Stanley Conjecture on intersection of three monomial primary ideals

by
Andrei Zarojanu

Abstract

We show that the Stanley's Conjecture holds for an intersection of three monomial primary ideals of a polynomial algebra S over a field.

Key Words: Monomial Ideals, Stanley decompositions, Stanley depth.
2010 Mathematics Subject Classification: Primary 13C15; Secondary 13F20, 13F55, 13P10.

Introduction

Let K be a field and $S=K\left[x_{1}, \ldots, x_{n}\right]$ be the polynomial ring over K in n variables. Let $I \subset S$ be a monomial ideal of $S, u \in I$ a monomial and $u K[Z], Z \subset\left\{x_{1}, \ldots, x_{n}\right\}$ the linear K-subspace of I of all elements $u f, f \in K[Z]$. A presentation of I as a finite direct sum of spaces $\mathcal{D}: I=\bigoplus_{i=1}^{r} u_{i} K\left[Z_{i}\right]$ is called a Stanley decomposition of I. Set $\operatorname{sdepth}(\mathcal{D})=\min \left\{\left|Z_{i}\right|: i=1, \ldots, r\right\}$ and

$$
\text { sdepth } I:=\max \{\operatorname{sdepth}(\mathcal{D}): \mathcal{D} \text { is a Stanley decomposition of } I\}
$$

The Stanley's Conjecture [11] says that sdepth $I \geq$ depth I. This is proved if either I is an intersection of four monomial prime ideals by [6, Theorem 2.6] and [8, Theorem 4.2], or I is the intersection of two monomial irreducible ideals by [10, Theorem 5.6], or a square free monomial ideal of $K\left[x_{1}, \ldots, x_{5}\right]$ by [7] (a short exposition on this subject is given in [9]). It is the purpose of our paper to show that the Stanley's Conjecture holds for intersections of three monomial primary ideals (see Theorem 2.2).

1 Computing depth

Let $I \subset S$ be a monomial ideal and $I=\bigcap_{i=1}^{s} Q_{i}$ an irredundant primary decompostion of I, where the Q_{i} are monomial primary ideals. Set $P_{i}=\sqrt{Q_{i}}$. According to Lyubeznik [5] size I is the number $v+(n-h)-1$, where $h=$ height $\sum_{j=1}^{s} Q_{j}$ and v is the minimum number t such that there exist $1 \leq j_{1}<\ldots<j_{t} \leq s$ with

$$
\sqrt{\sum_{k=1}^{t} Q_{j_{k}}}=\sqrt{\sum_{j=1}^{s} Q_{j}}
$$

In [5] it shows that depth $\operatorname{den}_{S} I \geq 1+\operatorname{size} I$.
In the study of the Stanley's Conjecture, we may always assume that $h=n$, that is $\sum_{i=1}^{s} P_{i}=$ $m=:\left(x_{1}, \ldots, x_{n}\right)$, because each free variable on I increases depth and sdepth with 1.

Lemma 1.1. Let $I \subset S$ be a monomial ideal and $I=\bigcap_{i=1}^{3} Q_{i}$ an irredundant primary decomposition of I, where each Q_{i} is P_{i} - primary. Suppose that $P_{i} \neq m$ for all $i \in[3]$. Then
(a) If $Q_{1} \subset Q_{2}+Q_{3}$ and $P_{1} \not \subset P_{i}$ for $i=2,3$, then
$\operatorname{depth}_{S} S / I=1+\min \left\{\operatorname{dim} S /\left(P_{1}+P_{2}\right), \operatorname{dim} S /\left(P_{1}+P_{3}\right)\right\}$.
(b) If $Q_{1} \subset Q_{2}+Q_{3}$ and $P_{1} \subset P_{2}, P_{1} \not \subset P_{3}$, then
$\operatorname{depth}_{S} S / I=\min \left\{\operatorname{dim} S / P_{2}, 1+\operatorname{dim} S /\left(P_{1}+P_{3}\right)\right\}$.
(c) If $Q_{1} \subset Q_{2}+Q_{3}$ and $P_{1} \subset P_{i}$ for $i=2,3$ then $\operatorname{depth}_{S} S / I=\min \left\{\operatorname{dim} S / P_{2}, \operatorname{dim} S / P_{3}\right\}$.
(d) If $Q_{i} \not \subset \sum_{j=1, j \neq i}^{3} Q_{j}$, for all i then $\operatorname{depth}_{S} S / I=1$ if and only if size $I=1$.
(e) If $Q_{i} \not \subset \sum_{j=1, j \neq i}^{3} Q_{j}$, for all i then $\operatorname{depth}_{S} S / I=2$ if and only if $\operatorname{size} I=2$.

