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Groups with (mq, ms, n)-permutational property

by
YILUN SHANG

Abstract

Let G be a group, A and B be two sets of n-tuples of elements of G with |A| = my
and |B| = ma, respectively. G is said to have the (m1, m2, n)-permutational property with
respect to A and B if for all elements g1,92,--- ,gn € G, there exist a1,a2,- - ,a, € A,
bi,b2, -+ ,bn € B and a nonidentity permutation o € Sym,, such that

a1g1b1a2gabs - - - Angnbn = s(1)90(1)b0 (1) (2) 9o (2)0o(2) * * * Co(n)Go(n)bo(n)-

We show that if G is (m1, ma,n)-permutational, then G has a characteristic subgroup N
such that |G : N| and |N'| are both finite and have sizes bounded by functions of m1, ms
and n. As a consequence, if A is the finite conjugate center of the group, then |G : A| and
A’ are both finite with |G : A| bounded by a function of mi, m2 and n.

Key Words: Group, permutational property, finite conjugate center.
2010 Mathematics Subject Classification: Primary 20E25; Secondary 20B30.

1 Introduction

Throughout the paper, we let G be a multiplicative group. For g € G, denote by Cg(g) the
centralizer of ¢ in G, i.e., the subgroup consisting of all elements x such that g = gx. Define
the finite conjugate center of G as

A=AG) ={geG:|G: Calg)l < o},

which is a characteristic subgroup of G. The n-permutational property P, is introduced in [8].
Here G is said to have P, if for all g1,92, -+ ,gn € G, there exists a nonidentity permutation
o € Sym,, such that

9192 gn = 9o (1)90(2) """ Yo (n)-

Sym,, = Sym{1,2,---  n} is the symmetric group of order n. Clearly, P; is commutativity. It
is shown [8] that if G has P,, then |G : A| is finite and has size bounded by a function of n.
In addition, the commutator subgroup A’ of A is finite, but its order can not be bounded by a
function of n.
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Groups with n-permutational property have been extensively studied and various gener-
alizations of P, have been considered in the literature; see e.g. [4, 5, 10, 13, 11, 7]. The
n-rewritable property @Q,,, for example, is introduced in [4]. A group G is said to have @, if for
all g1,92, -+ ,gn € G, there exist two distinct permutations o, 7 € Sym,, such that

9o(1)95(2) """ Yo(n) = 9r(1)97(2) * " " 97 (n)-

Recently, the permutational property has been revisited [9, 1, 6, 14, 2] and an intriguing ge-
neralization of P, is offered in [9]. For positive integers m and n, let A be a set of n-tuples
of elements of G with |A| = m. G is said to be (m,n)-permutational with respect to A if for
all elements g1, g2, -+ ,gn € G, there exist ay,as, - ,a, € A and a nonidentity permutation
o € Sym,, such that

g1a1g920a2 - - Gnln = Jo(1)0o(1)9o(2)Cc(2) " " Yo (n)Ao(n)-

Drawing on the techniques from [13], it is shown [9, Proposition 4.1] that if G is (m,n)-
permutational with respect to A, then G has a characteristic subgroup N such that |G : N|
and |N'| are finite and both have sizes bounded by functions of m and n (Unfortunately, there
is a typo in the statement of [9, Proposition 4.1 (ii)]).

In this paper, we move a further step beyond (m,n)-permutation by considering another
interesting generalization of P,: (mi,m2,n)-permutational property. We have the following
definition.

Definition 1.  Let my,ms,n be positive integers and suppose that A and B are two sets of
n-tuples of elements of G with |A| = my and |B| = ma, respectively. A group G is said to
be (mq, ma,n)-permutational with respect to A and B if for every n-tuple (g1,92, - ,9n) of
elements of G there exist n-tuples (a1, a2, ,an) € A, (b1,ba,--+ ,b,) € B and a nonidentity
permutation o € Sym,, such that

a191b1a2gab2 - nGnbn = A5(1)90(1)00(1) 0o (2) 9o (2)bo(2) * * * Ao (n) o (n)bo(n)-

We show that the techniques developed in [13, 9] can yield similar results for (mq,ma,n)-

permutational groups.

The rest of the paper is organized as follows. In Section 2, we present the main results
for (my, ma, n)-permutational groups. In Section 3, we provide the proofs. Finally, we give a
further generalization on the (mq,ms, n)-permutational property in Section 4.

