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Abstract

Given a prime number p and the Galois orbit O(x) of a transcendental element x of
Cp, the topological completion of the algebraic closure of the field of p-adic numbers, we
give an estimation for the norm of the trace functions defined on the complement of O(x)
with values in Cp. Then we give some applications to transcendental functions.
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1 Introduction

Let p be a prime number, Zp the ring of p-adic integers, Qp the field of p-adic numbers and let |·|
be the usual p-adic absolute value. This absolute value can be uniquely extended to an absolute
value (denoted also by | · |) on Qp, a fixed algebraic closure of Qp. Further, consider the Tate

field Cp, which is the completion of (Qp, | · |), and use the same notation | · | for the unique p-adic

absolute value that extends the p-adic absolute value | · | on Qp. Denote G = Gal(Qp/Qp),
endowed with the Krull topology. Then G acts continuously on Qp, and it is easy to see that
G is canonically isomorphic with the group Galcont(Cp/Qp) of all continuous automorphisms
of Cp over Qp. Let O(x) be the orbit of a transcendental element x of Cp with respect to the
Galois group G. We are interested to give an estimation for the norm of the trace functions
defined on P1(Cp) \O(x) with values in Cp, which are equivariant with respect to the absolute
Galois group, with applications to transcendental functions.

The paper consists of four sections. The first section is usually an introduction in the
framework of the paper. The second section contains some background material. In the third
section we consider the class of the trace functions defined on P1(Cp) \O(x) with values in Cp,
which are in fact Cauchy transforms or derivatives of Cauchy transforms on O(x) with respect
to Galois equivariant strongly Lipschitz distributions. We give an estimation for the norm of
the functions in the above class. The estimation is made on the complement of a neighborhood
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of the orbit of x and it gives some informations about the behavior of this type of p-adic analytic
functions at boundary, see Theorem 1. The last section contains some important applications of
the main result in the study of transcendental functions. We have that a function in the above
class is transcendental over Qp(Z), see Proposition 1. Moreover, any finite set of functions
in the above class of different orders is linearly independent over Qp(Z), see Propositon 2.
Finally, for any Krasner analytic function, which is defined on the complement of the orbit of
a transcendental element of Cp such that it can be represented as an infinite series with terms
in the above class with different orders and with coefficients in Qp(Z), we give an estimation of
its norm on the complement of a neighborhood of the orbit of x and then we obtain that the
above representation is unique, see Proposition 3.

2 Background material

Let p be a prime number and Qp the field of p-adic numbers, endowed with the p-adic absolute
value | · |, normalized such that |p| = 1/p. Let Qp be a fixed algebraic closure of Qp and denote

by the same symbol | · | the unique extension of | · | to Qp. Further, denote by (Cp, | · |) the

completion of (Qp, |·|) (see [4], [5]). Let G = Gal(Qp/Qp) be the absolute Galois group endowed
with the Krull topology. The group G is canonically isomorphic with the group Galcont(Cp/Qp)
of all continuous automorphisms of Cp over Qp. In what follows we shall identify these two

groups. For any x ∈ Cp denote O(x) = {σ(x) : σ ∈ G}, the orbit of x, and let Q̃p[x] be the
topological closure of the ring Qp[x] in Cp.

For any closed subgroup H of G denote Fix(H) = {x ∈ Cp : σ(x) = x for all σ ∈ H}.
Then Fix(H) is a closed subfield of Cp. Denote H(x) = {σ ∈ G : σ(x) = x}. Then H(x) is a

subgroup of G, and Fix(H(x)) = Q̃p[x].
The map x  σ(x) from G to O(x) is continuous, and it defines a homeomorphism from

G/H(x) (endowed with the quotient topology) to O(x) (endowed with the induced topology
from Cp) (see for instance [2]). In such a way O(x) is a closed compact and totally disconnected
subspace of Cp, and the group G acts continuously on O(x): if σ ∈ G and τ(x) ∈ O(x) then
σ ? τ(x) := (στ)(x).