Proof: As $\operatorname{Ass}_{S} S / I=\left\{P_{1}, P_{2}, P_{3}\right\}$ we get depth $S / I>0$ by assumptions. We have the following exact sequences
1.

$$
0 \rightarrow \frac{S}{I} \rightarrow \frac{S}{Q_{1} \cap Q_{2}} \oplus \frac{S}{Q_{1} \cap Q_{3}} \rightarrow \frac{S}{Q_{1}} \rightarrow 0
$$

2.

$$
0 \rightarrow \frac{S}{Q_{1} \cap Q_{2}} \rightarrow \frac{S}{Q_{1}} \oplus \frac{S}{Q_{2}} \rightarrow \frac{S}{Q_{1}+Q_{2}} \rightarrow 0
$$

3.

$$
0 \rightarrow \frac{S}{Q_{1} \cap Q_{3}} \rightarrow \frac{S}{Q_{1}} \oplus \frac{S}{Q_{3}} \rightarrow \frac{S}{Q_{1}+Q_{3}} \rightarrow 0
$$

Apply Depth Lemma in (2) and (3). If P_{1} is not properly contained in P_{2} or P_{3} then depth $\frac{S}{Q_{1} \cap Q_{3}}=$ $1+\operatorname{depth} \frac{S}{Q_{1}+Q_{3}}$ and depth $\frac{S}{Q_{1} \cap Q_{2}}=1+\operatorname{depth}_{S} \frac{S}{Q_{1}+Q_{2}}$. If $P_{1} \subset P_{2}$ then $\operatorname{depth}_{S} \frac{S}{Q_{1} \cap Q_{2}} \geq$ $\operatorname{depth}_{S} \frac{S}{Q_{2}}=\operatorname{dim} \frac{S}{P_{2}}$. But $\operatorname{depth}_{S} \frac{S}{Q_{1} \cap Q_{2}} \leq \operatorname{dim} \frac{S}{Q_{2}}$, that is depth${ }_{S} \frac{S}{Q_{1} \cap Q_{2}}=\operatorname{dim} \frac{S}{P_{2}}$. Similarly, $\operatorname{depth}_{S} \frac{S}{Q_{1} \cap Q_{3}}=\operatorname{dim} \frac{S}{P_{3}}$ if $P_{1} \subset P_{3}$.

The statements (a),(b), (c) follow if we show that

$$
\operatorname{depth}_{S} S / I=\min \left\{\operatorname{depth}_{S} \frac{S}{Q_{1} \cap Q_{2}}, \operatorname{depth}_{S} \frac{S}{Q_{1} \cap Q_{3}}\right\}
$$

If depth$S_{S} \frac{S}{Q_{1}}>\min \left\{\operatorname{depth}_{S} \frac{S}{Q_{1} \cap Q_{2}}, \operatorname{depth}_{S} \frac{S}{Q_{1} \cap Q_{3}}\right\}$ then by Depth Lemma applied in (1) we get the above equality. If $\operatorname{depth}_{S} \frac{S}{Q_{1}}=\min \left\{\operatorname{depth}_{S} \frac{S}{Q_{1} \cap Q_{2}}, \operatorname{depth}_{S} \frac{S}{Q_{1} \cap Q_{3}}\right\}$ then we get similarly $\operatorname{depth}_{S} S / I \geq \operatorname{depth}_{S} S / Q_{1}=\operatorname{depth}_{S} S / P_{1}$. As $P_{1} \in \operatorname{Ass} S / I$ then $\operatorname{depth}_{S} S / I \leq \operatorname{dim} S / P_{1}=$ $\operatorname{depth}_{S} S / Q_{1}$. Thus depth $S_{S} S / I=\operatorname{depth}_{S} \frac{S}{Q_{1}}$, which is enough.
(d) If $\operatorname{depth}_{S} S / I=1$ then $2=\operatorname{depth}_{S} I \geq 1+\operatorname{size} I$, that is $1 \geq \operatorname{size} I \geq 0$. But size $I \neq 0$ because the primary decomposition is irredundant. Conversely, if size $I=1$ then $v=2$ and we may assume that $P_{2}+P_{3}=P_{1}+P_{2}+P_{3}=m$. We consider the exact sequences