2 Main results

We first recall some notations introduced in [13]. Suppose that G is a group and T is a subset
of G. T is said to have finite index in G if there are g1,¢ga, - , g, € G such that

GZT91UT92U~~~UTgn

for some finite n. The index |G : T is defined to be the minimum such integer n. It is clear
that if T is a subgroup of G, this definition agrees with the ordinary index of a subgroup. For
an integer k, define

A, =Ar(G)={9€G:|G:Cs(g)| <k}
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The set Ay, is a normal subset of G and Ay - A; C Ay, for all integers k and [. Our main result
establishes as follows.

Theorem 1. Let G be an (mq,mg,n)-permutational group with respect to A and B. Set
k =mq-mag-nl. Then we have

(i) |G : Ag| <k-(k+1)!, and

(ii) G has a characteristic subgroup N with |G : N| < k- (k + 1)!, and with |N'| finite and
bounded by a function of m1, ms and n.

Recall that A is the finite conjugate center of G. As a consequence, we have the following
corollary.

Corollary 1. Let G be an (my, ma,n)-permutational group with respect to A and B. Set
k=mq-ma-nl. Then |G : Al <k-(k+1)! and |A'| is finite.

A group G is said to be perfect if G = G’. Following [9], we say G is normally perfect if
all normal subgroups of G are perfect. Clearly, any nonabelian simple group is perfect. The
following corollary can be viewed as a generalization of [5, Theorem 1] and [9, Corollary 2.8].

Corollary 2. Let G be a normally perfect group satisfying the (mq,ma,n)-permutational
property. Then G has finite order bounded by a function of my, mo and n.

3 Proofs

In this section, we provide the proofs of the aforementioned results. We will capitalize on the
techniques in [13, 9] and the following several lemmas are useful.

Lemma 1. [13] Let S = U7, H;g; be a finite union of cosets of the subgroups H; of G
and assume that S # G. Then there exist x1,x2,--- ,2; € G, with | = (k + 1)! such that
Ni_,Sz; = 0. In particular, if T is a subset of G with G = SUT, then |G : T| < (k + 1)!
Lemma 2. [13, 12] Let S = UY_ | H;g; be a finite union of cosets of subgroups H; of G. If
|G : H;| >k for every 1 <i <k, then S # G.

Lemma 3. [9] Let k and | be positive integers and assume that |G : Ag| < 1. If N is the
subgroup of G generated by Ay, then N is a characteristic subgroup of G with |G : N| <, and
with |N'| finite and bounded by a function of k and I.

Following [13], we define a linear monomial in the noncommuting variables &, &a, -+ , 2, to
be a monic monomial p of the form &; &;, ---&;, with all 4; distinct and ¢t = degpu. We have
w = 1 if and only if degpr = 0. Furthermore, it is straightforward to check that (n + 1)!is a
(quite loose) upper bound of the number of linear monomials in n variables.

Proof of Theorem 1. We assume by way of contradiction that |G : Ag| > k- (k+ 1)!. Let
M; = 0 and, for j > 2, let M; denote the set of all linear monomials in the noncommuting
variables §;, &1, -+ ,&n. According to the above comments we have |M;| < nl.

In what follows, we first show by induction on j =1,2,--- ,n that, for any g;,gj+1, - -, gn
€ @, there exist (a1,a9, -+ ,a,) € A and (by,ba,- - ,b,) € B such that either

a191b1a292b2 * - - Angnbn = A5(1)90(1)06 (1) (2)95(2)00(2) * * * Co(n)Io (n) Vo (n)
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for some 1 # o € Sym{j,j+1,--- ,n} or p(a;g;bj,a;+19j41bj41, - , angnbn) € Ay for some
monomial € M;.

Since G is an (mq, mg, n)-permutational group with respect to A and B, the result for j =1
holds by definition. Suppose the result holds for some j < n. Fix gj+1,942, - ,9n € G and
let g play the role of the jth variable. Let p € Mj 1. If p(a;+19j41bj41, -, angnbn) € Ay for
some (ay,az, - ,a,) € A and (by,ba,--- ,b,) € B, then we are done. Hence, we may assume
that p(ajr19j410j41, -, angnbn) & Ay for every p € M;iq, for every (a1, az, -+ ,an) € A and
(b1,b2,++ ,byp) € B.

