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Stanley Conjecture on intersection of three monomial primary ideals
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Abstract

We show that the Stanley’s Conjecture holds for an intersection of three monomial primary
ideals of a polynomial algebra S over a field.
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Introduction

Let K be a field and S = K[x1, ..., xn] be the polynomial ring over K in n variables. Let I ⊂ S be a
monomial ideal of S, u ∈ I a monomial and uK[Z], Z ⊂ {x1, ..., xn} the linear K-subspace of I of all
elements uf , f ∈ K[Z]. A presentation of I as a finite direct sum of spaces D : I =

⊕r
i=1 uiK[Zi]

is called a Stanley decomposition of I. Set sdepth(D) = min{|Zi| : i = 1, ..., r} and

sdepth I := max{sdepth (D) : D is a Stanley decomposition of I}.

The Stanley’s Conjecture [11] says that sdepth I ≥ depth I. This is proved if either I is an
intersection of four monomial prime ideals by [6, Theorem 2.6] and [8, Theorem 4.2], or I is the
intersection of two monomial irreducible ideals by [10, Theorem 5.6], or a square free monomial
ideal of K[x1, . . . , x5] by [7] (a short exposition on this subject is given in [9]). It is the purpose of
our paper to show that the Stanley’s Conjecture holds for intersections of three monomial primary
ideals (see Theorem 2.2).

1 Computing depth

Let I ⊂ S be a monomial ideal and I =
⋂s

i=1 Qi an irredundant primary decompostion of I, where
the Qi are monomial primary ideals. Set Pi =

√
Qi. According to Lyubeznik [5] size I is the

number v + (n − h) − 1, where h = height
∑s

j=1 Qj and v is the minimum number t such that
there exist 1 ≤ j1 < ... < jt ≤ s with √√√√ t∑

k=1

Qjk =

√√√√ s∑
j=1

Qj .

In [5] it shows that depthS I ≥ 1 + size I.
In the study of the Stanley’s Conjecture, we may always assume that h = n, that is

∑s
i=1 Pi =

m =: (x1, . . . , xn), because each free variable on I increases depth and sdepth with 1.
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Lemma 1.1. Let I ⊂ S be a monomial ideal and I =
3⋂

i=1

Qi an irredundant primary decomposition

of I, where each Qi is Pi - primary. Suppose that Pi 6= m for all i ∈ [3]. Then

(a) If Q1 ⊂ Q2 + Q3 and P1 6⊂ Pi for i = 2, 3, then
depthS S/I = 1 + min{dimS/(P1 + P2),dimS/(P1 + P3)}.

(b) If Q1 ⊂ Q2 + Q3 and P1 ⊂ P2,P1 6⊂ P3, then
depthS S/I = min{dimS/P2, 1 + dimS/(P1 + P3)}.

(c) If Q1 ⊂ Q2 + Q3 and P1 ⊂ Pi for i = 2, 3 then
depthS S/I = min{dimS/P2,dimS/P3}.

(d) If Qi 6⊂
3∑

j=1, j 6=i

Qj , for all i then depthS S/I = 1 if and only if size I = 1.

(e) If Qi 6⊂
3∑

j=1, j 6=i

Qj , for all i then depthS S/I = 2 if and only if size I = 2.

Proof: As AssS S/I = {P1, P2, P3} we get depthS S/I > 0 by assumptions. We have the following
exact sequences

1.

0→ S

I
→ S

Q1 ∩Q2
⊕ S

Q1 ∩Q3
→ S

Q1
→ 0,

2.

0→ S

Q1 ∩Q2
→ S

Q1
⊕ S

Q2
→ S

Q1 + Q2
→ 0,

3.

0→ S

Q1 ∩Q3
→ S

Q1
⊕ S

Q3
→ S

Q1 + Q3
→ 0.

Apply Depth Lemma in (2) and (3). If P1 is not properly contained in P2 or P3 then depth S
Q1∩Q3

=

1 + depth S
Q1+Q3

and depth S
Q1∩Q2

= 1 + depthS
S

Q1+Q2
. If P1 ⊂ P2 then depthS

S
Q1∩Q2

≥
depthS

S
Q2

= dim S
P2

. But depthS
S

Q1∩Q2
≤ dim S

Q2
, that is depthS

S
Q1∩Q2

= dim S
P2

. Similarly,

depthS
S

Q1∩Q3
= dim S

P3
if P1 ⊂ P3.

