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Abstract

Let G be a group, A and B be two sets of n-tuples of elements of G with |A| = m1

and |B| = m2, respectively. G is said to have the (m1,m2, n)-permutational property with
respect to A and B if for all elements g1, g2, · · · , gn ∈ G, there exist a1, a2, · · · , an ∈ A,
b1, b2, · · · , bn ∈ B and a nonidentity permutation σ ∈ Symn such that

a1g1b1a2g2b2 · · · angnbn = aσ(1)gσ(1)bσ(1)aσ(2)gσ(2)bσ(2) · · · aσ(n)gσ(n)bσ(n).

We show that if G is (m1,m2, n)-permutational, then G has a characteristic subgroup N
such that |G : N | and |N ′| are both finite and have sizes bounded by functions of m1,m2

and n. As a consequence, if ∆ is the finite conjugate center of the group, then |G : ∆| and
∆′ are both finite with |G : ∆| bounded by a function of m1,m2 and n.
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1 Introduction

Throughout the paper, we let G be a multiplicative group. For g ∈ G, denote by CG(g) the
centralizer of g in G, i.e., the subgroup consisting of all elements x such that xg = gx. Define
the finite conjugate center of G as

∆ = ∆(G) = {g ∈ G : |G : CG(g)| <∞},

which is a characteristic subgroup of G. The n-permutational property Pn is introduced in [8].
Here G is said to have Pn if for all g1, g2, · · · , gn ∈ G, there exists a nonidentity permutation
σ ∈ Symn such that

g1g2 · · · gn = gσ(1)gσ(2) · · · gσ(n).

Symn = Sym{1, 2, · · · , n} is the symmetric group of order n. Clearly, P2 is commutativity. It
is shown [8] that if G has Pn, then |G : ∆| is finite and has size bounded by a function of n.
In addition, the commutator subgroup ∆′ of ∆ is finite, but its order can not be bounded by a
function of n.
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Groups with n-permutational property have been extensively studied and various gener-
alizations of Pn have been considered in the literature; see e.g. [4, 5, 10, 13, 11, 7]. The
n-rewritable property Qn, for example, is introduced in [4]. A group G is said to have Qn if for
all g1, g2, · · · , gn ∈ G, there exist two distinct permutations σ, τ ∈ Symn such that

gσ(1)gσ(2) · · · gσ(n) = gτ(1)gτ(2) · · · gτ(n).

Recently, the permutational property has been revisited [9, 1, 6, 14, 2] and an intriguing ge-
neralization of Pn is offered in [9]. For positive integers m and n, let A be a set of n-tuples
of elements of G with |A| = m. G is said to be (m,n)-permutational with respect to A if for
all elements g1, g2, · · · , gn ∈ G, there exist a1, a2, · · · , an ∈ A and a nonidentity permutation
σ ∈ Symn such that

g1a1g2a2 · · · gnan = gσ(1)aσ(1)gσ(2)aσ(2) · · · gσ(n)aσ(n).

Drawing on the techniques from [13], it is shown [9, Proposition 4.1] that if G is (m,n)-
permutational with respect to A, then G has a characteristic subgroup N such that |G : N |
and |N ′| are finite and both have sizes bounded by functions of m and n (Unfortunately, there
is a typo in the statement of [9, Proposition 4.1 (ii)]).

In this paper, we move a further step beyond (m,n)-permutation by considering another
interesting generalization of Pn: (m1,m2, n)-permutational property. We have the following
definition.

Definition 1. Let m1,m2, n be positive integers and suppose that A and B are two sets of
n-tuples of elements of G with |A| = m1 and |B| = m2, respectively. A group G is said to
be (m1,m2, n)-permutational with respect to A and B if for every n-tuple (g1, g2, · · · , gn) of
elements of G there exist n-tuples (a1, a2, · · · , an) ∈ A, (b1, b2, · · · , bn) ∈ B and a nonidentity
permutation σ ∈ Symn such that

a1g1b1a2g2b2 · · · angnbn = aσ(1)gσ(1)bσ(1)aσ(2)gσ(2)bσ(2) · · · aσ(n)gσ(n)bσ(n).

