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A Schreier domain type condition

by
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Abstract

We study the integral domains D satisfying the following condition: whenever I ⊇ AB
with I, A, B nonzero ideals, there exist ideals A′ ⊇ A and B′ ⊇ B such that I = A′B′.
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In [6], Cohn introduced the notion of Schreier domain. A domain D is said to be a Schreier
domain if (1) D is integrally closed and (2) whenever I, J1, J2 are principal ideals of D and
I ⊇ J1J2, then I = I1I2 for some principal ideals I1, I2 of D with Ii ⊇ Ji for i = 1, 2. The study
of Schreier domains was continued in [13] and [17] (where a domain was called a pre-Schreier
domain if it satisfies condition (2) above). In [8] and [3], an extension of the class of pre-Schreier
domains was studied. A domain D was called a quasi-Schreier domain if whenever I, J1, J2 are
invertible ideals of D and I ⊇ J1J2, then I = I1I2 for some (invertible) ideals I1, I2 of D with
Ii ⊇ Ji for i = 1, 2.

In this paper we study the domains satisfying a Schreier-like condition for all nonzero ideals.
Since this class of domains turns out to be rather narrow, we use an ad hoc name for it.

Definition 1 We call a domain D a sharp domain if whenever I ⊇ AB with I, A, B nonzero
ideals of D, there exist ideals A′ ⊇ A and B′ ⊇ B such that I = A′B′.

If the domain D is Noetherian or Krull, then D is sharp if and only if D is a Dedekind domain
(Corollaries 2 and 12). In Proposition 4, we show that a sharp domain is pseudo-Dedekind.
In particular, a sharp domain is a completely integrally closed GGCD domain. The ring E of
entire functions is pseudo-Dedekind but not sharp (Example 8). Recall (cf. [16] and [4]) that a
domain D is called a pseudo-Dedekind domain (the name used in [16] was generalized Dedekind
domain) if the v-closure of each nonzero ideal of D is invertible. Also, recall from [2] that a
domain D is called a generalized GCD domain (GGCD domain) if the v-closure of each nonzero
finitely generated ideal of D is invertible. The definition of the v-closure is recalled below. In
Proposition 6, we show that a valuation domain is sharp if and only if the value group of D is
a complete subgroup of the reals.
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The main results of this paper are Theorems 11 and 15. In Theorem 11, we show that
the localizations of a sharp domain at the maximal ideals are valuation domains with value
group a complete subgroup of the reals. In particular, a sharp domain is a Prüfer domain of
dimension ≤ 1. A key point in proving Theorem 11 is the fact that if D is a sharp domain and
x, y ∈ D − {0} such that xD ∩ yD = xyD, then xD + yD = D (Proposition 10). The converse
of Theorem 11 is not true (Example 13). In Theorem 15, we prove the converse of Theorem 11
for the domains of finite character (i.e., domains whose every nonzero element is contained in
only finitely many maximal ideals). The problem whether a sharp domain is of finite character
is left open. A countable sharp domain is a Dedekind domain (Corollary 17).

For reader’s convenience, we recall the following facts. Let D be a domain with quotient field
K and I a nonzero fractional ideal of D. The v-closure of I is the fractional ideal Iv = (I−1)−1,
where I−1 = {x ∈ K| xI ⊆ D}, and I is called a v-ideal if I = Iv. The t-closure of I is the
fractional ideal It which is the union of the v-closures of the finitely generated nonzero subideals
of I. Moreover, I is called a t-ideal if I = It. In general, we have I ⊆ It ⊆ Iv. A nonzero prime
ideal P of D is called t-prime if P = Pt. For basic facts and terminology not recalled in this
paper, our references are [10] and [11]. Throughout this paper, all rings are domains, that is,
commutative, unitary and without zero-divisors.

We begin with a characterization of the sharp domains. If I,H are ideals of a domain D,
we denote by I : H the ideal {x ∈ D | xH ⊆ I}.

Proposition 2 A domain D is sharp if and only if for every two nonzero ideals I,H we have
I = [I : (I : H)](I : H).

Proof: (⇒). Let I,H be nonzero ideals of D. Set A = I : (I : H) and B = I : H. Note
that AB ⊆ I, A = I : B and I : A = I : (I : (I : H)) = I : H = B. As D is sharp,
there exists a factorization I = A′B′ with A′,B′ ideals such that A′ ⊇ A and B′ ⊇ B. Then
A ⊆ A′ ⊆ I : B′ ⊆ I : B = A, so A = A′. Similarly, we get B = B′. (⇐). Let I, A,B be
nonzero ideals of D such that AB ⊆ I. By our assumption, we get I = [I : (I : A)](I : A). Note
that A ⊆ I : (I : A) and B ⊆ I : A.