For any real number ε > 0 denote B(x, ε) = {y ∈ Cp : |y − x| < ε} and B[x, ε] = {y ∈
Cp : |y − x| ≤ ε}. Also denote E(x, ε) = {y ∈ Cp ∪ {∞} : |y − t| ≥ ε, for all t ∈ O(x)}. The
complement of E(x, ε) in P1(Cp) = Cp∪{∞} is denoted by V (x, ε). Both sets E(x, ε) and V (x, ε)
are open and closed, and one has: ∩εV (x, ε) = O(x). Denote E(x) = ∪εE(x, ε) = P1(Cp)\O(x).
For ε > 0 denote H(x, ε) = {σ ∈ G : |σ(x) − x| < ε}, and let Sε be a complete system
of representatives for the right cosets of G with respect to H(x, ε). One knows that for any
0 < ε′ < ε, |Sε| divides |Sε′ |, see [3]. Then V (x, ε) = ∪σ∈Sε

B(σ(x), ε).
If X is a compact subset of Cp, then by an open ball in X we mean a subset of the form

B(x, ε) ∩ X where x ∈ Cp and ε > 0. Let us denote by Ω(X) the set of subsets of X which
are open and compact. It is easy to see that any D ∈ Ω(X) can be written as a finite union of
open balls in X, any two disjoint.

Definition 1. By a distribution on X with values in Cp we mean a map µ : Ω(X)→ Cp which
is finitely additive, that is, if D = ∪ni=1Di with Di ∈ Ω(X) for 1 ≤ i ≤ n and Di ∩Dj = ∅ for
1 ≤ i 6= j ≤ n, then µ(D) =

∑n
i=1 µ(Di). (See also [8].)
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The norm of µ is defined by ||µ|| := sup{|µ(D)| : D ∈ Ω(X)}. If ||µ|| < ∞ we say that µ is
a measure on X.

Definition 2. We say that a distribution µ on X is Lipschitz if

lim
ε→0

εmax |µ(B(a, ε))| = 0,

where the “max” is taken over all the balls B(a, ε) from Ω(X).

Remark 1. Any measure on X is a Lipschitz distribution and any Lipschitz function on X is
Riemann integrable with respect to any Lipschitz distribution.

Definition 3. An element x ∈ Cp is called Lipschitz if and only if limn→∞
ε

|N(x,ε)| = 0, where

N(x, ε) is the number of balls of radius ε that cover the orbit of x.

Remark 2. When x is a Lipschitz element of Cp then the Haar distribution πx, which is
defined on the open and compact subsets of the orbit of x, is also Lipschitz. Here πx is defined
by πx(B) = 1

N(x,ε) for any open and compact ball B of Ω(O(x)) of radius ε > 0 and then it is

extended by additivity to the whole Ω(O(x)).

Definition 4. An element x ∈ Cp is called p-bounded if there exists an s ∈ N such that ps does
not divide the number N(x, ε), for any ε > 0. In this case πx is a measure.

Remark 3. In [3] it is introduced the concept of p-bounded algebraic extension of Qp. Precisely,
an algebraic extension Qp ⊆ L is called p-bounded if there exists a natural number s such that
ps does not divide [K : Qp] for any finite extension K of Qp with K ⊆ L. By taking x ∈ Cp
such that x ∈ L̃, where L is a p-bounded algebraic extension of Qp, one has Q̃p[x] ⊆ L̃ and, for
any ε > 0, FixH(x, ε) ⊂ L and [FixH(x, ε) : Qp] <∞. It is clear that x is p-bounded.