We show that the techniques developed in [13, 9] can yield similar results for (m1,m2, n)-

permutational groups.
The rest of the paper is organized as follows. In Section 2, we present the main results

for (m1,m2, n)-permutational groups. In Section 3, we provide the proofs. Finally, we give a
further generalization on the (m1,m2, n)-permutational property in Section 4.

2 Main results

We first recall some notations introduced in [13]. Suppose that G is a group and T is a subset
of G. T is said to have finite index in G if there are g1, g2, · · · , gn ∈ G such that

G = Tg1 ∪ Tg2 ∪ · · · ∪ Tgn

for some finite n. The index |G : T | is defined to be the minimum such integer n. It is clear
that if T is a subgroup of G, this definition agrees with the ordinary index of a subgroup. For
an integer k, define

∆k = ∆k(G) = {g ∈ G : |G : CG(g)| ≤ k}.
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The set ∆k is a normal subset of G and ∆k ·∆l ⊆ ∆kl for all integers k and l. Our main result
establishes as follows.

Theorem 1. Let G be an (m1,m2, n)-permutational group with respect to A and B. Set
k = m1 ·m2 · n!. Then we have

(i) |G : ∆k| ≤ k · (k + 1)!, and

(ii) G has a characteristic subgroup N with |G : N | ≤ k · (k + 1)!, and with |N ′| finite and
bounded by a function of m1, m2 and n.

Recall that ∆ is the finite conjugate center of G. As a consequence, we have the following
corollary.

Corollary 1. Let G be an (m1,m2, n)-permutational group with respect to A and B. Set
k = m1 ·m2 · n!. Then |G : ∆| ≤ k · (k + 1)! and |∆′| is finite.

A group G is said to be perfect if G = G′. Following [9], we say G is normally perfect if
all normal subgroups of G are perfect. Clearly, any nonabelian simple group is perfect. The
following corollary can be viewed as a generalization of [5, Theorem 1] and [9, Corollary 2.8].

Corollary 2. Let G be a normally perfect group satisfying the (m1,m2, n)-permutational
property. Then G has finite order bounded by a function of m1,m2 and n.

3 Proofs

In this section, we provide the proofs of the aforementioned results. We will capitalize on the
techniques in [13, 9] and the following several lemmas are useful.

Lemma 1. [13] Let S = ∪ki=1Higi be a finite union of cosets of the subgroups Hi of G
and assume that S 6= G. Then there exist x1, x2, · · · , xl ∈ G, with l = (k + 1)! such that
∩li=1Sxi = ∅. In particular, if T is a subset of G with G = S ∪ T , then |G : T | ≤ (k + 1)!

Lemma 2. [13, 12] Let S = ∪ki=1Higi be a finite union of cosets of subgroups Hi of G. If
|G : Hi| > k for every 1 ≤ i ≤ k, then S 6= G.

Lemma 3. [9] Let k and l be positive integers and assume that |G : ∆k| ≤ l. If N is the
subgroup of G generated by ∆k, then N is a characteristic subgroup of G with |G : N | ≤ l, and
with |N ′| finite and bounded by a function of k and l.

Following [13], we define a linear monomial in the noncommuting variables ξ1, ξ2, · · · , xn to
be a monic monomial µ of the form ξi1ξi2 · · · ξit with all ij distinct and t = degµ. We have
µ = 1 if and only if degµ = 0. Furthermore, it is straightforward to check that (n + 1)! is a
(quite loose) upper bound of the number of linear monomials in n variables.
Proof of Theorem 1. We assume by way of contradiction that |G : ∆k| > k · (k + 1)!. Let
M1 = ∅ and, for j ≥ 2, let Mj denote the set of all linear monomials in the noncommuting
variables ξj , ξj+1, · · · , ξn. According to the above comments we have |Mj | ≤ n!.

