

Note that the injective lattices are exactly the injective objects of the category L. If we
restrict now our considerations from the class £ of all lattices to the class M of all modular
lattices, then, in view of Proposition 2.2, the linear injective modular lattices are precisely the
injective objects of the category LM.

Examples and counter-examples of linear C-injective lattices and C-injective lattices will be
provided in Section 4. As expected, we will see there that there is no connection between these
two sorts of injectivity.

The next result presents a characterization, possibly known, of A-injective modules in terms
of essential submodules, where A is a nonempty class of right R-modules.

Proposition 3.2. The following assertions are equivalent for a module Qr and a nonempty
class A of right R-modules which is closed under factor modules.

(1) Qr is A-injective.

(2) For every module Mp € A and for every essential submodule N of M, every monomor-
phism N — @ can be extended to a monomorphism M — Q.

Proof: (1) = (2): Suppose that Qg is A-injective. Let Mpr € A be a module, let N be an
essential submodule of M, and let f: N — @ be a monomorphism. Since Qg is A-injective,
f can be extended to a morphism ¢ : M — Q. Now (Kerg) N N = Ker f = 0. Since N is an
essential submodule of M, we deduce that Kerg =0, so g is a monomorphism.

(2) = (1): Suppose that (2) is satisfied. First we consider a module M € A, a submodule
N < M, and a monomorphism f : N — . We will show that f can be extended to a
morphism g : M — Q. To do this, pick T a complement of N in M, i.e., T is maximal
in the set of all submodules P of M with P NN = 0. There is a canonical isomorphism
@0: N — (N+T)/T.If we set f = fop ! then clearly f is a monomorphism. Note that
(N +T)/T is an essential submodule of M /T (see, e.g., Wisbauer [8, 17.6]), and M/T € A
because the class A is closed under factor modules. By hypothesis, it follows that f can be
extended to g : M/T — Q. If ¢ : M — M/T denotes the canonical epimorphism, then
g:=goq extends f to M.

Next, we drop the assumption that the morphism f : N — @ is monomorphism. We
are going to show that f can be extended to a morphism ¢ : M — @, which will finish the
proof. To see this, let K := Kerf, p: N — N/K and s : M — M/K be the canonical
epimorphisms. There is a canonical monomorphism h : N/K — @ such that f = hop.
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Since M/K € A, by using the property we just proved, we deduce that h can be extended to

a morphism h: M/K — Q. Now, g := hos extends f to M, as desired. 0

The concept of a K-injective module for some module Kr can be formulated in a way that
allow to apply Proposition 3.2 for the class Ak of right R-module defined by

AKti{MR | MZK/N,NgK}

Note that Ag is the least subclass of Mod-R that contains K and is closed under factor
modules.

Indeed, as it is well-known, if a module Qr is K-injective, then it is also K"-injective
for any exact sequence K — K’ — 0 in Mod-R (see, e.g., Anderson and Fuller [1,
Proposition 16.13]), so @ is Ag-injective too.

By an abstract class of lattices we mean any nonempty subclass class C of £ which is closed
under isomorphisms.

The next result is the latticial counterpart of the module case characterization in Proposition
3.2.

Proposition 3.3. The following are equivalent for a lattice Q@ and an abstract class C of
upper continuous modular lattices which is closed under factor intervals.

(1) @ is a linear C-injective lattice.

(2) For any P € C and any essential element e € P, any linear monomorphism e/0 — Q
can be extended to a linear monomorphism P — Q.

Proof: (1) = (2): Let P €C, e an essential element of P, and let f:e/0 — @ be a linear
monomorphism. By assumption, there exists a linear morphism g : P — @ which extends f.
Consider the kernel k of g. By Proposition 1.3 and Corollary 1.4 we have g(kAe) = g(k) =0,
so f(kAe)=0= f(0). Then kAe=0 because f is injective. Since e is an essential element
of P, we deduce that k = 0. By Corollary 1.6, g is a linear monomorphism, as desired.