Definition 5. Let X be a compact subset of Cp and, for any ε > 0 let Xε denote the ε-
neighborhood of X in Cp. A function f : P1(Cp) \ X → Cp is said to be Krasner analytic on
P1(Cp) \X provided that for any ε > 0 there is a sequence of rational functions with all their
poles in Xε that converges uniformly to f on P1(Cp) \Xε, see [4], [6] and [9]. We denote by
A(P1(Cp) \X,Cp) the set of all Krasner analytic functions defined on P1(Cp) \X with values
in Cp.

The set X ⊂ Cp is said to be G-equivariant, or equivariant with respect to the absolute
Galois group, provided that σ(x) ∈ X for any x ∈ X and any σ ∈ G. (X = O(x) is such an
example.)

Definition 6. Let X be a G-equivariant compact subset of Cp and µ a distribution on X with
values in Cp. We say that µ is G-equivariant, or equivariant with respect to the absolute Galois
group, if µ(σ(B)) = σ(µ(B)), for any ball B in X and any σ ∈ G.

Remark 4. On a Galois orbit O(x) there exists a unique G-equivariant probability distribution
with values in Qp, namely the Haar distribution πx.
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Because O(x) is a compact set, the image of the distance function dx : O(x)→ R+, dx(y) :=
|y − x|, y ∈ O(x), is a set of the form {ε1, ε2, . . . , εn, . . . , 0} with ε1 > ε2 > · · · > εn > · · · > 0
and limn→∞ εn = 0. The sequence {εn}n≥1 is called the fundamental sequence associated with
the orbit O(x).

Definition 7. A G-equivariant Lipschitz distribution µ on O(x) with values in Cp is a strongly
Lipschitz distribution if the following condition holds: there exists N(µ) ∈ N such that the
sequence {εn|µ(B(x, εn))|}n≥N(µ) is strictly decreasing to zero, where the sequence {εn}n≥1 is
the fundamental sequence associated with the orbit O(x).

Remark 5. Any G-equivariant measure µ on O(x) with values in Qp is a strongly Lipschitz

distribution. A more interesting example is the Haar distribution πx with x ∈ L̃, where L is
a p-bounded algebraic extension of Qp as in Remark 3. In this case the sequence of positive
real numbers |πx(B(x, εn))| is constant for n large enough and by this πx is a strongly Lipschitz
distribution.

As in [3], a Krasner analytic function defined on a subset X of Cp is called equivariant if for
any z ∈ X one has O(z) ⊂ D and f(σ(z)) = σ(f(z)) for all σ ∈ G.

For a G-equivariant subset X of Cp, let AG(P1(Cp)\X,Cp) be the set of equivariant Krasner
analytic functions on P1(Cp)\X with values in Cp, and AG0 (P1(Cp)\X,Cp) its subset consisting
of those functions that vanish at ∞.

3 Main result

Let x be a transcendental element of Cp and let µ be a strongly Lipschitz distribution defined
on O(x). For any positive integer s let us define the following function

Fs,µ(z) =

∫
O(x)

1

(z − t)s
dµ(t). (1)

The above function is well defined and, moreover, Fs,µ ∈ AG0 (P1(Cp) \ O(x),Cp), see [1] and
[10]. In fact, F1,µ is the Cauchy transform on O(x) with respect to µ and it is the trace function
of x associated with µ, see [3] and [11].

For any F ∈ AG0 (P1(Cp) \O(x),Cp) and any ε > 0 let us denote by ||F ||E(x,ε) the sup norm

of F on E(x, ε). Let {εn}n≥1 be the fundamental sequence associated with the orbit O(x) and
denote, for the sake of simplicity, Hn = H(x, εn) and Sn = Sεn . Here Sn is a complete system
of representatives for the right cosets of G with respect to Hn.