In what follows, we first show by induction on j = 1, 2, · · · , n that, for any gj , gj+1, · · · , gn
∈ G, there exist (a1, a2, · · · , an) ∈ A and (b1, b2, · · · , bn) ∈ B such that either

a1g1b1a2g2b2 · · · angnbn = aσ(1)gσ(1)bσ(1)aσ(2)gσ(2)bσ(2) · · · aσ(n)gσ(n)bσ(n)
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for some 1 6= σ ∈ Sym{j, j + 1, · · · , n} or µ(ajgjbj , aj+1gj+1bj+1, · · · , angnbn) ∈ ∆k for some
monomial µ ∈Mj .

Since G is an (m1,m2, n)-permutational group with respect to A and B, the result for j = 1
holds by definition. Suppose the result holds for some j < n. Fix gj+1, gj+2, · · · , gn ∈ G and
let g play the role of the jth variable. Let µ ∈Mj+1. If µ(aj+1gj+1bj+1, · · · , angnbn) ∈ ∆k for
some (a1, a2, · · · , an) ∈ A and (b1, b2, · · · , bn) ∈ B, then we are done. Hence, we may assume
that µ(aj+1gj+1bj+1, · · · , angnbn) 6∈ ∆k for every µ ∈Mj+1, for every (a1, a2, · · · , an) ∈ A and
(b1, b2, · · · , bn) ∈ B.

Next, for each 1 6= σ ∈ Sym{j, j+1, · · · , n}, α = (a1, a2, · · · , an) ∈ A and β = (b1, b2, · · · , bn)
∈ B, set

Sσ,α,β = {g = gj ∈ G : ajgjbjaj+1gj+1bj+1 · · · angnbn = aσ(j)gσ(j)bσ(j)

· aσ(j+1)gσ(j+1)bσ(j+1) · · · aσ(n)gσ(n)bσ(n)}.

If Sσ,α,β 6= ∅ and σ fixes j, then we can cancel the beginning ajgjbj factors and conclude that

aj+1gj+1bj+1 · · · angnbn = aσ(j+1)gσ(j+1)bσ(j+1) · · · aσ(n)gσ(n)bσ(n)

for some 1 6= σ ∈ Sym{j+ 1, · · · , n}. Hence, we can assume that if Sσ,α,β 6= ∅, then σ does not
fix j.

Now suppose that Sσ,α,β 6= ∅ and let g ∈ Sσ,α,β so that

ajgbjaj+1gj+1bj+1 · · · angnbn = aσ(j)gσ(j)bσ(j)aσ(j+1)gσ(j+1)bσ(j+1) · · · aσ(n)gσ(n)bσ(n).

If we set ρ = aj+1gj+1bj+1 · · · angnbn, then we obtain

ρ = aj+1gj+1bj+1 · · · angnbn
= (ajgbj)

−1(aσ(j)gσ(j)bσ(j)aσ(j+1)gσ(j+1)bσ(j+1) · · · )(ajgbj) · · · aσ(n)gσ(n)bσ(n)
= (ajgbj)

−1λσ,α,β(ajgbj)λ̄σ,α,β ,

where λσ,α,β and λ̄σ,α,β depend only on σ, α and β. Indeed, since σ(j) 6= j, λσ,α,β is a linear
monomial in Mj+1 evaluated at aj+1gj+1bj+1, · · · , angnbn, and therefore, we have λσ,α,β 6∈ ∆k

by assumption. Note that the above equation is equivalent to

g−1a−1j λσ,α,βajg = bjρ(λ̄σ,α,β)−1b−1j .

It follows that Sσ,α,β consists of precisely one right coset of CG(a−1j λσ,α,βaj), say Sσ,α,β =

CG(a−1j λσ,α,βaj)hσ,α,β . Write

S = ∪σ,α,βSσ,α,β = ∪σ,α,βCG(a−1j λσ,α,βaj)hσ,α,β .

Since λσ,α,β 6∈ ∆k, it implies that a−1j λσ,α,βaj 6∈ ∆k and |G : CG(a−1j λσ,α,βaj)| > k. Since there
are at most m1 ·m2 · n! = k cosets in the above union for S, we conclude from Lemma 2 that
S 6= G. Consequently, by virtue of Lemma 1, we obtain that G\S has index ≤ (k + 1)! in G.

