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Abstract

We study functions f : A → Qp, which preserve spheres with center 0, where A is an
open subset of Qp which contains 0.
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1 Introduction

Let A be an open subset of Cp. A continuous one-to-one function f : A → Cp preserving
the distance between the points is an isometry (see [2], [3], [6] or [7] for terminology and classic
results). Bishop characterized in [1] the isometries f : Qp → Qp. Thus he showed that, if
f(0) = 0, then f is an isometry if and only if, for each positive real number R, f permutes
the balls with center 0 and radius R. Brussel studied the fixed points of certain families of
isometries [ ]q defined on the unit ball of Cp (see [4]). The restriction of [ ]q (called q-bracket)
to Zp is an interpolation of the arithmetic function on the set of nonnegative integers given by

[n]q = 1 + q + ...+ qn−1.

Here q is an element of the ball with center 1 and radius p−
1
p−1 .

In this paper we study the functions f : A → Qp, where A is an open subset of Qp and
0 ∈ A, which preserve spheres with center 0. Every isometry f such that f(0) = 0 belongs to
the set of these functions. There are functions preserving all the spheres with center 0 which
are neither continuous nor one-to-one (see Section 2).

Theorem 1 from Section 2 characterizes the functions preserving spheres which are isome-
tries. Hence we obtain the Bishop’s result quoted above. Then in Theorem 2 we give a represen-
tation of continuous functions preserving a ball by means of Mahler series. Section 3 deals with
analytic functions preserving spheres (see Theorem 3). If f : Qp → Qp is an entire function,
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then f preserves all the spheres included in a fixed ball if and only if it preserves a finite number
of spheres (see Remark 2). A construction of an entire function preserving all the spheres is
given in Theorem 4. All counterexamples of Liouville’s Theorem are constructed by means of
entire functions having this property (see Remark 3).

2 Continuous functions preserving spheres

Let p be a fixed prime and consider | | the normalized p-adic absolute value defined on Q
(i.e. |p| = 1

p ). If Qp is the completion of Q with respect to | |, then every nonzero element
x ∈ Qp has the representation

x =

∞∑
i=m

amp
m, m ∈ Z, ai ∈ {0, 1, ..., p− 1}, am 6= 0. (2.1)

We denote am = x(0) and m = vp(x), that is the p-adic valuation of x.
Let A be an open subset of Qp which contains 0 and let f : A→ Qp be a function such that

|f(x)| = |x|, (2.2)

for every x ∈ A. If R is a positive real number, we denote by B(R) = {x ∈ Qp : |x| ≤ R}
and S(R) = {x ∈ Qp : |x| = R} the ball with circumference and the sphere, with center 0 and
radius R, respectively. Then by (2.2) it follows that f(0) = 0 and f preserves every sphere,
with center 0, included in A. Moreover, for every x ∈ A, x different from 0, there exists a
unique p-adic unit ux, such that

f(x) = uxx. (2.3)

We put Uf = {ux}x∈A∗ , where A∗ = A\{0}. Thus f is uniquely defined by the set of p-adic
units Uf .

We call Uf admissible, if, for every x, y ∈ A∗ such that |x| = |y|, it follows that

|x(0)pvp(x)(ux − uy) + u(0)y (x− y)| = |x− y|. (2.4)

Remark 1. Consider f : Qp → Qp an isometry (i.e. |f(x)−f(y)| = |x−y|, for every x, y ∈ Qp)
with f(0) = 0. Then f is a continuous function which verifies (2.2), where A = Qp.

