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Abstract

In this paper we continue the investigation of v-maximal extensions [2](or maximal
spectral extensions [9]) in connexion with some Henselian fields and conservative fields
(introduced here for the first time). We also apply our results to generalize and put in a
new light some classical theorems on valued fields.

Key Words: Valued fields, Spectral norms, Galois groups, Henselian fields
2010 Mathematics Subject Classification: Primary 12J10, 12J25, 12F09,
Secondary 13A18, 12F99.

Introduction

Let (K, vK) be a perfect rank 1 valued field and let v be a fixed prolongation of vK to a fixed
algebraic closure K of K. In [2] the notion of a vK-maximal extension was introduced. An
intermediate subfield L, K ⊂ L ⊂ K is called a vK-maximal extension if vK has a unique
extension vL (the restriction of v to L in our case) to L and L is maximal with this property.
In section 1 of this note we start with another more profitable definition of this notion and
we present a general characterization of vK-maximal extensions (see Theorem 1). In this new
frame we recall the basic results of [2], [4] and [9] (see Theorems 2, 3 and 4).

In section 2 we introduce some notions and results connected with vK-maximal extensions.
In Theorem 5 we prove that any minimal polynomial of an element α algebraic over K, contained
in the henselization K(v) of (K, vK) in (K, v), continues to remain irreducible over any vK-
maximal extension L. In Theorem 6 we give a topological characterization of the vK-maximal
extensions. In Definition 2 we introduce the notion of a K(v)-conservative field and in Theorems
7, 8, 9 and 10 we supply the most important connections between the K(v)-conservative fields,
Henselian fields and the vK-maximal extensions. In Theorem 11 we present a one to one and
onto correspondence between the set of all intermediate subfields K1, K ⊂ K1 ⊂ K(v) (the
henselization of (K, vK) in (K, v)) and the set of all K(v)-conservative intermediate subfields
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L1, L ⊂ L1 ⊂ K, where L is a fixed vK-maximal extension of (K, vK). In Theorem 13 we prove
that the only finite vK-maximal extension of (K, vK) is K itself.

In section 3 we give a new light on some classical results of Endler, Kaplansky, Schilling,
Ribenboim and Warner (see Lemma 1, Corollary 1, Theorem 14 and Theorem 15).

1 Definitions and commentaries on some previous results

Let (K, vK) be a perfect (any algebraic extension of K is separable) rank 1 valued field (vK :
K → R∪{∞} is a Krull valuation) and let K be a fixed algebraic closure of K. Let v be a fixed
prolongation of vK to K and let GK = Gal(K/K) be the absolute Galois group of K, i.e. the
group of all the field automorphisms of K which fix the elements of K. The following mapping

x→ v∗(x) = min{v(σ(x)) : σ ∈ GK},

x ∈ K, is a pseudovaluation on K which extends the valuation vK . This means that v∗ has the
following properties:

i) v∗(x) =∞ if and only if x = 0,
ii) v∗(xy) ≥ v∗(x) + v∗(y),
iii) v∗(x+ y) ≥ min{v∗(x), v∗(y)} and
iv) v∗(a) = vK(a) for any a ∈ K.
Since any valuation w on K is of the form w = v ◦ µ for a µ ∈ GK (see [8] or [7] for

instance), we easily see that v∗ depends only on (K, vK) and not on the fixed prolongation v of
vK . This is why we call it the spectral value of K (see also [3] for an alternative definition). Since
v∗(x+y) ≥ min{v∗(x), v∗(y)} and v∗(xy) ≥ v∗(x)+v∗(y) for any x, y ∈ K, one can immediately
prove that v∗ induces a topology on K, in this way this last one becomes a topological field. If
L is a subfield of K which contains K, one denotes v∗L the restriction of v∗ to L. If (L, v∗L) is
maximal with the property that v∗L is a Krull valuation (v∗L(xy) = v∗L(x) + v∗L(y)), we say that
L is a vK-maximal extension of K (see also [2]) or a maximal spectral extension (see also [9])
of K.

Theorem 1. With the above notation, the following statements are equivalent:
a) L is a vK-maximal extension of (K, vK).
b) vK has a unique prolongation (as a Krull valuation!) to L and L is maximal with this

property.
c) Any K-embedding θ : L → K is continuous w.r.t. any valuation w of L, which is an

extension of vK to L and L is maximal with this property.

