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Stanley Conjecture on intersection of three monomial primary ideals
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Abstract

We show that the Stanley’s Conjecture holds for an intersection of three monomial primary
ideals of a polynomial algebra S over a field.
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Introduction

Let K be a field and S = K|z, ..., z,] be the polynomial ring over K in n variables. Let I C S be a
monomial ideal of S, u € T a monomial and uK|[Z], Z C {1, ..., 2, } the linear K-subspace of I of all
elements uf, f € K[Z]. A presentation of I as a finite direct sum of spaces D : I = @]_, u; K[Z;]
is called a Stanley decomposition of I. Set sdepth(D) = min{|Z;| : 4 =1,...,r} and

sdepth I := max{sdepth (D) : D is a Stanley decomposition of I}.

The Stanley’s Conjecture [11] says that sdepth I > depth I. This is proved if either I is an
intersection of four monomial prime ideals by [6, Theorem 2.6] and [8, Theorem 4.2], or I is the
intersection of two monomial irreducible ideals by [10, Theorem 5.6], or a square free monomial
ideal of K[z1,...,x5] by [7] (a short exposition on this subject is given in [9]). It is the purpose of
our paper to show that the Stanley’s Conjecture holds for intersections of three monomial primary
ideals (see Theorem 2.2).

1 Computing depth

Let I C S be a monomial ideal and I = ();_; @; an irredundant primary decompostion of I, where
the @; are monomial primary ideals. Set P; = /Q;. According to Lyubeznik [5] size I is the
number v + (n — h) — 1, where h = height ijl @; and v is the minimum number ¢ such that
there exist 1 < j; < ... < jy < s with

In [5] it shows that depthg I > 1+ size .
In the study of the Stanley’s Conjecture, we may always assume that h = n, that is Y ;_; P, =
m =: (x1,...,2,), because each free variable on I increases depth and sdepth with 1.
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3
Lemma 1.1. Let I C S be a monomial ideal and I = ﬂ Q; an irredundant primary decomposition

of I, where each Q; is P; - primary. Suppose that P; 7é m for all i € [3]. Then

(a) If Q1 C Q2+ Q3 and Py ¢ P; fori= 2,3, then
depthg S/I =1+ min{dim S/(P; + P,),dim S/(P; + Ps)}.

(b)) If Q1 C Q2+ Q3 and Py C Py,P; ¢ Ps, then
depthg S/I = min{dim S/ P,,1 + dim S/(P; + Ps)}.

(c) If Q1 C Q2+ Q3 and Py C P; for i = 2,3 then
depthg S/I = min{dim S/ P, dim S/ Ps}.

3
(d) IfQ; ¢ >  Qj, for all i then depthg S/I =1 if and only if sizeI = 1.
J=1, j#i

3
(e) IfQi & >,  Qy, for all i then depthg S/I =2 if and only if size ] = 2.
j=1, j#i

Proof: As Assg S/I = {Py, P2, P3} we get depthg S/T > 0 by assumptions. We have the following
exact sequences

1.
0%§~> 5 53] S %iﬁo
I Q1NQ2  Q1NQs @
2.
Oﬁiﬁi@iei—m
QiNQ2 Q1 Q2 Q1+Q2 ’
3.

- = 5 i@i S -0
QiNQs Q1 Qs Qi +Qs '

Apply Depth Lemma in (2) and (3 ( ). If Py is not properly contained in P, or P3 then depth a0, m 0; =
1+ depthQ Ewop and depthQ 2o, = 1+ depths ToTETapy +Q If P, C P2 then depthg Qsz >
depths 5 = = dim 1§2 But depthg ToTaTe mQ < dlm , that is depthg QmQ = dim 1‘3 Similarly,
depthg ﬁ = dim 2 7 if P1 C Ps.

The statements (a),(b), (c) follow if we show that

depthg S/I = min{depthg depthg }.

S S
Qi1NQy’ Q1NQs
If depthg % > min{depthg ﬁ, depthg &- ﬁQ } then by Depth Lemma applied in (1) we get
the above equality. If depthg & = min{depthg o0, mQ ,depthg a0 m } then we get similarly
depthg S/I > depthg S/Q1 = depthg S/Pi. As Py € AssS/I then depthSS/I < dim S/P, =
depthg S/Q1. Thus depthg S/I = depthg %, which is enough.

(d) If depthg S/I =1 then 2 = depthg > 1+ sizel, that is 1 > sizel > 0. But sizel # 0
because the primary decomposition is irredundant. Conversely, if size] = 1 then v = 2 and we
may assume that Po + P3 = P + P, + P3; = m. We consider the exact sequences

4)
| 0—>§—>L@£—>#—>0
I QiNQ2 Q3 Q3+ (Qi1NQ2) ’
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(5)
S S 8 S

05— — P = ———— —
QiNQ2 Q1 Q2 Q1+Q2
From (5) we have depthg ﬁ = 14depthg ﬁ > 1 by Depth Lemma. Note that depthg S/Q3 >

1 and depths m = depths m = 0 because vV QQ +Q3 = m, and Ql gZ
Q2 + Q3. Thus Depth Lemma applied in (4) gives depthg S/I = 1.
(e) If depthg S/T = 2, then depthg I = 3 > 1 + sizeI. But size I < 1 was the subject of (d),

0.