There exist functions verifying (2.2) which are not continuous functions. Thus, for example,

we take p an odd prime, A = Qp, and for x =
∞∑
j=m

aj(x)pj , with m ∈ Z, aj(x) ∈ {0, 1, ..., p−1},

am(x) 6= 0, we define

f(x) =

∞∑
j=m

bj(x)pj ,

where bj(x) = aj(x), for all j > m, and

bm(x) =

{
am(x), if either aj(x) = 0, ∀ j > m, or aj(x) 6= 0, ∀ j > m,

aj0(x), otherwise, with j0 = min
aj(x) 6=0

{j : j > m}.
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It follows easily that f verifies (2.2) and if we take xn = 1 +
n∑
j=1

2pj , n ≥ 1, then f(xn) =

2 +
n∑
j=1

2pj . Since

x∗ = lim
n→∞

xn = 1 +

∞∑
j=1

2pj

and

f(x∗) = x∗ 6= lim
n→∞

f(xn) = 2 +
∞∑
j=1

2pj ,

it follows that f is not a continuous function. It is easy to see that f is not one-to-one.

The following result shows which are the functions satisfying (2.2) which are isometries.

Theorem 1. Let f : Qp → Qp be a function such that f(0) = 0. Then f is an isometry if and
only if f verifies (2.2) and Uf is admissible.

Proof: Suppose that f is an isometry. Then by (2.3) we obtain

|uxx− uyy| = |x− y|.

Since |uxx− uyy| = |x(ux − uy) + uy(x− y)| and |uy| = 1 it follows that |x(ux − uy)| ≤ |x− y|.
Hence we get (2.4) and Uf is admissible.

Conversely, we suppose that f verifies (2.2) and Uf is admissible. If |x| 6= |y|, then by (2.2)

|f(x)− f(y)| = max {|f(x)|, |f(y)|} = max {|x|, |y|} = |x− y|.

Consider |x| = |y|. By (2.3), it follows that

|f(x)− f(y)| = |x(ux − uy) + uy(x− y)|.

Since Uf is admissible, it follows that |x(0)pvp(x)(ux − uy)| ≤ |x− y|. Hence

|f(x)− f(y)| = |x(0)pvp(x)(ux − uy) + u(0)y (x− y)| = |x− y|

and f is an isometry.

Corollary 1. ([1], Theorem 1.2) Let f : Qp → Qp be a function such that f(0) = 0. Then f
is an isometry if and only if there exist permutations

σi : {1, 2, ..., p− 1} → {1, 2, ..., p− 1}, i ∈ Z, (2.5)

and
τα : {0, 1, ..., p− 1} → {0, 1, ..., p− 1}, α ∈

⋃
i∈Z

Qp/pi, (2.6)
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such that f is given by

f(x) = σm(am)pm +

∞∑
i=m+1

τampm+...+ai−1pi−1(ai)p
i, (2.7)

where x is given by (2.1).

Proof: Suppose f is an isometry. Then by Theorem 1 f satisfies (2.2) and Uf is admissible.
Consider vp(x) = vp(y) = m and the canonical representations of the form (2.1)

y =

∞∑
i=m

bip
i, ux =

∞∑
i=0

cip
i, uy =

∞∑
i=0

dip
i, f(x) =

∞∑
i=m

αip
i, f(y) =

∞∑
i=m

βip
i. (2.8)

By (2.3) and (2.8), for every t ≥ m, we obtain

t∑
i=m

i−m∑
j=0

cjai−j

 pi ≡
t∑

i=m

αip
i (mod pt+1), (2.9)

and
t∑

i=m

i−m∑
j=0

djbi−j

 pi ≡
t∑

i=m

βip
i (mod pt+1). (2.10)

Suppose vp(x− y) = s ≥ m. Then, for every i = m, ..., s− 1, ai = bi, as 6= bs and, by (2.4), this
is equivalent to

ci = di. for i = 0, 1, ..., s−m− 1, am(cs−m − ds−m) + d0(as − bs) 6≡ 0(mod p). (2.11)

Thus by (2.9) and (2.10) this is equivalent to αi = βi, for i = m,m+1, ..., s−1 and αs 6= βs. We
define σm(am) := αm, τampm+...+ai−1pi−1(ai) := αi, i = m,m + 1, ..., s − 1. Now, by induction
on s, it follows (2.7).