Proof: To prove that a) is equivalent to b), it is sufficient (the others are trivial!) to prove
that if v∗L is a Krull valuation, then vK has a unique prolongation to L. Let us assume that
v∗L is a Krull valuation on L, i.e. v∗L(xy) = v∗L(x) + v∗L(y) for any x, y ∈ L. We suppose that
there exists α ∈ L and n ≥ 2 distinct prolongations v1, ..., vn of vK to K[α]. Let a1, a2, ..., an,
b1, b2, ..., bn be 2n elements in K[α] with the following properties:

v1(a1) < 0 < v2(a2) ≤ v3(a3) ≤ ... ≤ vn(an),

v2(b2) < 0 < v1(b1) ≤ v3(b3) ≤ ... ≤ vn(bn)
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and
v1(a1b1) ≥ 0, v2(a2b2) ≥ 0.

Let M be a real number with M > max{vn(an), vn(bn)}. Since v1, ..., vn are independent
as valuations, we can apply the Approximation Theorem (see [6] or [7] for instance) to find
x, y ∈ K[α] ⊂ L, with

vi(x− ai) > M, vi(y − bi) > M

for any i = 1, 2, ..., n. We see that vi(x) = vi(ai) and vi(y) = vi(bi) for any i = 1, 2, ..., n. Since
vi(aibi) ≥ 0 for any i = 1, 2, ..., n, one has that v∗(xy) ≥ 0. Since

v∗(x) = min{vi(x) : i = 1, 2, ..., n} = min{vi(ai) : i = 1, 2, ..., n} = v1(a1)

and v∗(y) = v2(b2), one has that

v∗(xy) ≥ 0 > v∗(x) + v∗(y),

i.e. v∗ is not a valuation on L, which is a contradiction to our assumption.
The continuity of θ w.r.t. w is equivalent to the fact that w ◦ θ and w are equivalent as

valuations (see [7], or [8]). Since both of them coincide on K, this last equivalence means
equality (see [7], or [8]) i.e. all the valuations w which extends vK to L are one and the same.
The maximality appears both in b) and c). Thus, it is not difficult to prove that b) and c) are
equivalent.

In the following we preserve the above definitions and notation.

Theorem 2. (see also [2] and [9]) Let (K̃, ṽK) be a fixed completion of (K, vK) and let K̃ be

a fixed algebraic closure of K̃, which also contains K. Let L ⊂ K be a vK-maximal extension

of (K, vK). Then K̃L = K̃ and L ∩ K̃ = K.

Example 1. If (K, vK) is a Henselian field, then K is the unique vK-maximal extension of
(K, vK).

Example 2. Let vp be the p-adic valuation on Q and f(x) ∈ Q[x] be an irreducible polynomial
over Qp. Then Q[α] is always contained in a vp-maximal extension of (Q, vp) (apply Zorn’s
Lemma).

In [4] the following result is proved. In fact only the statement iii) is new. The others, i)
and ii) are particular cases of Theorem 2.

Theorem 3. (see [4]) Let (Q, vp) be the valued field which appeared above (see example 2),
G = Gal(Q/Q), Gp = Gal(Qp/Qp) and L(p) be a vp-maximal extension of (Q, vp). Then:

i) L(p) is dense in Cp, the usual complex p-adic field which contains Qp.
ii) L(p)Qp = Qp, L(p) ∩Qp = Q.
iii) Any µ ∈ G can be uniquely written as µ = στ, where σ ∈ Gp and τ ∈ GL(p) =

Gal(Q/L(p)).
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This last result was generalized in [2] as follows.

Let (K, vK) be a perfect rank 1 valued field, (K̃, ṽK) be a fixed completion of (K, vK),

(K̃, ṽK) be a fixed algebraic closure of (K̃, ṽK), where ṽK is the unique extension of ṽK to K̃

and let (K, v) be the algebraic closure of K in K̃, where v is the restriction of ṽK to K. We
call this v the standard extension of vK to K. Let L be an intermediate field between K and
K and let vL be the restriction of v to L.

Definition 1. Let (K, vK) be as above. We say that L/K is a Henselian extension w.r.t. vK
if vL is the unique extension of vK to L. A subfield M of K is said to be a Henselian field if
the extension K/M is a Henselian extension w.r.t. vM , i. e. v, the standard extension defined
above, is the unique extension of vM to K. Here vM is the restriction of v to M.