$$
\begin{equation*}
0 \rightarrow \frac{S}{I} \rightarrow \frac{S}{Q_{1} \cap Q_{2}} \oplus \frac{S}{Q_{3}} \rightarrow \frac{S}{Q_{3}+\left(Q_{1} \cap Q_{2}\right)} \rightarrow 0 \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
0 \rightarrow \frac{S}{Q_{1} \cap Q_{2}} \rightarrow \frac{S}{Q_{1}} \oplus \frac{S}{Q_{2}} \rightarrow \frac{S}{Q_{1}+Q_{2}} \rightarrow 0 . \tag{5}
\end{equation*}
$$

From (5) we have depth $\frac{S}{S} \frac{S}{Q_{1} \cap Q_{2}}=1+\operatorname{depth}_{S} \frac{S}{Q_{1}+Q_{2}} \geq 1$ by Depth Lemma. Note that depth $S_{S} S / Q_{3} \geq$ 1 and $\operatorname{depth}_{S} \frac{S}{Q_{3}+\left(Q_{1} \cap Q_{2}\right)}=\operatorname{depth}_{S} \frac{S}{\left(Q_{1}+Q_{3}\right) \cap\left(Q_{2}+Q_{3}\right)}=0$ because $\sqrt{Q_{2}+Q_{3}}=m$, and $Q_{1} \not \subset$ $Q_{2}+Q_{3}$. Thus Depth Lemma applied in (4) gives depth $S / I=1$.
(e) If $\operatorname{depth}_{S} S / I=2$, then $\operatorname{depth}_{S} I=3 \geq 1+\operatorname{size} I$. But size $I \leq 1$ was the subject of (d), so size $I=2$. Conversely, suppose that size $I=2$, that is $v=3$. Then $P_{i} \not \subset \sum_{j=1, j \neq i}^{3} P_{j}$, for all i and by [4, Proposition 2.1] we get $\operatorname{depth}_{S} I \leq 3$. As depth ${ }_{S} I \geq 1+\operatorname{size} I$ we get depth $S / I=2$.

2 Stanley's depth

In this section we introduce a new way of splitting, inspired from [4], that helps us to prove the Stanley Conjecture when $I=\bigcap_{i=1}^{3} Q_{i}$ is an irredundant primary decomposition of I.
Theorem 2.1. Let I be a monomial ideal and $I=Q_{1} \cap Q_{2}$ an irredundant primary decomposition of I, where Q_{i} is P_{i} primary. Then the Stanley conjecture holds for I.

Proof: As usual we my suppose that $P_{1}+P_{2}=m$. Also we may suppose that $P_{i} \neq m$ for all i, because otherwise depth ${ }_{S} I=1$ and there exists nothing to show. Applying Depth Lemma in the above exact sequence (2) we get $\operatorname{depth}_{S} S / I=1$, so $\operatorname{depth}_{S} I=2=1+\operatorname{size} I$. By [3, Theorem 3.1] we have $\operatorname{sdepth}_{S} I \geq \operatorname{depth}_{S} I$.

Theorem 2.2. Let I be a monomial ideal and $I=\bigcap_{i=1}^{3} Q_{i}$ an irredundant primary decomposition of I, where Q_{i} is P_{i} primary. Then the Stanley conjecture holds for I.

Proof: We may suppose as above $P_{1}+P_{2}+P_{3}=m$ and $P_{i} \neq m$ for all i. If $Q_{i} \not \subset \sum_{j=1, j \neq i}^{3} Q_{j}$, for all $i \in[3]$ we have according to Lemma 1.1 minimal depth that is depth $I=1+\operatorname{size} I$. Then by [3, Theorem 3.1] we get $\operatorname{sdepth}_{S} I \geq \operatorname{depth}_{S} I$. Now suppose that $Q_{1} \subset Q_{2}+Q_{3}$. It follows that size $I=1$. If $P_{1}+P_{2}=m$ or $P_{1}+P_{3}=m$ then $\operatorname{dim} \frac{S}{Q_{1}+Q_{2}}=0$ or $\operatorname{dim} \frac{S}{Q_{1}+Q_{3}}=0$ therefore $\operatorname{depth}_{S} S / I=1$ that is $\operatorname{depth}_{S} I=2$. Then again we get $\operatorname{sdepth}_{S} I \geq 1+\operatorname{size} I=2=\operatorname{depth}_{S} I$ by by [3, Theorem 3.1].