Our goal of this section is to calculate ||Fs,µ||E(x,εn)
, for any n ≥ N(µ), where N(µ) is

a natural number which depends only on µ as in Definition 7, in terms of the fundamental
sequence and the distribution considered above. By considering the Riemman sum

Γn(z) =
∑
σ∈Sn

1

(z − σ(x))s
µ(B(σ(x), εn)) (2)

on E(x, εn), one has from Mittag-Leffler’s theorem that

||Γn||E(x,εn)
=
|µ(B(x, εn))|

εsn
, (3)
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for any n ≥ 1. We estimate ||Γn+1 − Γn||E(x,εn)
for any n ≥ N(µ). We have that Γn+1(z)−Γn(z)

is a sum of terms which are conjugate with Tn+1(z), where

Tn+1(z) =
∑

σ∈Hn/Hn+1

[
1

(z − x)s
− 1

(z − σ(x))s

]
µ(B(σ(x), εn+1)) (4)

and z ∈ E(x, εn). Because {εn}n≥1 is the fundamental sequence and σ is in a complete system
of representatives for the right cosets of Hn with respect to Hn+1 one has that |σ(x)−x| = εn+1.
From this, it is easy to see that∣∣∣∣ 1

(z − x)s
− 1

(z − σ(x))s

∣∣∣∣ ≤ εn+1

εs+1
n

, (5)

for any z ∈ E(x, εn) and n ≥ N(µ). By (4) and (5) one obtains

||Γn+1 − Γn||E(x,εn)
≤ εn+1

εs+1
n

· |µ(B(x, εn+1)| < |µ(B(x, εn))|
εsn

. (6)

The strict inequaliy in (6) holds because µ is strongly Lipschitz distribution. By (3) and (6)
we obtain that

||Γn+1||E(x,εn)
=
|µ(B(x, εn))|

εsn
. (7)

Now, let us suppose that

||Γn+i||E(x,εn)
=
|µ(B(x, εn))|

εsn
, (8)

for any 1 ≤ i ≤ k. We have that Γn+k+1(z) − Γn+k(z) is a sum of terms which are conjugate
with Tn+k+1(z) as in (4) with n+ k instead of n, for any n ≥ N(µ) and any z ∈ E(x, εn). As
in (5) one has ∣∣∣∣ 1

(z − x)s
− 1

(z − σ(x))s

∣∣∣∣ ≤ εn+k+1

εs+1
n

, (9)

for any z ∈ E(x, εn) and σ in a complete system of representatives for the right cosets of Hn+k

with respect to Hn+k+1. By (8) and (9) and because µ is strongly Lipschitz distribution we
derive that

||Γn+k+1 − Γn+k||E(x,εn)
≤ εn+k+1

εs+1
n

· |µ(B(x, εn+k+1)| < |µ(B(x, εn))|
εsn

= ||Γn+k||E(x,εn)
,

so

||Γn+k+1||E(x,εn)
= ||Γn+k||E(x,εn)

=
|µ(B(x, εn))|

εsn
.

The Principle of Mathematical Induction implies that (8) is true for any i ≥ 1. By letting
i → ∞ one has that limi→∞ Γn+i(z) = Fs,µ(z), for any z ∈ E(x, εn) and any n ≥ N(µ). To
sum up we obtain the main result.
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Theorem 1. Let µ be a strongly Lipschitz distribution defined on the orbit of a transcendental
element x of Cp. Let {εn}n≥1 be the fundamental sequence associated with the orbit O(x) and
E(x, εn) = {z ∈ P1(Cp) : |z − t| ≥ εn, for all t ∈ O(x)}. Then, there exists a positive integer
N(µ), which depends only on µ, such that for any positive integer s and any n ≥ N(µ),∣∣∣∣∣

∣∣∣∣∣
∫
O(x)

1

(z − t)s
dµ(t)

∣∣∣∣∣
∣∣∣∣∣
E(x,εn)

=
|µ(B(x, εn))|

εsn
,

where B(x, εn) is the open ball of radius εn centered at x.