Let G(v) = {σ ∈ G def
= Gal(K/K) : v ◦ σ = v} be the decomposition group of v and let

K(v) be the decomposition field of v, i.e. the fixed field of G(v). It is in fact the henselization

of (K, vK), i.e. the least Henselian field in (K, v) which contains (K, vK). It is equal to K̃ ∩K,
i.e. the algebraic closure of K in K̃ and it is also equal to the v-topological closure of K in K.

Before we state the main result of [2], we give two remarks on the structure of the vp-maximal
extensions of (Q, vp).

Proposition 1. (see [2]) i) There exist infinite many non-isomorphic vp-maximal extensions
of (Q, vp) in Q.

ii) Each vp-maximal extension L of (Q, vp) in Q contains at most one quadratic subfield

Q[
√
d].

Theorem 4. (see [2]) With the above notation, let L be a vK-maximal extension of (K, vK).
Then,

i) LK(v) = K, L ∩K(v) = K, where v is the standard extension of vK to K.
ii) L is dense in K relative to the topology induced by v.
iii) Any σ ∈ Gal(K/K) can be uniquely written as σ = τL ◦ hL, where τL ∈ G(v) (=

Gal(K/K(v)) and hL ∈ GL, the absolute Galois group Gal(K/L) of L.

Remark 1. Let now w be an arbitrary extension of a rank 1 valuation vK , defined on a perfect

field K, to a fixed algebraic closure K of K. Let
(
K̃, w̃

)
be a fixed completion of (K,w). Since

K̃ is algebraically closed and complete (see [7] or [8] for instance), it contains an algebraic

closure K̃ of K̃, where K̃ is the topological closure (with respect to w) of K in
(
K̃, w̃

)
. Let w̃K̃

be the restriction of w̃ to K̃. Since
(
K̃, w̃K̃

)
is a completion of (K, vK), we see that w can be

viewed as a standard extension of vK to K. This is why one can replace the standard extension
v of vK to K, which appears in Theorem 4, with an arbitrary extension w of vK to K.

2 Some results on v-maximal extensions, Henselian fields and conservative fields

Let (K, vK) be a rank 1 perfect valued field, let K be a fixed algebraic closure of K and let
v be a fixed arbitrary extension of vK to K. Let G(v), K(v) be as above, the decomposition
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group of v and the decomposition field of v (the henselization of (K, vK) in K) respectively.
We preserve these hypotheses and notation along this section.

Theorem 5. Let α ∈ K(v), where K(v) is the henselization of (K, vK) in K and let L, K ⊂ L ⊂
K be a vK-maximal extension of (K, vK). Then, i) degK α = degL α, and ii) IrrKα = IrrLα,
i.e. the monic minimal polynomials of α over K and over L respectively are identical.

Proof: Since i) implies ii), it is enough to prove i). Let

gα(X) = a0 + a1X + ...+ at−1X
t−1 +Xt ∈ L[X]

be the irreducible monoc polynomial of α over L and let K[β] = K[a0, a1, ..., at−1], β ∈ L. Let

us look at the following inclusions of fields:

K ⊂ K[α] ⊂ K[α][β],

K ⊂ K[β] ⊂ K[β][α].

Since β ∈ L one has that K ⊂ K[β] is a Henselian extension (because L is a vK-maximal exten-

sion). Thus, the minimal polynomial of β over K remains irreducible over K̃, the completion

of K w.r.t. v, in particular it remains irreducible over K(v) (which is included in K̃). So one
has the following equalities:

degK β = degK(v) β = degK[α] β.

Hence,

degK α = degK[β] α = degL α.

Theorem 6. With the above notation, let the following tower of valued fields, (K, vK) ⊂

(L, vL) ⊂ (K, v) be such that vL is the unique extension of vK to L, i.e. the extension of

valued fields K ⊂ L is Henselian. Then L is a vK-maximal extension if and only if (L, vL) is
dense in (K, v).

Proof: ⇒) Since LK(v) = K and since K is dense in K(v) (see Theorem 4, Remark 1 and the

inclusions K ⊂ K(v) ⊂ K̃), one has that L = LK is dense in K.
⇐) If L is dense in K, the henselization of L in K is K itself. Let γ ∈ K be such that

L ⊂ L[γ] is a Henselian extension and let gγ be the minimal polynomial of γ over L. Since K
is the henselization of L, gγ is still irreducible over K (see [7], or [8]) i.e. it is of degree one, so
γ ∈ L. Thus L is a vK-maximal extension.
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Remark 2. Let Cp be the p-adic complex number field, i.e. the completion of Qp, an algebraic
closure of Qp (the p-adic number field), w.r.t. the unique prolongation of the usual p-adic
valuation on Qp. Let vp be the standard p-adic valuation on Cp. In [1] it is proved that there
exists a transcendental (over Qp) element t ∈ Cp such that the completion (w.r.t. vp) of Qp(t)
is exactly the entire Cp. Let us denote by K the field Qp(t). Since Cp is algebraically closed (see
[7], or [8] for instance), the algebraic closure K of K in Cp is an algebraic closure of K. Since
K is dense in K, the henselization of K in K is K itself. Now, theorem 6 says that K is a
vp-maximal extension in K. This means that the restriction of vp to K splits in any subfield T
of K, which contains K.