(2) = (1): First we show that for every P € C and p € P, any linear monomorphism
f:p/0 — @ can be extended to a linear morphism P — Q. To see this, consider a pseudo-
complement ¢ of p in P. By modularity, the map ¢ : p/0 — (pVt)/t defined by p(x) := zVt
is an isomorphism of lattices. If we set f := f o ™!, then clearly f is a linear morphism.
Note that 1/t € C because C is closed under factor intervals. Moreover, since t is a pseudo-
complement of p in P, it follows that p V ¢ is an essential element of 1/¢. By hypothesis,
there exists a linear monomorphism § : 1/t — @ extending f. Define g : P — Q by
g(z) :==g(zVt), z € P. Then, g is a linear morphism (having the kernel ¢) which extends f.

Next we show that for every P € C and p € P, any linear morphism f : p/0 — @ can
be extended to a linear morphism P — ). To see this, note that, by definition, f induces
an isomorphism f’ : p/k — ¢/0, for k the kernel of f and some ¢ € Q. Thus h: p/k — Q
defined by h(z) := f'(x), = € p/k, is a linear monomorphism. Moreover, 1/k € C because C
is closed under factor intervals. Now, by using the property we just proved, we obtain a linear

morphism & : 1/k — @ which extends h. Let k' be the kernel of h, and let a € P be such
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that h induces an isomorphism 1/k’ ~ a/0. Define g: P — Q by g(z) := h(z V k), Vo € P.
For every x € P we have

g@)=h(zVvEk)=h(zVE)VE)=h((zVE)VE) =gxVE).

Moreover, g induces the same isomorphism 1/k’ ~ a/0 as h. Hence g is a linear morphism
with kernel k’. Then, for every z € p/0, we have

f(x)=f(xVEk)=h(zVEk)=hlzVEk)=g().

So g extends f, and we are done. 0

The next result is the latticial counterpart of the well-known result in Module Theory saying
that any M-injective module is both M’-injective and M"-injective for any exact sequence

0 — M — M — M" —0
in Mod-R (see, e.g., Anderson and Fuller [1, Proposition 16.13]).

Proposition 3.4. Let Q, L € L and assume that Q is linear L-injective. Then @ is linear
I-ingective for any initial or quotient interval I of L, and so, it is linear S-injective for any
subfactor S =d/c of L, ¢<d in L.

Proof: We have to prove that for every a € L, @ is both linear a/0O-injective and linear
1/a-injective. The linear a/0-injectivity follows immediately from definitions.

We are now going to show that @ is linear 1/a-injective. This means that for every b € L
with @ < b, every linear morphism f : b/a — @ can be extended to a linear morphism
g:1/a — Q. Consider the commutative diagram

b/0 —— 1/0=1L

d 1|

bla —— 1/a
where ¢, j are the canonical inclusion maps, and p, ¢ are the canonical surjection maps de-
scribed in Examples 1.2 (2).

It is easily seen that f op : /0 — @ is a linear morphism with Ker (f o p) = Ker f, so
there exists a linear morphism A : L — @ such that fop= hoi. But

h(a) = (fop)(a) = f(p(a)) = f(a) =0

because a = Kerp and f(a) = 0. By Proposition 1.3 (3), h induces a linear morphism
g:1/a — Q. Then goq = h because
(goq)(x) =g(q(x)) =g(xVa)=h(zVa)=h(z)Vh(a) =h(z) V0= h(z),Vz € L.
It follows that
fop=hoi=goqoi=gojop,
so goj = f because p is a surjective map, and we are done. 0
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Corollary 3.5. Let L € L, and set C, . ={K € L | K ~1/a,Ya € L}. Then Q € L is
L-injective if and only if Q is Cr-injective.

Proof: Apply Proposition 3.4. 0

We introduce now the latticial counterpart of the concept of injective hull from Module
Theory.

Definition 3.6. Let L be a lattice, and let C be an abstract class of lattices. We say that a
lattice @ is alinear C-injective hull of L if Q satisfies the following two conditions.

(i) There exists an essential linear monomorphism L — Q.
(ii) Q is C-injective. O

The next result shows that, as in the module case, the linear C-injective hull is unique up
to a lattice isomorphism.

Proposition 3.7. Let L be a lattice, and let C be an abstract class of lattices. Suppose that
Q and Q' are two linear C-injective hulls of L. If Q, Q' € C, then Q and Q' are isomorphic
lattices.