Next, for each 1 # o € Sym{j,j+1, - ,n},a = (a1,az2, -+ ,a,) € Aand 8 = (by,ba, -+ ,by)
€ B, set

Soop ={9=9; € G :a;95bja5119j+1bj11* ngnbn = a6 (j)90(j)bo(s)
$Uo(j+1) 9o (i+1)bo(j+1) o (n)9o(n)bo(n) }-

If S, 0,5 # 0 and o fixes j, then we can cancel the beginning a;g;b; factors and conclude that

4419541041+ Angnbn = Ao (j41)9o(j4+1) 0o (j+1)  * * Co(n)Jo(n) bo(n)
for some 1 # o € Sym{j+1,--- ,n}. Hence, we can assume that if S, o g # 0, then o does not
fix j.
Now suppose that S, 3 # 0 and let g € S, o 3 so that

;904195410541 - Angnbn = o ()90 (j)0o(j) Ao (j+1)90 (j+1) Vo (j+1) * ** Go(n) 9o (n) Do (n)-

If we set p = aj419j4+10j41 - - angnby, then we obtain

P = Gjt19j+1bj1 - angnby
= (a395) " (06(395()bo () o G+1) o (+1)bo(i+1) ) (@39D5) - A (m)Go(mbain)
= (ajgb;)) " Aoa5(a9b)) Ao 06,
where Ay o5 and Ay a6 depend only on o, o and 3. Indeed, since o(5) # j, As.a,5 is a linear

monomial in M1 evaluated at aj4+1gj410j41, - , @ngnbn, and therefore, we have Ay o g & Ak
by assumption. Note that the above equation is equivalent to

9705 Xo.0,059 = bjp(Aoap) 7105
It follows that S, . s consists of precisely one right coset of CG(ajfl/\U’aﬂaj), 4y Seap =
CG(aglAava,ﬁaj)ha,a,ﬁ. Write

S = Us,a,650.0,8 = Ur,a,sC6 (a5 Ao,a,605)haa,p-

Since Asa,8 & Ag, it implies that a; ' As.a,pa; & Ak and |G : Cg(a; ' Ag.a,pa;)| > k. Since there
are at most my - mo - n! = k cosets in the above union for S, we conclude from Lemma 2 that
S # @. Consequently, by virtue of Lemma 1, we obtain that G\S has index < (k+ 1)! in G.
Finally, set M;\M;41 = F; and let p € F; so that p involves the variable &;. Thus we can
write p = p'&; 1", where p/ and p' are linear monomials in the variables & 41,842, -+, &n. If
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a=(a1,az2, - ,a,) € Aand 8 = (b1,bs,--- ,by) € B, then u(a;gjb;, - ,angnbn) € Ay if and
only if

ajgb; = a;g;b; € 1 (aj 195410541, AnGnbn) AR (@5 4105410541, > AnGnbn) "

= Akg,u,a,ﬁa

since Ay, is a normal subset of G. In particular, this occurs if and only if g € Akaj_lgma,/gbj_l,

a fixed right translate of Ag. Hence, if T = UM,(X75Aka;1gu,a7@b;1, where the union is over all
u € Fj, oo € Aand f € B, then the inductive assumption implies that G = SUT. In fact,
suppose x € G. If there exist o, a and § with

a;jgjbj - Angnbn = Ao (§)9o(j)bo(j) "+ Ao(n) 9o (n)bo(n)
and g; = z, then x € S, o 3 € S. On the other hand, if there exist y, o and 8 with

p(ajgbs, -, angnbn) € Ay

and g; =z, then = € Akaj_lgma,ﬂbj—l CT.
It follows that T' 2 G\S, so

IG:T| <|G:G\S| < (k+ 1)\.

But T is a union of at most |A| - |B| - |F;| < mq-mg - |M;| < mq-mg-n! =k right translates of
Ag, so we see that
|G: Ak| <k-|G:T|<k-(k+1)!

a contradiction by assumption. Hence, the inductive statement is proved.