Conversely, suppose that f is given by (2.7). Then it follows that f satisfies (2.2). It is
enough to prove that Uf is admissible. Consider x, y ∈ Qp such that vp(x) = vp(y) = m
and vp(x − y) = s ≥ m. Then (2.8) holds, where αm = σm(am), βm = σm(bm), αi =
τampm+...+ai−1pi−1(ai), βi = τbmpm+...+bi−1pi−1(bi), for i ≥ m+ 1. Thus, for t = m,m+ 1, ..., s,
by (2.9) and (2.10) we find

c0am ≡ σm(am)(mod p),

i−m∑
j=0

cjai−j ≡ τampm+...+ai−1pi−1(ai) (mod p) (2.12)

and

d0bm ≡ σm(bm)(mod p),

i−m∑
j=0

djbi−j ≡ τbmpm+...+bi−1pi−1(bi) (mod p). (2.13)
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Hence, for s ≥ m, because σm and τampm+...+ai−1pi−1 are one-to-one, we get

d0(as − bs) + am(cs−m − ds−m) 6≡ 0 (mod p). (2.14)

This implies (2.4) and, by Theorem 1, f is an isometry.

Now we study functions preserving spheres which are continuous functions.

Theorem 2. Let f : B(pm)→ B(pm) be a function such that f(0) = 0, where m is an integer.
Then f is a continuous function which verifies (2.2), for every x ∈ B(pm), if and only if f has
the representation

f(x) = p−m
∞∑
k=1

ak

(
pmx
k

)
, ak ∈ Qp, (2.15)

where
lim
k→∞

|ak| = 0, (2.16)(
x
k

)
=
x(x− 1)...(x− k + 1)

k!
, (2.17)

the series in (2.15) converges uniformly on Zp, and, for every nonnegative integer n,∣∣∣∣∣
n∑
k=1

(
n
k

)
ak

∣∣∣∣∣ = |n|. (2.18)

Proof: We denote C(B(pm)) the set of continuous functions f : B(pm) → B(pm). If m = 0,
B(1) = Zp, and by Mahler Theorem (see, for example, [5] or [6], p. 173), for every f ∈ C(B(pm))
it follows that, (2.15), (2.16) hold and the series in (2.15) converges uniformly on Zp.

Define Φ : C(B(pm))→ C(Zp) by

Φ(f)(x) := pmf

(
x

pm

)
, f ∈ C(B(pm)), x ∈ Zp,

and Ψ : C(Zp)→ C(B(pm)) by

Ψ(g)(x) := p−mg (pmx) , g ∈ C(Zp), x ∈ B(pm).

It follows easily that Ψ is the inverse function of Φ. Hence Φ is a bijective function and by
(2.15), (2.16) written for m = 0 we obtain (2.15), (2.16), for every m.

By (2.15) we obtain

f(np−m) = p−m
n∑
k=1

(
n
k

)
ak (2.19)

and by (2.2) we obtain (2.18).
Conversely, we suppose that (2.15), (2.16) and (2.18) are fulfilled. Because Ψ is a bijective

function, then by Mahler Theorem f is a continuous function and by (2.18) we obtain that (2.2)
holds for all nonnegative integers. Since the set of numbers np−m, where m,n are nonnegative
integers is a dense subset in B(pm) it follows the theorem.
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By Theorem 2 and (2.19) one has the following result.

Corollary 2. Let f : B(pm)→ B(pm) be a function such that f(0) = 0. Then f is an isometry
if and only if (2.15), (2.16) hold and, for every positive integers k, l,∣∣∣∣∣

k∑
s=1

(
k
s

)
as −

l∑
t=1

(
l
t

)
at

∣∣∣∣∣ = |k − l|, k > l. (2.20)

3 Analytic functions preserving spheres

For a fixed integer t, let

f =

∞∑
i=0

ciX
i, ci ∈ Qp, (3.1)

be a convergent series on B(p−t). Since every coefficient ci 6= 0 has the form

ci = uip
iθ(i), ui ∈ Qp, iθ(i) ∈ Z, (3.2)

where |ui| = 1, and the series converges for x = pt we obtain

lim
i→∞

(θ(i) + t)i =∞. (3.3)

Because (3.1) can be written as

f =
∑
k≥0

uik

(
pθ(ik)X

)ik
, |uik | = 1, (3.4)

we denote

If = {ik}k≥0, Θf = {θ(ik)}k≥0.