Otherwise $P_{1}+P_{2} \neq m \neq P_{1}+P_{3}$. Let $P_{1}=\left(x_{1}, \ldots, x_{r}\right)$ and $P_{3}=\left(x_{e+1}, \ldots, x_{t}\right), 2 \leq r \leq$ $n-1, e+1 \leq r$. If $r=1$ then $Q_{1} \subset Q_{2}$ or $Q_{1} \subset Q_{3}$ because $Q_{1} \subset Q_{2}+Q_{3}$. This is false since the primary decomposition is irredundant. If $r=n$ then $P_{1}=m$, which is not possible. If $e+1>r$ then $Q_{1} \subset Q_{2}$, also a contradiction. We will prove this case by induction on n. If $n=3$, then $\operatorname{sdepth}_{S} I \geq 1+\operatorname{size} I=2 \geq \operatorname{depth}_{S} I$, because I is not principal. Assume now $n>3$. We set $S^{\prime}=K\left[x_{1}, \ldots, x_{r}\right], \bar{S}:=K\left[x_{1}, \ldots, x_{e}, x_{r+1}, \ldots, x_{n}\right]$ and $J_{3}=\underset{w}{\bigoplus} w((I: w) \cap \bar{S})$, where w runs in the finite set of monomials of $K\left[x_{e+1}, \ldots, x_{r}\right] \backslash Q_{3}$.

We claim that $I=Q_{1} \cap Q_{2} \cap\left(Q_{3} \cap S^{\prime}\right) S \oplus J_{3}$. It is enough to see the inclusion " \subset ". Let $a \in I$ be a monomial, then $a=u v$, where $u \in \bar{S}$ and $v \in K\left[x_{e+1}, \ldots, x_{r}\right]$ are monomials. If $v \notin Q_{3}$ then $u \in(I: v) \cap \bar{S}$, so $a \in J_{3}$. If $v \in Q_{3}$ then $a \in\left(Q_{3} \cap S^{\prime}\right) S$. As $a \in I$ we get $a \in Q_{1} \cap Q_{2}$ therefore a $\in Q_{1} \cap Q_{2} \cap\left(Q_{3} \cap S^{\prime}\right) S$. The above sum is direct. Indeed, let $a=u v \in Q_{1} \cap Q_{2} \cap\left(Q_{3} \cap S^{\prime}\right) S \cap J_{3}$ be as above. Then $v \notin Q_{3}$ because $a \in J_{3}$. But v must be in $\left(Q_{3} \cap S^{\prime}\right) S$. Contradiction!

The ideal $I^{\prime}:=Q_{1} \cap Q_{2} \cap\left(Q_{3} \cap S^{\prime}\right) S \subset P_{1}+P_{2} \neq m$ and so is an extension of an ideal from less than n-variables and we may apply the induction hypothesis for I^{\prime}, that is sdepth $I^{\prime} \geq$ $\operatorname{depth}_{S} I^{\prime}$. Since $\operatorname{sdepth}_{S} I \geq \min \left\{\operatorname{sdepth}_{S} I^{\prime},\left\{\operatorname{sdepth}_{\bar{S}}((I: w) \cap \bar{S})\right\}_{w}\right\}$ it remains to show that $\operatorname{depth}_{S} I^{\prime} \geq \operatorname{depth}_{S} I$ and $\operatorname{depth}_{\bar{S}}((I: w) \cap \bar{S}) \geq \operatorname{depth}_{S} I$, applying again the induction hypothesis since \bar{S} has less than n-variables. The first inequality follows because $\operatorname{dim} S /\left(P_{3} \cap S^{\prime}\right) S \geq \operatorname{dim} S / P_{3}$, $\operatorname{dim} S /\left(P_{1}+\left(P_{3} \cap S^{\prime}\right) S\right) \geq \operatorname{dim} S / P_{1}+P_{3}$ using Lemma 1.1 (a), (b), (c).