Finally, set Mj\Mj+1 = Fj and let µ ∈ Fj so that µ involves the variable ξj . Thus we can
write µ = µ′ξjµ

′′, where µ′ and µ′′ are linear monomials in the variables ξj+1, ξj+2, · · · , ξn. If
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α = (a1, a2, · · · , an) ∈ A and β = (b1, b2, · · · , bn) ∈ B, then µ(ajgjbj , · · · , angnbn) ∈ ∆k if and
only if

ajgbj = ajgjbj ∈ µ′(aj+1gj+1bj+1, · · · , angnbn)−1∆kµ
′′(aj+1gj+1bj+1, · · · , angnbn)−1

= ∆kgµ,α,β ,

since ∆k is a normal subset of G. In particular, this occurs if and only if g ∈ ∆ka
−1
j gµ,α,βb

−1
j ,

a fixed right translate of ∆k. Hence, if T = ∪µ,α,β∆ka
−1
j gµ,α,βb

−1
j , where the union is over all

µ ∈ Fj , α ∈ A and β ∈ B, then the inductive assumption implies that G = S ∪ T . In fact,
suppose x ∈ G. If there exist σ, α and β with

ajgjbj · · · angnbn = aσ(j)gσ(j)bσ(j) · · · aσ(n)gσ(n)bσ(n)

and gj = x, then x ∈ Sσ,α,β ⊆ S. On the other hand, if there exist µ, α and β with

µ(ajgjbj , · · · , angnbn) ∈ ∆k

and gj = x, then x ∈ ∆ka
−1
j gµ,α,βb

−1
j ⊆ T .

It follows that T ⊇ G\S, so

|G : T | ≤ |G : G\S| ≤ (k + 1)!.

But T is a union of at most |A| · |B| · |Fj | ≤ m1 ·m2 · |Mj | ≤ m1 ·m2 · n! = k right translates of
∆k, so we see that

|G : ∆k| ≤ k · |G : T | ≤ k · (k + 1)!

a contradiction by assumption. Hence, the inductive statement is proved.
In particular, the inductive result holds when j = n. Here, there are no nonidentity permu-

tations in Sym{n}, and Mn = {ξn}. We conclude that, for each g ∈ G, there exist α ∈ A
and β ∈ B with angbn ∈ ∆k and hence with g ∈ ∆ka

−1
n b−1n . In other words, we have

G = ∪α,β∆ka
−1
n b−1n , where an and bn are the nth entries of α and β, respectively. Thus,

|G : ∆k| ≤ m1 ·m2 ≤ k. Hence, the assumption |G : ∆k| > k · (k + 1)! is false, and part (i) of
the theorem is proved.

As for part (ii), set l = k · (k+ 1)!, and let N be the characteristic subgroup of G generated
by ∆k. Since |G : ∆k| ≤ l, Lemma 3 readily yields the result. 2

To prove Corollary 1, we need the following lemma.

Lemma 4. [13, 16] Let G be a group and let k be a positive integer.

(i) If |G′| ≤ k, then G = ∆k(G).

(ii) If G = ∆k(G), then |G′| ≤ (k4)k
4

.

Proof of Corollary 1. It follows from Theorem 1 and the fact ∆k ⊆ ∆ that

|G : ∆| ≤ |G : ∆k| ≤ k · (k + 1)!.

Note that ∆ is a subgroup of G and then we have

|∆ : ∆k| ≤ |G : ∆k| ≤ k · (k + 1)!.
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Thus, ∆ = ∪i∆kgi is a finite union of translates of ∆k. Since every gi ∈ ∆ has only finitely many
conjugates in G, there exists an integer l with gi ∈ ∆l for all i. Consequently, ∆ = ∆k∆l ⊆ ∆kl

and thus ∆ = ∆kl. Using Lemma 4 (ii), we easily obtain that ∆′, the commutator subgroup of
∆, is finite. 2

Proof of Corollary 2. Since G is (m1,m2, n)-permutational with respect toA and B, Theorem
1 implies that G has a normal subgroup N with both |G : N | and |N ′| bounded by functions of
m1, m2 and n. Hence, we have N = N ′ since G is normally perfect. Thus |G| = |G : N | · |N ′|
is bounded by a function of m1, m2 and n. 2

4 Discussion

Although we have stated Theorem 1 only for two sets A and B of n-tuple of elements of G, the
techniques generalize to the case of an arbitrarily large but bounded number of such sets. Here,
we put forward a further generalization of permutational property and list the results without
proof.