Definition 2. A field L1 ⊂ K is called a K(v)-conservative field if for any α ∈ L1, the minimal
polynomial of α over K(v) (the henzelization of (K, vK) in K) has coefficients in L1, i.e. in
L1 ∩K(v).

Example 3. If L1 ⊂ K(v), or if K(v) ⊂ L1, then L1 is a K(v)-conservative field.

Example 4. If L1 is normal over K, or over K(v), then L1 is K(v)-conservative.

Example 5. There is an infinite number of primes p such that for v = vp defined on Qp,
L1 = Q[ 3

√
2] ⊂ Q(vp) ⊂ Q is Q(vp)-conservative, but L1 is not a normal extension of Q.

Theorem 7. Let K ⊂ L1 ⊂ K be a tower of fields. Then L1 is a K(v)-conservative field if and
only if L1 ∩K(v) ⊂ L1 is a Henselian extension with respect to the restrictions of the valuation
v to L1 ∩K(v) and to L1 respectively.

Proof: ⇒) Since the henselization of L1 ∩ K(v) is also K(v), it is enough to see that the
minimal polynomial gα of an element α ∈ L1 over L1 ∩ K(v) is also irreducible over K(v).
Since L1 is a K(v)-conservative field, the minimal polynomial of α over K(v) has coefficients
in L1 ∩K(v), so it is exactly gα which is irreducible. Thus the extension L1 ∩K(v) ⊂ L1 is a
Henselian extension w.r.t. v.
⇐) Let β ∈ L1 and let fβ be its minimal polynomial over K(v). In general, this last

polynomial is a divisor in K(v)[X] of the minimal polynomial hβ of β over L1 ∩ K(v). If
L1∩K(v) ⊂ L1 is a Henselian extension, then hβ is also irreducible over K(v), the henselization
of L1 ∩K(v). Thus, hβ = fβ and so the coefficients of fβ are also in L1. Hence L1 is a K(v)-
conservative field.

Theorem 8. Let K ⊂ K1 ⊂ K(v) and let K ⊂ L ⊂ K be a vK-maximal extension. Then the
extension K1 ⊂ LK1 is a vK1

-maximal extension.

Proof: Since K1 is dense in K(v), one has that LK1 is dense in LK(v) = K (Theorem 4).
Hence, it will be enough to prove that K1 ⊂ LK1 is a Henselian extension (see Theorem 6).
Let γ ∈ L and let fγ be the minimal polynomial of γ over K. It is also irreducible over K(v)
(L is a vK-maximal extension), in particular it is also irreducible over K1. Thus K1 ⊂ K1[γ] is
a Henselian extension for any γ ∈ L. Hence K1 ⊂ LK1 is a Henselian extension.
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Theorem 9. Let L be a vK-maximal extension and let L ⊂ L1 ⊂ K be a tower of fields. Then,
L1 ∩K(v) ⊂ L1 is a Henselian extension if and only if [L1 ∩K(v)]L = L1.

Proof: ⇒) From Theorem 8 the extension L1 ∩K(v) ⊂ [L1 ∩K(v)]L is a vL1∩K(v)-maximal
extension. If L1∩K(v) ⊂ L1 is a Henselian extension and since L1∩K(v) ⊂ [L1∩K(v)]L ⊂ L1,
one has that [L1 ∩K(v)]L = L1.
⇐) Assume now that [L1 ∩K(v)]L = L1. From Theorem 8, L1 ∩K(v) ⊂ [L1 ∩K(v)]L is a

Henselian extension. Thus, L1 ∩K(v) ⊂ L1 is also a Henselian extension.

Theorem 10. Let K ⊂ L ⊂ L1 ⊂ K be a tower of fields, where L is a vK-maximal extension.
Then the following assertions are equivalent:

i) L1 is a K(v)-conservative field.
ii) L1 ∩K(v) ⊂ L1 is a Henselian extension with respect to the restrictions of the valuation

v to L1 ∩K(v) and L1 respectively.
iii) [L1 ∩K(v)]L = L1.