Define ht : If ×Θf → N such that

ht(i, θ(i)) = (θ(i) + t)i. (3.5)

Since iθ(i) ∈ Z, by (3.3), there exists

mt = min
k≥0
{ht(ik, θ(ik))}. (3.6)

From (3.3), (3.5) and (3.6) it follows that there exists Nf ∈ Z ∪ {∞} such that for all t ≥ Nf ,
mt > t, and for all t < Nf , mt ≤ t.

If mt ≤ t, for r = mt,mt + 1, ..., t, denote

V
(r)
t = {ik ∈ If : ht(ik, θ(ik)) = r}, Vt =

t⋃
r=mt

V
(r)
t . (3.7)
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By (3.3), it follows that V
(r)
t is a finite set, for every r = mt,mt + 1, ..., t.

Let K be a field and

P =

d∑
k=0

akX
k (3.8)

a polynomial with coefficients in K of degree equal to d. For j ≥ 0, we denote

T j(P ) =

d∑
k=j

ak

(
k
j

)
Xk−j . (3.9)

Lemma 1. (Taylor’s formula) Let K be a field, α ∈ K a fixed element and P a polynomial
given by (3.8). Then, for every x ∈ K,

P (x) =

d∑
j=0

T j(P )(α)(x− α)j (3.10)

Proof: For every nonnegative integer k

Xk = (X − α+ α)k =

k∑
j=0

(
k
j

)
αk−j(X − α)j .

Then, by (3.8), we get

P (x) =

d∑
k=0

k∑
j=0

ak

(
k
j

)
αk−j(x− α)j

=

d∑
j=0

T j(P )(α)(x− α)j .

Now we prove the following result:

Lemma 2. Let f : B(p−t) → B(p−t) be the function defined by the convergent series (3.4).
Then f satisfies (2.2), for every x ∈ S(p−t), if and only if, mt ≤ t, and for all ai ∈ {0, 1, 2, ..., p−
1}, a0 6= 0,

t−mt∑
s=0

∑
ik∈V

(mt+s)
t

uik

t−mt−s∑
γ=0

∑
Jq∈M(ik,γ)

ps+γ
(

ik
j0 ... jq

)
aj00 ...a

jq
q ∈ S(p−t+mt), (3.11)

where

M(i, γ) = {Jq = (j0, ..., jq) ∈ Nq+1 : j0 + j1 + ...+ jq = i, j1 + 2j2 + ...+ qjq = γ,



18 Sever Achimescu and Ghiocel Groza

q = 0, 1, ..., γ}, (3.12)

and (
i

j0 ... jq

)
=

i!

j0!j1!...jq!

are multinomial coefficients. Moreover (2.2) holds if for all α ∈ {0, 1, .., t − mt}, all τ ∈
{0, 1, .., α}, τ 6= t−mt, and all a0 ∈ {1, 2, ..., p− 1},

α−τ∑
s=0

pτ+sT τ (Ps,t)(a0) ∈ B(p−α−1), (3.13)

and
T t−mt(P0,t)(a0) ∈ S(1), (3.14)

where
Ps,t =

∑
ik∈V

(mt+s)
t

uikx
ik .

Proof: Because every x ∈ S(p−t) can be represented as

x =

∞∑
j=0

ajp
t+j , aj ∈ {0, 1, ..., p− 1}, a0 6= 0, (3.15)

by (3.4), it follows that (3.8) holds if and only if∣∣∣∣∣∣∣
t∑

r=mt

∑
ik∈V (r)

t

uik

 ∞∑
j=0

ajp
θ(ik)+t+j

ik
∣∣∣∣∣∣∣ =

1

pt
, (3.16)

for all aj ∈ {0, 1, ..., p− 1}, a0 6= 0. Since∣∣∣∣∣∣∣
 ∞∑
j=t−mt+1

ajp
θ(ik)+t+j

ik
∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
 ∞∑
j=t−mt+1

ajp
ht(ik,θ(ik))

ik
+j

ik
∣∣∣∣∣∣∣ <

1

pt
,

by (3.7) and (3.16) it follows that (3.8) holds if and only if∣∣∣∣∣∣∣
t−mt∑
s=0

∑
ik∈V

(mt+s)
t

uik

t−mt∑
j=0

ajp
mt+s
ik

+j

ik
∣∣∣∣∣∣∣ =

1

pt
. (3.17)