Proof: Consider the essential linear monomorphisms i : L — @ and i’ : L — Q" guaranteed
by definition. Then e := i(1) is an essential element of @ and ¢ := (1) is an essential
element of Q. Moreover, e/0 ~ L ~ ¢'/0', where 0’ is the least element of @’. Denote by
@ :e/0 —s ¢ /0 this isomorphism. Since @ € C and Q' is C-injective, it follows that there
exists a linear morphism f : Q@ — Q' that extends . Because e is an essential element of
@, the linear morphism f is necessarily injective (see the proof of (1) = (2) in Proposition
3.3). Denote by ¢ the last element of ) and consider o’ := f(q) € @'. Since f is an increasing
map by Corollary 1.4, we have ¢ = ¢(e) = f(e) < f(¢) = a/. Because e’ is an essential
element of @', so is also a’. By definition, f induces an isomorphism % : Q — a’/0’. Since
Q' € C and Q is C-injective, it follows that there exists a linear morphism ¢ : Q' — Q,
necessarily injective, that extends ¥ ~!. If we denote by ¢’ the last element of Q’, then we have
qg=g9g(a’) < g(¢). Thus g(a’) = g(¢’) and, since g is injective, we deduce that a’ = ¢’. Hence
1 is an isomorphism between @ and Q’, as desired. 0

4 Some examples and open questions

In this section we provide a large variety of examples and counter-examples of linear C-
injective lattices and C-injective lattices, relate the concept of linear C-injectivity with that
of C-injectivity, and also present several open questions on them.
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4.1. Examples of linear C-injective lattices. For any ordinal o we set
Wy :i=a/0=1[0,a]={8]|8 ordinal, 0 < S < a}.

Note that W, is a well-ordered set with order type « + 1, so a bounded upper continuous
modular lattice having all elements essential. The reader is referred to Rosenstein [7] for
terminology and facts on ordinals.

We claim that if o and 7 are any two ordinals such that o < vy, then W, is linear W,-
injective. Indeed, according to Proposition 3.3, it is sufficient to prove that for any ordinal
B < a, any linear monomorphism f : 3/0 — W,, can be extended to a linear monomorphism
f: a/0 — W,. Indeed, by definition of a linear morphism, the image of f is exactly the
interval /0 of W.,. Using the properties of well-ordered sets we must then have f(J§) = 4,
Vé € [0,8]. Clearly, we may extend f to (a unique) f : W, — W, by putting f(J) = 6,
V§ € [B+1,a], and clearly f is a linear monomorphism.

Observe that, with similar arguments, one can prove that if @ and « are two ordinals such
that o > 7, then W, is not linear W,-injective. Consequently, W, is linear W,-injective if
and only if a < 7.

For any ordinal 8 denote by W;g the class of all well-ordered sets having order type §+ 1.
The example above shows that for any two ordinals a and v with a <y, every W € W, is
linear W,-injective.

4.2. Examples of C-injective lattices. We show that for any bounded well-ordered set W,
any lattice L is W-injective. Let S be a sublattice of W; in case the last element 1 of W is not
in S, we adjoin it to S, so without loss of generality we may assume that 1 € S.

We have to prove that any lattice morphism f : S — L can be extended to a lattice
morphism f : W — L. First, observe that a map h: C — L from any chain C to a lattice
L is a lattice morphism if and only if it is increasing.

For every x € W set S, := {s € S|x < s}. Note that S, # & because 1 € S, and denote
by p(x) the least element of S,,. Thus, we obtain a map p: W — S. It is easily verified that
x < plx), Ve e W, p(s) =s,Vs €S, and p is an increasing map, so a lattice morphism. Now,

if we take f:= fop, then f is a lattice morphism that extends f, as desired.

4.3. Examples of C-injective lattices which are not linear C-injective. By 4.2, any
finite totally ordered set (i.e., chain) F' having at least two elements is W, -injective, where w
is the first transfinite ordinal (that is, the order type of the set N = {0, 1, 2, ...} of natural
numbers), but F is not linear W, -injective.

Indeed, assume that F' is linear W,-injective. Without loss of generality, we may assume
that FF = {0,1,...,n} for some n € Ny n > 1. Then, the identity map 1r on F can be
extended to a linear morphism f: W, — F.

Let k=Kerf. If n <k, then 0< f(n) < f(k)=0, so 1 <n=1r(n) = f(n) =0, which
is a contradiction. It follows that we must have k < n, and then, 0 = f(k) = 1p(k) = k, so
f is a linear monomorphism, in particular an injective map, which is a contradiction because
W, is an infinite set. This proves that F' is not linear W,-injective.