Definition 2. Let c, d, m
(1)
1 , · · · ,m(c)

1 and m
(1)
2 , · · · ,m(d)

2 be positive integers. Suppose

that A(1), · · · ,A(c) and B(1), · · · ,B(d) are sets of n-tuples of elements of G with |A(i)| = m
(i)
1

for 1 ≤ i ≤ c and |B(j)| = m
(j)
2 for 1 ≤ j ≤ d, respectively. A group G is said to be(

{m(i)
1 }ci=1, {m

(j)
2 }dj=1, n

)
-permutational with respect to {A(i)}ci=1 and {B(j)}dj=1 if for every

n-tuple (g1, g2, · · · , gn) of elements of G there exist n-tuples (a
(i)
1 , a

(i)
2 , · · · , a(i)n ) ∈ A(i) for

1 ≤ i ≤ c, (b
(j)
1 , b

(j)
2 , · · · , b(j)n ) ∈ B(j) for 1 ≤ j ≤ d and a nonidentity permutation σ ∈ Symn

such that

a
(1)
1 · · · a

(c)
1 g1b

(1)
1 · · · b

(d)
1 · · · a(1)n · · · a(c)n gnb

(1)
n · · · b(d)n

= a
(1)
σ(1) · · · a

(c)
σ(1)gσ(1)b

(1)
σ(1) · · · b

(d)
σ(1) · · · a

(1)
σ(n) · · · a

(c)
σ(n)gσ(n)b

(1)
σ(n) · · · b

(d)
σ(n).

Theorem 2. Let G be an
(
{m(i)

1 }ci=1, {m
(j)
2 }dj=1, n

)
-permutational group with respect to

{A(i)}ci=1 and {B(j)}dj=1. Set k = m
(1)
1 · · ·m

(c)
1 ·m

(1)
2 · · ·m

(d)
2 · n!. Then we have

(i) |G : ∆k| ≤ k · (k + 1)!, and

(ii) G has a characteristic subgroup N with |G : N | ≤ k · (k + 1)!, and with |N ′| finite and

bounded by a function of {m(i)
1 }ci=1, {m(j)

2 }dj=1 and n.

Corollary 3. Let G be an
(
{m(i)

1 }ci=1, {m
(j)
2 }dj=1, n

)
-permutational group with respect to

{A(i)}ci=1 and {B(j)}dj=1. Set k = m
(1)
1 · · ·m

(c)
1 ·m

(1)
2 · · ·m

(d)
2 · n!. Then |G : ∆| ≤ k · (k + 1)!

and |∆′| is finite.

Corollary 4. Let G be a normally perfect group satisfying the
(
{m(i)

1 }ci=1, {m
(j)
2 }dj=1, n

)
-

permutational property. Then G has finite order bounded by a function of {m(i)
1 }ci=1, {m(j)

2 }dj=1

and n.
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It is obvious that any finite group of order n has permutational property Pn. Thus, the
automorphism group Aut(G) for a finite graph G trivially has P|Aut(G)|. The same thing

is true for
(
{m(i)

1 }ci=1, {m
(j)
2 }dj=1, n

)
-permutational property if we carefully choose the sets

{A(i)}ci=1 and {B(j)}dj=1. An interesting question would be to ask the minimum non-trivial n

of
(
{m(i)

1 }ci=1, {m
(j)
2 }dj=1, n

)
-permutational property satisfied by the group Aut(G). What if it

is transitive (c.f. [3, 15])?
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