Then (3.17) is equivalent to∣∣∣∣∣∣∣
t−mt∑
s=0

∑
ik∈V

(mt+s)
t

uik
∑

j0+...+jt−mt=ik

(
ik

j0...jt−mt

)
aj00 ...a

jt−mt
t−mt p

mt+s+γ

∣∣∣∣∣∣∣ =
1

pt
, (3.18)
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where γ = j1 + 2j2 + ...+ (t−mt)jt−mt depends on j1, j2, ..., jt−mt . Hence we get∣∣∣∣∣∣∣∣∣∣∣
t−mt∑
s=0

∑
ik∈V

(mt+s)
t

uik
∑

j0 + ...+ jt−mt = ik
γ ≤ t−mt − s

(
ik

j0...jt−mt

)
aj00 ...a

jt−mt
t−mt p

s+γ

∣∣∣∣∣∣∣∣∣∣∣
=

1

pt−mt
,

for all ai ∈ {0, 1, ..., p − 1}, a0 6= 0. Since s + γ ∈ {0, 1, ..., t −mt}, this implies that (2.2) is
equivalent to (3.11).

Now we suppose that (3.13) and (3.14) hold. Then, because(
ik

j0 j1 ... jq

)
=

τ !

j1!...jq!

(
ik
τ

)
, τ = j1 + ...+ jq,

we get
t−mt∑
s=0

∑
ik∈V

(mt+s)
t

uik

t−mt−s∑
γ=0

∑
Jq∈M(ik,γ)

ps+γ
(

ik
j0 ... jq

)
aj00 ...a

jq
q

=

t−mt−1∑
τ=0

t−mt∑
γ1=0

t−mt−τ−γ1∑
s=0

∑
ik∈V

(mt+s)
t

uik

(
ik
τ

)
pτ+saik−τ0 pγ1 ·


∑

j1 + ...+ jq = τ
j2 + ...+ (q − 1)jq = γ1

τ !

j1!...jq!
aj11 ...a

jq
q


+

∑
ik∈V

(mt)
t

uik

(
ik

t−mt

)
pt−mtaik−t+mt0 .

Since the expressions in the big parentheses are integers, by (3.13) with α = t −mt − γ1, and
by by (3.14) it follows (3.11). Thus (2.2) holds, for every x ∈ S(p−t).

Remark 2. By Lemma 2 it follows that an analytic function f : B(p−n) → B(p−n) given by
(3.4) verifies (2.2) on S(p−t), where t is a fixed integer greater than or equal to n if and only if
a finite number of coefficients ui verify (3.11). In fact if we denote

Pmt+s,t =
∑

ik∈V
(mt+s)
t

uik

(
pθ(ik)X

)ik
, s = 0, 1, ..., t−mt, |uik | = 1,
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Pt =

t−mt∑
s=0

Pmt+s,t,

then the coefficients uik of Pt verify (3.11) and Pt satisfies (2.2) on S(p−t). By (3.5) it follows
that, for every t,

Vt ⊂ Vt−1. (3.19)

Suppose that f satisfies (2.2) on S(p−t), for every t ≥ n. Because

ht+1(i, θ(i)) = ht(i, θ(i)) + i (3.20)

it follows that either t+ 1−mt+1 < t−mt or Vt+1 = Vt = {1}. Thus by (3.19) it follows that
it is enough to verify (2.2) only for a finite number of t ≥ n. This number is less than n−mn.