Proof: Here is nothing else to prove but a direct application of Theorems 7, 8 and 9.

Theorem 11. Let L be a fixed vK-maximal extension in K. The mappings K1 → LK1 and
L1 → L1∩K(v), where K ⊂ K1 ⊂ K(v) and L ⊂ L1 ⊂ K are two towers of fields, supply a one-
to-one and onto correspondence between the K-subextensions K1 of K(v) and the conservative
superfields L1 of L which are contained in K.

Proof: Theorem 8 says that the extension K1 ⊂ LK1 is a vK1 -maximal extension. Let us take
an element α ∈ L1 (= K1L). Since the henselization of K1 is also K(v), its minimal polynomial
fα over K(v) is also the minimal polinomial of α over K1, thus the coefficients of fα are in K1

which is included in L1 (= K1L). Hence K1L is a K(v)-conservative field. Let us prove now
that LK1∩K(v) = K1. Since K1 ⊂ LK1∩K(v), it remains to prove that K1 ⊃ LK1∩K(v). Let
us take γ ∈ LK1∩K(v). Since K1 ⊂ LK1 is a Henselian extension (see theorem 8), the minimal
polynomial fγ of γ over K1 is also irreducible over K(v), i.e. it is also the minimal polynomial
of γ over K(v). Since γ ∈ K(v), deg fγ = 1, thus γ ∈ K1. Therefore, K1 ⊃ LK1 ∩ K(v).
The equality [L1 ∩K(v)]L = L1 is clear because of Theorem 10 iii) (L1 is K(v)-conservative).

Theorem 12. Let L be a fixed vK-maximal extension in K and let K ⊂ K1 ⊂ K(v) be a tower
of fields and let L1 = K1L ⊂ K. Let GK1 = Gal(K/K1), GL1 = Gal(K/L1). Then

i) L1K(v) = K and L1 ∩K(v) = K1.
ii) Any µ ∈ GK1

can be uniquely written as µ = στ, where σ ∈ G(v) and τ ∈ GL1
.
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Proof: Since K(v) is also the henselization of K1 in K, we simply apply Theorem 4 iii) to
extension K1 ⊂ K1L.

Remark 3. G(v) is never a normal subgroup of no GK1
because K(v) is never a normal

extension of K or of K1, except for the trivial cases K(v) = K or K (see corollary 1 bellow).

But GL1
may be a normal subgroup of GK1

when, for instance, L1 is the normal closure L̂ of

L in K and K1 = L̂ ∩K(v).

Theorem 13. Let (K, vK) be a rank 1 perfect valued field which is not algebraically closed
and let v be an extension of vK to a fixed algebraic closure K of K. Let (L, vL) be a vK-
maximal extension of (K, vK) in K, such that L is finite dimensional over K. Then, L = K
and K(v) = K.

Proof: Assume that [L : K] = n and say L = K[γ], where γ ∈ L, degK γ = n. Since LK(v) = K
(see Theorem 12), one has that [K : K(v)] = n = 2 (see the Artin-Schreier theory), if L 6= K.
In this case K(v) is a Henselian and a real closed field, which is impossible (see Ribenboim
[11]).Thus, L = K and K(v) = K.

3 Commentaries to some classical results

We start with two well known auxiliary results. In order to preserve the unity of our presenta-
tion, we also prove them in our specific way.

Lemma 1. (see also [5]) Let (K, vK) be a valued field and let (K, vK) ⊂ (M,wK) be an algebraic
extension of valued fields, M ⊂ K, where M is normal over K. Here wM is considered to be
the restriction of a prolongation w of vK to K. Let v be an extension of vK to K and let vM
be the restriction of v to M. Assume that (M, vM ) is a Henselian field. Then (M,wM ) is also
a Henselian field.

Proof: If (K, vK) was a Henselian field, then wM = vM and we would have nothing to prove.
Thus, we can assume that (K, vK) is not a Henselian field. Let us also suppose that (M,wM )
is not a Henselian field. Let σ ∈ Gal(K/K) such that w = v ◦ σ (see [8], or [7] for instance).
If (M,wM ) is not a Henselian field, then there exist σ1, σ2 ∈ Gal(K/M) with σ1 6= σ2 and
v ◦ σ ◦ σ1 6= v ◦ σ ◦ σ2. Let us consider the following valuations on K :

v1 = v ◦ σ ◦ σ1 ◦ σ−1

and
v2 = v ◦ σ ◦ σ2 ◦ σ−1.