The statements (a),(b), (c) follow if we show that

depthS S/I = min{depthS

S

Q1 ∩Q2
,depthS

S

Q1 ∩Q3
}.

If depthS
S
Q1

> min{depthS
S

Q1∩Q2
,depthS

S
Q1∩Q3

} then by Depth Lemma applied in (1) we get

the above equality. If depthS
S
Q1

= min{depthS
S

Q1∩Q2
,depthS

S
Q1∩Q3

} then we get similarly

depthS S/I ≥ depthS S/Q1 = depthS S/P1. As P1 ∈ AssS/I then depthS S/I ≤ dimS/P1 =
depthS S/Q1. Thus depthS S/I = depthS

S
Q1

, which is enough.

(d) If depthS S/I = 1 then 2 = depthS I ≥ 1 + size I, that is 1 ≥ size I ≥ 0. But size I 6= 0
because the primary decomposition is irredundant. Conversely, if size I = 1 then v = 2 and we
may assume that P2 + P3 = P1 + P2 + P3 = m. We consider the exact sequences

(4)

0→ S

I
→ S

Q1 ∩Q2
⊕ S

Q3
→ S

Q3 + (Q1 ∩Q2)
→ 0,
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(5)

0→ S

Q1 ∩Q2
→ S

Q1
⊕ S

Q2
→ S

Q1 + Q2
→ 0.

From (5) we have depthS
S

Q1∩Q2
= 1+depthS

S
Q1+Q2

≥ 1 by Depth Lemma. Note that depthS S/Q3 ≥
1 and depthS

S
Q3+(Q1∩Q2) = depthS

S
(Q1+Q3)∩(Q2+Q3) = 0 because

√
Q2 + Q3 = m, and Q1 6⊂

Q2 + Q3. Thus Depth Lemma applied in (4) gives depthS S/I = 1.
(e) If depthS S/I = 2, then depthS I = 3 ≥ 1 + size I. But size I ≤ 1 was the subject of (d),

so size I = 2. Conversely, suppose that size I = 2, that is v = 3. Then Pi 6⊂
3∑

j=1, j 6=i

Pj , for all i

and by [4, Proposition 2.1] we get depthS I ≤ 3. As depthS I ≥ 1 + size I we get depthS S/I = 2.

2 Stanley’s depth

In this section we introduce a new way of splitting, inspired from [4], that helps us to prove the

Stanley Conjecture when I =
3⋂

i=1

Qi is an irredundant primary decomposition of I.

Theorem 2.1. Let I be a monomial ideal and I = Q1∩Q2 an irredundant primary decomposition
of I , where Qi is Pi primary. Then the Stanley conjecture holds for I.

Proof: As usual we my suppose that P1 + P2 = m. Also we may suppose that Pi 6= m for all i,
because otherwise depthS I = 1 and there exists nothing to show. Applying Depth Lemma in the
above exact sequence (2) we get depthS S/I = 1, so depthS I = 2 = 1 + size I. By [3, Theorem
3.1] we have sdepthS I ≥ depthS I.

Theorem 2.2. Let I be a monomial ideal and I =
3⋂

i=1

Qi an irredundant primary decomposition

of I , where Qi is Pi primary. Then the Stanley conjecture holds for I.

Proof: We may suppose as above P1 + P2 + P3 = m and Pi 6= m for all i. If Qi 6⊂
3∑

j=1, j 6=i

Qj ,

for all i ∈ [3] we have according to Lemma 1.1 minimal depth that is depth I = 1 + size I. Then
by [3, Theorem 3.1] we get sdepthS I ≥ depthS I. Now suppose that Q1 ⊂ Q2 + Q3. It follows
that size I = 1. If P1 + P2 = m or P1 + P3 = m then dim S

Q1+Q2
= 0 or dim S

Q1+Q3
= 0 therefore

depthS S/I = 1 that is depthS I = 2. Then again we get sdepthS I ≥ 1 + size I = 2 = depthS I by
by [3, Theorem 3.1].