Theorem 3. Let f : B(p−n)→ B(p−n) be the function defined by the convergent series (3.4).
Then (2.2) holds for every x ∈ B(p−n), if and only if, f(0) = 0, Nf = ∞, for all t ≥ n, and
all ai ∈ {0, 1, 2, ..., p − 1}, a0 6= 0, (3.11) holds. Moreover (2.2) holds for every x ∈ B(p−n)
if Nf = ∞, for all t ≥ n, all α ∈ {0, 1, .., t − mt}, all τ ∈ {0, 1, .., α}, τ 6= t − mt, and all
a0 ∈ {1, 2, ..., p− 1}, (3.13) and (3.14) are fulfilled.

Proof: Since B(p−n) = {0}∪
⋃
t≥n

S(p−t), by using the definition of Nf , the theorem follows by

Lemma 2.

Because Qp =
⋃
t∈Z

S(pt), from Theorem 3 we derive the following:

Corollary 3. Let f : Qp → Qp be an entire function defined by (3.4). Then (2.2) holds for every
x ∈ Qp, if and only if, f(0) = 0, Nf = ∞, and for all t ∈ Z, and all ai ∈ {0, 1, 2, ..., p − 1},
a0 6= 0, (3.11) holds. Moreover (2.2) holds for every x ∈ Qp if Nf = ∞, for all t ∈ Z, all
α ∈ {0, 1, .., t −mt}, all τ ∈ {0, 1, .., α}, τ 6= t −mt, and all a0 ∈ {1, 2, ..., p − 1}, (3.13) and
(3.14) are fulfilled.

Corollary 4. Let f : Qp → Qp be a polynomial function. Then (2.2) holds for every x from
Qp, if and only if, there exists an element u from Qp, such that, for every x ∈ Qp,

f(x) = ux, |u| = 1. (3.21)

Proof: If f has at least two terms, then for t small enough, V
(mt)
t contains only one term and

(3.11) does not hold. Hence f(x) = axk with a ∈ Qp. If k > 1 or |a| 6= 1, then Nf < ∞ and
the corollary follows by Corollary 3.

In order to construct entire functions f : Qp → Qp defined by (3.1), which are not polynomial
functions, and satisfy (3.13), (3.14), we need the following lemma:
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Lemma 3. (Hermite’s interpolation) Let Fp be the field having p elements, r a nonnegative
integer and {βi,j , i = 1, ..., p − 1, j = 1, ..., r} arbitrary elements from Fp. Then there exists a
unique polynomial P ∈ Fp[X], of degree less than or equal to d = rp+ p− r − 2 given by (3.8)
such that, for every j = 0, 1, ..., r,

T j(P )(γ) = βi,j , γ = 1, 2, ..., p− 1. (3.22)

Proof: Consider P ∈ Fp[X] given by (3.8), a fixed γ ∈ {1, 2, ..., p − 1} and r a nonnegative
integer. Suppose that, for all j = 0, 1, ..., r,

T j(P )(γ) =

d∑
k=j

ak

(
k
j

)
γk−j = 0. (3.23)

Then by (3.10) we get
P = (X − γ)r+1Q, (3.24)

where Q is a polynomial. Hence it follows that all polynomials of degree less than or equal to
(p− 1)(r + 1)− 1 = pr + p− r − 2 which satisfy (3.22) for all βij = 0 can be written as

P = A

p−1∏
γ=1

(X − γ)r+1, A ∈ Fp.

Thus every polynomial of the form (3.8) of degree less than or equal to d which satisfies (3.22)
for all βij = 0 vanishes identically. Hence it follows that the determinant of the matrix of the
coefficients of the system (3.22), with respect to the unknowns ak, is different from zero. This
completes the proof of the lemma.

Consider P = X +
d∑
i=2

akX
i ∈ Zp[X]. Then P satisfies (2.2) for every x ∈ B(p−n), where

n is a nonnegative integer. Given a polynomial verifying (2.2) on B(p−n), in the proof of the
following lemma we construct a polynomial satisfying (2.2) on B(p−n+1).