4.4. Examples of lattices which are not C-injective. According to Banaschewski and
Bruns [2, p. 376], any lattice L € £ having at least two elements (that is, non-trivial) is not
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M3s-injective, where, as usually, M3 denotes the diamond lattice (i.e., the five-element lattice
of all subgroups of the Klein four-group). Another result, due to Nelson [6], states that any
non-trivial lattice L is not Ns-injective, where N is the so called pentagon lattice.

In particular, using the well-known characterization of distributive lattices saying that a
lattice L is distributive if and only if L contains neither a pentagon nor a diamond (see, e.g.,
Grétzer [5, p. 80]), we deduce that any non-trivial lattice L € L is not C-injective for any
nonempty class C of lattices containing at least one non-distributive lattice.

4.5. There are no non-trivial injective lattices. This follows immediately from 4.4.

4.6. An example of a linear C-injective lattices which is not C-injective. Denote by
0, a, b, ¢, 1 the elements of the diamond lattice M3. By 4.4, the two-element lattice Wy =
= {0, 1} is not Ms-injective.
We claim that W5 is however linear Mj3-injective. It is sufficient to prove that for every
x € M3\ {0, 1}, every linear morphism f :x/0 — W5 can be extended to a linear morphism
f: M3 — Wy. Without loss of generality, we may assume that 2 = a. Then x/0 = {0, a}.
Clearly, f(0) = 0. If f(a) = 0 we can take as f : M3 — W, the constant linear map

carrying all elements of Mj onto 0. Otherwise, f(a) =1, and then we define f as follows:

f(0)= f(c)=0 and f(a) = f(b) = f(1) = 1.
Clearly the map f extends f, and it is easily verified that f is a linear morphism with kernel c.

4.7. There are no non-trivial linear injective lattices. Assume that there exists a non-
trivial linear injective lattice Q). Consider a bounded chain C' having the cardinal Card (C)
strictly greater than the cardinal Card (Q) of @, and denote by L the ordered direct (or
digjoint) sum @ @ C. This means that QNC =2, L=QUC, ¢<c¢,Vqge Q,Vce C, and
the order on L extends both the orders on @ and C' (see, e.g., Rosenstein [7, Definition 1.29]).
Then, L is a lattice, which is modular (resp. upper continuous) if so is Q.

Denote by ¢ the canonical injection @@ < L. Note that ) is an initial interval of L. Since
we assumed that @ is linear injective, the identity map 1o on () can be extended to a linear
morphism f: L — Q.

We repeat now the argument used in 4.3. Let k = Ker f. If k£ € C, then ¢ < k, Vq € Q,
so 0< f(q) < f(k) =0, and then f is the constant zero map on @, which is a contradiction.
Therefore, we must have k € Q. Then 0= f(0) = f(k) = 1g(k) =k, and so k=0, i.e, f is
a linear monomorphism, in particular it is an injective map, which contradicts the inequality
Card (Q) < Card (C), and we are done.

4.8. Linear injectivity and ordered direct sums. It is known that if a module Qg is both
Mi-injective and Ms-injective, then @ is also M; @ Ms-injective. The latticial version of this
result does not hold: W5 is Wj-linear injective by 4.1, but W5 is not linear W; & Wi-injective.
Indeed, W1 ® W1 ~ W3, and W5 is not W3-injective, again by 4.1.

4.9. Some open questions. We present below a list of six open questions, mainly asking
when basic properties of modules related to injectivity do hold for their latticial counterparts.

1. Find/characterize modules Mg, Qr such that Qr is Mpg-injective implies that L(QR)
is a linear L(MRp)-injective lattice.
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2. Find/characterize modules Mp, Qr such that L(QRr) is a linear L(Mpg)-injective lattice

implies that Qg is an Mpg-injective module.

3. If Q1, Q2 € L are both linear L-injective lattices, then does it follow that their ordered

direct sum Q1 @ Q2 is also a linear L-injective lattice?

4. If Q1, Q2 € L are both linear L-injective lattices, then does it follow that their direct

product Q1 X Qs is also a linear L-injective lattice?

5. Find necessary or sufficient conditions for L € L and nonempty classes of lattices C

such that L has a C-injective hull.

6. Find the connections between maximal linear essential extensions and linear injective

lattices.
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