3
so size I = 2. Conversely, suppose that sizel = 2, that isv =3. Then P, ¢ > P, for all i
=1, i
and by [4, Proposition 2.1] we get depthg I < 3. As depthgI > 1+ size I we get depthg S/I = 2.
O

2 Stanley’s depth

In this section we introduce a new way of splitting, inspired from [4], that helps us to prove the

3
Stanley Conjecture when I = (] Q; is an irredundant primary decomposition of I.
i=1
Theorem 2.1. Let I be a monomial ideal and I = Q1 N Q2 an irredundant primary decomposition
of I , where Q; is P; primary. Then the Stanley conjecture holds for I.

Proof: As usual we my suppose that P; + P, = m. Also we may suppose that P; # m for all 4,
because otherwise depthg I = 1 and there exists nothing to show. Applying Depth Lemma in the
above exact sequence (2) we get depthg S/I = 1, so depthg I = 2 = 1 +sizeI. By [3, Theorem
3.1] we have sdepthg I > depthg I. O

3
Theorem 2.2. Let I be a monomial ideal and I = (| Q; an irredundant primary decomposition

i=1
of I , where Q; is P; primary. Then the Stanley conjecture holds for I.

3

Proof: We may suppose as above P, + P, + Py =mand P, #mforalli If Q, ¢ >  Qj,
J=1, j#i
for all 7 € [3] we have according to Lemma 1.1 minimal depth that is depthl = 1 + size I. Then
by [3, Theorem 3.1] we get sdepthg I > depthg I. Now suppose that Q1 C Q2 + Q3. It follows
that sizel = 1. If P, + P, = m or P; + P3 = m then dim ﬁ =0 or dim ﬁ = 0 therefore
depthg S/I =1 that is depthg I = 2. Then again we get sdepthg I > 1+ size I = 2 = depthg I by
by [3, Theorem 3.1].

Otherwise Py + Py # m # Py + P;. Let P; = (21,...,2,) and Ps = (Teg1,...,2t), 2 < r <
n—1,e+1<r. Ifr=1then Q1 C Q2 or Q1 C Q3 because @1 C Q2 + Q3. This is false since the
primary decomposition is irredundant. If r = n then P; = m, which is not possible. If e +1 > r
then Q1 C @2, also a contradiction. We will prove this case by induction on n. If n = 3, then
sdepthg I > 1+ sizel = 2 > depthg I, because [ is not principal. Assume now n > 3. We set
S = K[z1,...;zr), S i= K[T1, e, e, Tyt 1, oy Tp) and J3 = @ w((I : w) N S), where w runs in the

finite set of monomials of K[zet1,..., 2] \ Q3.

We claim that I = Q1 NQ2N(Q3NS")S P J3. It is enough to see the inclusion ” C 7. Let a € T
be a monomial, then a = uv, where u € S and v € K[z, ..., ;] are monomials. If v & Q3 then
ue(Il:v)NS,soac Js. IfveQsthenac (QsnNS')S. Asa €I we get a € Q1 NQs therefore a
€Q1NQ2N(Q3NS8")S. The above sum is direct. Indeed, let a = uv € Q1 N Q2N (Q3NS)SN J;
be as above. Then v € Q3 because a € J3. But v must be in (Q3 N S’)S. Contradiction!
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The ideal I' := @1 N Q2N (Q3NS)S C P, + P, # m and so is an extension of an ideal
from less than n-variables and we may apply the induction hypothesis for I’, that is sdepthg I’ >
depthg I’. Since sdepthg I > min{sdepthg I’, {sdepthg((I : w) N S)},} it remains to show that
depthg I’ > depthg I and depthg((I : w)N.S) > depthg I, applying again the induction hypothesis
since S has less than n-variables. The first inequality follows because dim S/(P3NS’)S > dim S/ Ps,
dim S/(P; + (P3N S')S) > dim S/ Py + P; using Lemma 1.1 (a), (b), (c).

For the second inequality note that for w ¢ Q1 U Q2 U Q3 we have (Q; : w) primary and so

L; = (Q; : w)Nn S is P, := P, N S-primary too. We have dimS/P; = dimS/P; for i = 1,3
because (Te41,...,2,) C Pr N Ps. Thus dim S/(P; + P;) = dim S/(P; + P;) for all i = 2, 3. Using
Lemma 1.1 we are done because dim .S/P, appears in the formulas only when P; C Py, that is
when dim S/ P, = dim S/ P;.

If we Qs \ (Ql U Q3) then

depthg S/(Ly N L3) =1+ dim S/(P, + Ps) = 1 +dim S/(P;, + Ps) > depthg S/I
by the same lemma, the only problem could appear when P; C Ps, but in this case
dim S/(P, + P;) = dim S/(P, + P;) = S/P; = dim S/ P3
and it follows
depthg S/(L1 N L3) =1+ dim S/(P, + P3) > dim S/P3 > depthg S/I.
If w € (Q1 NQ2) \ Q3 then depthg S/L3 = dim S/P; > depthg S/I by [1]. O
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