Lemma 4. Let n be an integer and let P1 =
∑
i∈I1

u
(1)
i

(
pθ(i)X

)i
be a polynomial, written in the

form (3.4), which verifies (2.2) on S(p−t), for all t ≥ n. If M is a positive integer, then there

exists a polynomial P2 =
∑
i∈I2

u
(2)
i

(
pθ(i)X

)i
, written in the form (3.4), where I1 ⊂ I2, such that:

(i) for every i ∈ I1, u
(1)
i = u

(2)
i ;

(ii) for every t ≥ n− 1, P2 verifies (3.13) and (3.14);

(iii) for every t ≥ n, mt and V
(r)
t , r = 0, 1, ..., t−mt, are the same for P1 and P2;

(iv) for every i ∈ I2\I1, i > M and, if n < 0, then θ(i) > −n−12 .

Proof: Denote by Vn(P1), the set Vn defined for P1,

Ṽn−1(P1) = {i ∈ I1 : hn−1(i, θ(i)) ≤ n− 1} .
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Then, by (3.20), it follows that Ṽn−1(P1) 6= ∅, and we choose

mn−1 ≤ min
i∈Ṽn−1(P1)

{hn−1(i, θ(i))}

By the definition of Ṽn−1(P1) we get mn−1 ≤ n− 1. For all k = 0, 1, ..., n− 1−mn−1, we put

rk = n− 1−mn−1 − k, dk = (rk + 1)(p− 1)− 1, Dk = d+
k∑
i=0

di, where d is the degree of P1.

We seek the polynomials

P̃mn−1+k,n−1 =

Dk+δk∑
i=Dk−1+δk

u
(2)
i Xi ∈ Zp[X],

where D−1 = d, |u(2)i | ∈ {0, 1} and δk > 1 are integers satisfying

Dk−1 + δk ≡ 0 (mod (p− 1)), (3.25)

δk > max

{
2mn−1

n− 1
,M, n−mn−1

}
(3.26)

such that, for all γ ∈ {1, 2, ..., p− 1}

T j(P̃mn−1,n−1)(γ) ≡ −T j
 ∑
i∈Ṽ

(mn−1)

n−1

u
(1)
i xi

 (γ) (mod p),

j = 0, ..., n− 1−mn−1 − 1,

(3.27)

Tn−1−mn−1(P̃mn−1,n−1)(γ) ≡ γ − Tn−1−mn−1

 ∑
i∈Ṽ

(mn−1)

n−1

u
(1)
i xi

 (γ) (mod p), (3.28)

and for all k = 1, 2, ..., n− 1−mn−1, j = 0, 1, ..., n− 1−mn−1 − k,

pkT j(P̃mn−1+k,n−1)(γ) ≡ −
k−1∑
s=0

ps
(
T j(P̃mn−1+s,n−1)(γ)

−T j(
∑

i∈Ṽ
(mn−1+s)

n−1

uix
i)(γ)

− pkT j
 ∑
i∈Ṽ

(mn−1+k)

n−1

u
(1)
i xi

 (γ) (mod pk+1), (3.29)

where Ṽ
(mn−1+k)
n−1 = {i ∈ Ṽn−1 : hn−1(i, θ(i)) = mn−1 + k}.

To find the polynomials P̃mn−1+k,n−1 let us consider the images Rmn−1+k,n−1 of the polyno-

mials Rmn−1+k,n−1 = X−Dk−1−δk P̃mn−1+k,n−1, in the residue field Fp. Thus, because for every
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nonzero γ ∈ Fp, γp−1 = 1 and, by (3.25), p−1 divides −Dk−1−δk, (3.27), (3.28) are equivalent
to

T j(Rmn−1,n−1)(γ) ≡ −γ−D−1−δ0T j

 ∑
i∈Ṽ

(mn−1)

n−1

u
(1)
i xi

(γ) (mod p),

j = 0, ..., n− 1−mn−1 − 1,

(3.30)

Tn−1−mn−1(Rmn−1,n−1)(γ)