In particular, the inductive result holds when j = n. Here, there are no nonidentity permu-
tations in Sym{n}, and M, = {£,}. We conclude that, for each g € G, there exist a € A
and 3 € B with a,gb, € Ay and hence with g € Aga,'b,. In other words, we have
G = UayﬁAka:le;l, where a, and b, are the nth entries of o and S, respectively. Thus,
|G : Ag| < my-mg < k. Hence, the assumption |G : Ag| > k- (k + 1)! is false, and part (i) of
the theorem is proved.

As for part (ii), set I = k- (k+ 1)!, and let N be the characteristic subgroup of G generated
by Ag. Since |G : Ag| < I, Lemma 3 readily yields the result. O

To prove Corollary 1, we need the following lemma.

Lemma 4. [13, 16] Let G be a group and let k be a positive integer.
(i) If |G'| < k, then G = Ak(G).
(ii) If G = Ax(G), then |G| < (KH)¥".
Proof of Corollary 1. It follows from Theorem 1 and the fact Ay C A that
|G Al <|G: A < k- (k+ 1)L
Note that A is a subgroup of G and then we have
A AL <G Ay < F - (B+1)
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Thus, A = U;Agg; is a finite union of translates of Ay. Since every g; € A has only finitely many
conjugates in G, there exists an integer [ with g; € A; for all 7. Consequently, A = ApA; C Ay
and thus A = Ay;. Using Lemma 4 (ii), we easily obtain that A’; the commutator subgroup of
A, is finite. O

Proof of Corollary 2. Since G is (m1, ma, n)-permutational with respect to A and B, Theorem
1 implies that G has a normal subgroup N with both |G : N| and |N’| bounded by functions of
mq, mg and n. Hence, we have N = N’ since G is normally perfect. Thus |G| = |G : N| - |N'|
is bounded by a function of mi, ms and n. O

4 Discussion

Although we have stated Theorem 1 only for two sets A and B of n-tuple of elements of G, the
techniques generalize to the case of an arbitrarily large but bounded number of such sets. Here,
we put forward a further generalization of permutational property and list the results without
proof.

Definition 2. Let ¢, d, mgl),'~ ,mgc) and mél),~~ ,méd) be positive integers. Suppose
that A .. A and BM ... B are sets of n-tuples of elements of G with |A®)| = mgi)
for 1 <4 < ¢ and |l§’(j)| = mgj) for 1 < j < d, respectively. A group G is said to be

({m(li) ¢ {m(Qj) d n) -permutational with respect to {AD}e_, and {B(j)}?:l if for every

=1 =1
n-tuple (91,92, - ,9n) of elements of G there exist n-tuples (agi),a(;), e ,ag)) e AD for
1<i<e, (bgj),bgj),~~~ ,bﬁf)) e BY) for 1 < j < d and a nonidentity permutation o € Sym,,
such that

B P A CBUOON (U A OB A )

_ (1 (o) 1 @) (o) (1) . 4(d)
= A1) U1y 9o (W) e () Cain) T Ao () I ()P () T Vg (-

Theorem 2.  Let G be an ({mgi)}le,{méj) ?:1,71) -permutational group with respect to

{ADY_, and {BD}I_,. Set k = m - m{ Y oD nl. Then we have
(1) |G:Ax| <k-(k+1)!, and

(i) G has a characteristic subgroup N with |G : N| < k- (k+ 1)!, and with |N'| finite and
gj) d_, and n.

bounded by a function of {mgi)}le, {ms}

Corollary 3.  Let G be an ({mgi)}gzl, {mgj) ?:17”) -permutational group with respect to

{ADYs_ | and {BU}I_,. Set k = mgl) : ~-m§c) -mél) . ~méd) -nl. Then |G : Al < k- (k+1)!
and |A'| is finite.

Corollary 4.  Let G be a normally perfect group satisfying the ({mgi) C1s {mgj) j—l:l,n)—
permutational property. Then G has finite order bounded by a function of {mgi)};?:l, {mgj) 31:1
and n.
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It is obvious that any finite group of order n has permutational property P,. Thus, the
automorphism group Aut(G) for a finite graph G trivially has P su¢(g). The same thing

d

is true for ({mgi)}le, {méj ) j:hn)—permutational property if we carefully choose the sets

{A@D}e | and {B(j)}‘j:l. An interesting question would be to ask the minimum non-trivial n

=1

is transitive (c.f. [3, 15])?

of ({mgi)}c {mgj)}?:p n) -permutational property satisfied by the group Aut(G). What if it
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