It is easy to see that v1 6= v2 on K (take y ∈ K with v(σ(σ1(y))) 6= v(σ(σ2(y))) and put
y = σ−1(z)). Let us prove that v1 and v2 are both extensions of vM . Take x ∈ M. Then
σ−1(x) ∈M (M is normal over K). So,

v1(x) = (v ◦ σ ◦ σ1)σ−1(x) = v(σ(σ−1(x)) = v(x) = vM (x).
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Here we used the fact that σ1 ∈ Gal(K/M). We also have v2(x) = vM (x) for any x ∈ M.
Since v1 6= v2 and both extend vM , we just obtained that (M, vM ) is not a Henselian field, a
contradiction. Hence (M,wM ) must be also a Henselian field.

Corollary 1. (see also [5]) Let v be a valuation on K which extends vK . Assume that (K, vK)
is not Henselian and that M/K, M ⊂ K, is a normal extension. Let w be another valuation on
K and wM its restriction to M such that (M,wM ) is a Henselian field. Then M = K.

Proof: We simply apply Lemma 1 and the Uniqueness Theorem for Henselian fields (F. K.
Schmidt, Kaplansky, Schilling) (see [6], [7], or [13]).

Here is another application of our theory of vK-maximal extensions.

Theorem 14. (see also Warner [14]) Let v be a prolongation of vK to K such that (K, vK)
is not a Henselian field and [K(v) : K] < ∞. Then K(v) is an algebraically closed field,
K(v) = K(

√
−1) and K is a real closed field. In particular, if (M,vM ) is a finite Henselian

extension of a rank 1 valued field (K, vK), then either (K, vK) is a Henselian field, or K is a
real closed field and the least Henselian field which contains (K, vK) is (K, v).

Proof: Since any valuation v on K can be viewed as a standard extension of a vK (its restriction
to K), we can assume that v is a standard extension of vK . If [K(v) : K] = n, then [LK(v) =
K : L] = n (see Theorem 5 and Theorem 4), where L is any vK-maximal extension of (K, vK).
Thus [K : L] = n. From Artin-Schreier theory we get that n = 2, K = L[

√
−1] and L is a real

closed field. Moreover, since [K(v) : K] = 2, one has that K(v)/K is a normal extension. From
Corollary 1 one has that K(v) = K. Thus,

√
−1 ∈ K(v). But

√
−1 cannot be in K, otherwise

L = K and K(v) = K, impossible! ((K, vK) is not a Henselian field). Hence, K(v) = K(
√
−1)

and so K is a real closed field.

Here is the last application of our theory of vK-maximal extensions.
This is a generalization of a Ribenboim’s result [10].

Theorem 15. Let K be a perfect field and let (K, vK) be a rank 1 valued field such that

[K̃ : K] < ∞, where (K̃, ṽK) is a completion of (K, vK). Then, either K = K̃, i.e. K is

complete, or K(v) = K = K̃ = K[
√
−1], K is a real closed field and char K = 0. If (K, vK) is

discrete, then [K̃ : K] <∞ implies K = K̃ (see also Ribenboim [10]).

Proof: Let v be the standard extension of vK to K, the algebraic closure of K in K̃, a fixed
algebraic closure of K̃. Then K(v) ⊂ K̃ and, since [K̃ : K] <∞, one has that [K(v) : K] <∞
and we can apply Theorem 14. Thus, either K = K(v) = K̃, or K(v) = K = K̃ = K[

√
−1] and

so K is a real closed field and char K = 0. If (K, vK) is discrete, then K = K̃, otherwise K = K̃
would be discrete relative to v. But this last fact is impossible because the value group of any
algebraically closed valued field is at least divisible. Thus K = K̃ in the case when (K, vK) is
discrete.
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Remark 4. If (K, v) is not discrete, one may have K̃ 6= K and so K̃ = K[
√
−1] is algebraic

closed. Let for instance Cp, the complex p-adic field. Since Cp is isomorphic with C as a field,
let R∗ ⊂ Cp be a subfield of Cp which is isomorphic with R, the usual real number field. Since
R∗ is not complete relative to vp (otherwise it contains Qp but this last one is not an ordered
field), and since the completion of (R∗, vp) is Cp, we see that for (K, v) = (R∗, vp), one has that

K̃ 6= K and so K̃ = K[
√
−1] is algebraic closed.
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