≡ γ−D−1−δ0

γ − Tn−1−mn−1

 ∑
i∈Ṽ

(mn−1)

n−1

u
(1)
i xi

(γ)

 (mod p),
(3.31)

By Lemma 3, for i ∈ [D−1 + δ0, D0 + δ0], we find u
(2)
i ∈ Fp such that (3.30) and (3.31) hold. If

u
(2)
i = βi with βi ∈ {0, 1, ..., p − 1}, we choose u

(2)
i = βi. Hence we find P̃mn−1,n−1 such that

(3.27) and (3.28) are fulfilled.
Similarly, by recurrence, for k = 1, ..., n− 1−mn−1, because we can divide (3.29) by pk, we

find P̃mn−1+k,n−1 such that (3.29) holds.
We denote

V
(mn−1+k)
n−1 := {i ∈ [Dk−1 + δk, Dk + δk] : ui 6= 0} ∪ Ṽ (mn−1+k)

n−1 , (3.32)

Vn−1 =
n−1⋃

r=mn−1

V
(r)
n−1, I2 = I1 ∪ Vn−1. For every i ∈ V (mn−1+k)

n−1 \Ṽ (mn−1+k)
n−1 we define

θ(i) :=
mn−1 + k

i
− n+ 1. (3.33)

Now we take
P2 :=

∑
i∈I2

u
(2)
i (pθ(i)X)i, (3.34)

where u
(2)
i = u

(1)
i , for i ∈ I1. Hence (i) follows. By (3.27)-(3.29) and Lemma 2 it follows (ii).

Since, by (3.26), for i ∈ I2\I1, i > n−mn−1, from (3.33), we obtain (iii). (iv) follows easily by
(3.26) because δk >

2mn−1

n−1 . Thus P2 satisfies (i)-(iv).

Theorem 4. Let n be an integer and let P =
∑
i∈IP

ui
(
pθ(i)X

)i
, written in the form (3.4), such

that mn(P ) ≤ n and, for every integer t ∈ [n, 2n−mn], P verifies (2.2) on S(p−t). Then there
exists an entire function f : Qp → Qp such that:

(i) f satisfies (2.2) for every x ∈ Qp;
(ii) if f is represented in the form (3.4), then for every i ∈ IP the corresponding terms of

P and f coincide.

Proof: By Remark 2 it follows that P satisfies (2.2) on S(p−t), for every t ≥ n. By applying
Lemma 4 to P1 = P , M > dn, where dn is the degree of P , there exists a polynomial Pn−1
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verifying the conditions (i)-(iv) of Lemma 4. Then by recurrence we find, for every s ≤ n− 1,
a polynomial Ps such that it satisfies the conditions (i)-(iv) of Lemma 4.

We take
f :=

∑
i∈

n⋃
s=−∞

Vs

ui(p
θ(i)X)i. (3.35)

Then, by (ii) of Lemma 4 it follows that (3.13) and (3.14) hold for every t ≤ 0. Moreover, by
Lemma 4 (iv), we get, for every i ∈ Vs\Vs+1,

θ(i) =
ms + k

i
− s ≥ −s/2. (3.36)

Hence it follows that lim
i→∞

θ(i) = ∞ and f defines an entire function. Finally the theorem

follows by (3.35) and Lemma 4.

Remark 3. Suppose that f : Qp → Qp, with f(0) = 0, is an entire function which is bounded,
that is there exists a positive constant Mf and |f(x)| ≤Mf , for every x ∈ Qp. Then, for every

C = |y| > Mf , y ∈ Qp, g(x) = x
(

1 + f
y

)
, is an entire function verifying (2.2) for every x ∈ Qp.

Conversely, if g : Qp → Qp, with g(0) = 0 is an entire function verifying (2.2) for every
x ∈ Qp, it follows easily that g is differentiable at 0 and |g′(0)| = 1. Then f : Qp → Qp, such

that, for x 6= 0, f(x) = g(x)
x , and f(0) = g′(0) is a bounded entire function. Hence it follows

that all counterexamples of Liouville’s Theorem are constructed by means of entire functions
verifying (2.2).
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