4 Applications

In this paragraph we use the same notation and definitions as in the previous paragraphs. Let
µ be a strongly Lipschitz distribution defined on the orbit of a transcendental element x of Cp
and let {εn}n≥1 be the fundamental sequence associated with the orbit O(x). By Definition 7,
one has |µ(B(x, εn))| > 0 for any n ≥ N(µ). Because

|µ(B(x, εn))| =
∣∣∑

σ∈Hn/Hn+1
µ(B(σ(x), εn+1))

∣∣ ≤ |µ(B(x, εn+1))|,

we derive that the sequence {|µ(B(x, εn))|}n≥1 is increasing but it is not necessarily an upper
bounded sequence. Now, it is clear that under the hypothesis of Theorem 1∣∣∣∣∣

∣∣∣∣∣
∫
O(x)

1

(z − t)s
dµ(t)

∣∣∣∣∣
∣∣∣∣∣
E(x,εn)

=
|µ(B(x, εn))|

εsn
≥
|µ(B(x, εN(µ)))|

εsn
, (10)

for any n ≥ N(µ). By letting n → ∞ in (10) one obtains that limn→∞ ||Fs,µ||E(x,εn)
= ∞.

Using a similar argument as in the proof of the fact that the trace function of a transcendental
Lipschitz element with respect to the Haar distribution is transcendental, see [3], we have the
following result.

Proposition 1. Let µ be a strongly Lipschitz distribution defined on the orbit of a transcen-
dental element x of Cp. For any positive integer s, the function defined by

Fs,µ(z) =

∫
O(x)

1

(z − t)s
dµ(t) (11)

is in AG0 (P1(Cp) \O(x),Cp) and it is transcendental over Qp(Z).

Proposition 2. Let k be a positive integer. For any positive integers s1 < s2 < · · · < sk,
let µs1 , µs2 , . . . , µsk be strongly Lipschitz distributions defined on the orbit of a transcendental
element x of Cp. Then the functions defined by

Fsi,µsi
(z) =

∫
O(x)

1

(z − t)si
dµsi(t), 1 ≤ i ≤ k,

are linearly independent over Qp(Z). Particularly, any function Fs,µ of type (11) cannot verify

a differential equation in the form
∑m
j=0 PjF

(j)
s,µ = 0, where for any 0 ≤ j ≤ m we have

Pj ∈ Qp(Z) not all zero, and m is a positive integer.
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Proof: For the sake of simplicity, we denote Fi = Fsi,µsi
, for any 1 ≤ i ≤ k. Let us take a

linear combination over Qp(Z) in the form G :=
∑k
i=1 PiFi and suppose that Pk 6≡ 0. Because

Pk ∈ Qp(Z) and x is transcendental, there exists a positive integer n′ ≥ N(µ) such that
infz∈V (x,εn′ ) |Pk(z)| > 0. As in the proof of Theorem 1 and by the hypothesis of Proposition 2
it is easy to see that

||G||E(x,εn)∩V (x,εn′ ) = ||PkFk||E(x,εn)∩V (x,εn′ ) > 0,

for n large enough. Now it is clear that the functions {Fi}1≤i≤k are linearly independent over
Qp(Z). The last part of the proposition results easily and the proof is done.

By using a similar argument as in the proof of Proposition 2 we have the following result.

Proposition 3. Let {si}i≥1 be a strictly increasing sequence of positive integer. For any integer
i ≥ 1 one considers µsi a strongly Lipschitz distribution defined on the orbit of a transcendental
element x of Cp. If a function G : P1(Cp) \O(x)→ Cp can be represented by an infinite series

G(z) =

∞∑
i=1

Pi(z)Fi(z),

which converges on any E(x, εn), where {εn}n≥1 is the fundamental sequence associated with
the orbit O(x), Pi(z) ∈ Qp(z) and Fi(z) = Fsi,µsi

(z) =
∫
O(x)

1
(z−t)si dµsi(t), 1 ≤ i ≤ k, then for

n large enough one has
||G||E(x,εn)

= sup
i≥1
||PiFi||E(x,εn)

,

and the above representation of G is unique.
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