Otherwise P1 + P2 6= m 6= P1 + P3. Let P1 = (x1, ..., xr) and P3 = (xe+1, ..., xt), 2 ≤ r ≤
n− 1, e+ 1 ≤ r. If r = 1 then Q1 ⊂ Q2 or Q1 ⊂ Q3 because Q1 ⊂ Q2 + Q3. This is false since the
primary decomposition is irredundant. If r = n then P1 = m, which is not possible. If e + 1 > r
then Q1 ⊂ Q2, also a contradiction. We will prove this case by induction on n. If n = 3, then
sdepthS I ≥ 1 + size I = 2 ≥ depthS I, because I is not principal. Assume now n > 3. We set
S′ = K[x1, ..., xr], S̄ := K[x1, ..., xe, xr+1, ..., xn] and J3 =

⊕
w

w((I : w) ∩ S̄), where w runs in the

finite set of monomials of K[xe+1, ..., xr] \Q3.
We claim that I = Q1∩Q2∩ (Q3∩S′)S⊕J3. It is enough to see the inclusion ” ⊂ ”. Let a ∈ I

be a monomial, then a = uv, where u ∈ S̄ and v ∈ K[xe+1, ..., xr] are monomials. If v 6∈ Q3 then
u ∈ (I : v)∩ S̄, so a ∈ J3. If v ∈ Q3 then a ∈ (Q3 ∩ S′)S. As a ∈ I we get a ∈ Q1 ∩Q2 therefore a
∈ Q1 ∩Q2 ∩ (Q3 ∩ S′)S. The above sum is direct. Indeed, let a = uv ∈ Q1 ∩Q2 ∩ (Q3 ∩ S′)S ∩ J3

be as above. Then v 6∈ Q3 because a ∈ J3. But v must be in (Q3 ∩ S′)S. Contradiction!
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The ideal I ′ := Q1 ∩ Q2 ∩ (Q3 ∩ S′)S ⊂ P1 + P2 6= m and so is an extension of an ideal
from less than n-variables and we may apply the induction hypothesis for I ′, that is sdepthS I ′ ≥
depthS I ′. Since sdepthS I ≥ min{sdepthS I ′, {sdepthS̄((I : w) ∩ S̄)}w} it remains to show that
depthS I ′ ≥ depthS I and depthS̄((I : w)∩ S̄) ≥ depthS I, applying again the induction hypothesis
since S̄ has less than n-variables. The first inequality follows because dimS/(P3∩S′)S ≥ dimS/P3,
dimS/(P1 + (P3 ∩ S′)S) ≥ dimS/P1 + P3 using Lemma 1.1 (a), (b), (c).

For the second inequality note that for w 6∈ Q1 ∪ Q2 ∪ Q3 we have (Qi : w) primary and so
Li := (Qi : w) ∩ S̄ is P̄i := Pi ∩ S̄-primary too. We have dim S̄/P̄i = dimS/Pi for i = 1, 3
because (xe+1, . . . , xr) ⊂ P1 ∩ P3. Thus dim S̄/(P̄1 + P̄i) = dimS/(P1 + Pi) for all i = 2, 3. Using
Lemma 1.1 we are done because dimS/P2 appears in the formulas only when P1 ⊂ P2, that is
when dim S̄/P̄2 = dimS/P2.

If w ∈ Q2 \ (Q1 ∪Q3) then

depthS̄ S̄/(L1 ∩ L3) = 1 + dim S̄/(P̄1 + P̄3) = 1 + dimS/(P1 + P3) ≥ depthS S/I

by the same lemma, the only problem could appear when P1 ⊂ P3, but in this case

dim S̄/(P̄1 + P̄3) = dimS/(P1 + P3) = S̄/P̄3 = dimS/P3

and it follows

depthS̄ S̄/(L1 ∩ L3) = 1 + dim S̄/(P̄1 + P̄3) > dimS/P3 ≥ depthS S/I.

If w ∈ (Q1 ∩Q2) \Q3 then depthS̄ S̄/L3 = dimS/P3 ≥ depthS S/I by [1].
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