For the second inequality note that for $w \notin Q_{1} \cup Q_{2} \cup Q_{3}$ we have ($\left.Q_{i}: w\right)$ primary and so $L_{i}:=\left(Q_{i}: w\right) \cap \bar{S}$ is $\bar{P}_{i}:=P_{i} \cap \bar{S}$-primary too. We have $\operatorname{dim} \bar{S} / \bar{P}_{i}=\operatorname{dim} S / P_{i}$ for $i=1,3$ because $\left(x_{e+1}, \ldots, x_{r}\right) \subset P_{1} \cap P_{3}$. Thus $\operatorname{dim} \bar{S} /\left(\bar{P}_{1}+\bar{P}_{i}\right)=\operatorname{dim} S /\left(P_{1}+P_{i}\right)$ for all $i=2,3$. Using Lemma 1.1 we are done because $\operatorname{dim} S / P_{2}$ appears in the formulas only when $P_{1} \subset P_{2}$, that is when $\operatorname{dim} \bar{S} / \bar{P}_{2}=\operatorname{dim} S / P_{2}$.

If $w \in Q_{2} \backslash\left(Q_{1} \cup Q_{3}\right)$ then

$$
\operatorname{depth}_{\bar{S}} \bar{S} /\left(L_{1} \cap L_{3}\right)=1+\operatorname{dim} \bar{S} /\left(\bar{P}_{1}+\bar{P}_{3}\right)=1+\operatorname{dim} S /\left(P_{1}+P_{3}\right) \geq \operatorname{depth}_{S} S / I
$$

by the same lemma, the only problem could appear when $P_{1} \subset P_{3}$, but in this case

$$
\operatorname{dim} \bar{S} /\left(\bar{P}_{1}+\bar{P}_{3}\right)=\operatorname{dim} S /\left(P_{1}+P_{3}\right)=\bar{S} / \bar{P}_{3}=\operatorname{dim} S / P_{3}
$$

and it follows

$$
\operatorname{depth}_{\bar{S}} \bar{S} /\left(L_{1} \cap L_{3}\right)=1+\operatorname{dim} \bar{S} /\left(\bar{P}_{1}+\bar{P}_{3}\right)>\operatorname{dim} S / P_{3} \geq \operatorname{depth}_{S} S / I
$$

If $w \in\left(Q_{1} \cap Q_{2}\right) \backslash Q_{3}$ then $\operatorname{depth}_{\bar{S}} \bar{S} / L_{3}=\operatorname{dim} S / P_{3} \geq \operatorname{depth}_{S} S / I$ by [1].

References

[1] W. Bruns and J. Herzog, Cohen-Macaulay rings Revised edition. Cambridge University Press (1998).
[2] J. Herzog, M. Vladoiu, X. Zheng, How to compute the Stanley depth of a monomial ideal, J. Algebra, 322 (2009), 3151-3169.
[3] J. Herzog, D. Popescu, M. Vladoiu, Stanley depth and size of a monomial ideal, arXiv:AC/1011.6462v1, 2010, to appear in Proceed. AMS.
[4] M. Ishaq, Values and bounds of the Stanley depth, to appear in Carpathian J. Math., arXiv:AC/1010.4692.
[5] G. Lyubeznik, On the Arithmetical Rank of Monomial ideals, J. Algebra 112, 86-89 (1988).
[6] A. Popescu, Special Stanley Decompositions, Bull. Math. Soc. Sc. Math. Roumanie, 53(101), no 4 (2010), arXiv:AC/1008.3680.
[7] D. Popescu, An inequality between depth and Stanley depth, Bull. Math. Soc. Sc. Math. Roumanie 52(100), (2009), 377-382, arXiv:AC/0905.4597v2.
[8] D. Popescu, Stanley conjecture on intersections of four monomial prime ideals, arXiv.AC/1009.5646.
[9] D. Popescu, Bounds of Stanley depth, An. St. Univ. Ovidius. Constanta, 19(2),(2011), 187-194.
[10] D. Popescu, I. Qureshi, Computing the Stanley depth, J. Algebra, 323 (2010), 2943-2959.
[11] R. P. Stanley, Linear Diophantine equations and local cohomology, Invent. Math. 68 (1982) 175-193.

Received: 16.07.2011, Accepted: 27.12.2011.
Faculty of Mathematics and Computer Sciences, University of Bucharest, Str. Academiei 14, Bucharest, Romania, E-mail: andrei.zarojanu@yahoo.com