Corollary 3 A Dedekind domain is a sharp domain.

Proof: Let D be a Dedekind domain and I,H nonzero ideals of D. Since I : H is an invertible
ideal, it follows easily that I : (I : H) = I(I : H)−1. Hence [I : (I : H)](I : H) = I(I : H)−1(I :
H) = I. Apply Proposition 2.

Proposition 4 Every sharp domain is pseudo-Dedekind. In particular, a sharp domain is a
completely integrally closed GGCD domain.

Proof: Let D be a sharp domain, A a nonzero ideal of D and 0 6= b ∈ A. By Proposition 2,
bD = [bD : (bD : A)](bD : A). It follows that bD : A = bA−1 is an invertible ideal, so A−1

and Av are invertible ideals. Thus D is pseudo-Dedekind. By [16, Corollaries 1.4 and 1.5], a
pseudo-Dedekind domain is a completely integrally closed GGCD domain.
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We show that for a pseudo-Dedekind domain D it suffices to test the condition in Definition
1 only for ideals I with Iv = D.

Proposition 5 A pseudo-Dedekind domain D is sharp if and only if for all nonzero ideals
I,A,B of D such that I ⊇ AB and Iv = D, there exist ideals A′ ⊇ A and B′ ⊇ B such that
I = A′B′.

Proof: We prove the nontrivial implication. Let I, A,B be nonzero ideals of D such that
I ⊇ AB. Then Iv ⊇ AvBv and Iv, Av, Bv are invertible ideals, because D is pseudo-Dedekind.
A pseudo-Dedekind domain is a GGCD domain, cf. [16, Corollary 1.5], and a GGCD domain
is quasi-Schreier, cf. [8, Proposition 2.3]. So there exist invertible ideals A1 ⊇ Av and B1 ⊇ Bv

such that Iv = A1B1. We have I−1 = A−1
1 B−1

1 , so II−1 ⊇ (AA−1
1 )(BB−1

1 ) and AA−1
1 , BB−1

1

are integral ideals. Since Iv is invertible, (II−1)v = D. By our hypothesis, there exist ideals
A2 ⊇ AA−1

1 and B2 ⊇ BB−1
1 such that II−1 = A2B2. Hence I = (A1A2)(B1B2) and A1A2 ⊇ A,

B1B2 ⊇ B.

Next, we characterize the sharp valuation domains. Recall [5, Exercise 21, page 551], that a
pseudo-principal domain is a domain whose v-ideals are principal. Clearly, a quasi-local domain
is pseudo-Dedekind if and only if it is pseudo-principal.

Proposition 6 For a valuation domain D, the following assertions are equivalent:
(a) D is sharp.
(b) D is pseudo-Dedekind.
(c) the value group of D is a complete subgroup of the reals.

In particular, a sharp valuation domain has dimension ≤ 1.

Proof: (b)⇔ (c) is given in [4] at the bottom of pages 325 and 327 and (a)⇒ (b) follows from
Proposition 4. We prove that (b) and (c) imply (a). By Corollary 3, we may assume that the
value group of D is the whole group of real numbers. By Proposition 5, D is sharp, because the
maximal ideal is the only proper ideal of D whose v-closure is D. The “in particular” assertion
follows from the well-known fact that a valuation domain has dimension ≤ 1 if and only if its
value group is a subgroup of the reals (see [18, page 45]).

Proposition 7 If D is a sharp domain, then every fraction ring DS of D is also a sharp
domain.

Proof: Let I, A,B be nonzero ideals of D such that IDS ⊇ ABDS . Then H = IDS∩D ⊇ AB.
As D is sharp, we get H = A′B′ with A′, B′ ideals of D such that A′ ⊇ A and B′ ⊇ B. Then
IDS = HDS = A′B′DS .

Example 8 The ring E of entire functions is pseudo-Dedekind but some localization of E is
not pseudo-Dedekind, cf. [16, Example 2.1]. By Proposition 7, E is not a sharp domain.
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Proposition 9 If D is a sharp domain and P is a t-prime ideal of D, then DP is a valuation
domain whose value group is a complete subgroup of the reals. In particular, in a sharp domain
every t-prime ideal of D has height one.

Proof: By Proposition 4, D is a GGCD domain. By [2, page 218], [14, Corollary 4.3] and
Proposition 7, DP is a sharp valuation domain. Apply Proposition 6.

Recall that two nonzero elements x, y of a domain D are called v-coprime if (xD + yD)v = D
(equivalently xD ∩ yD = xyD, equivalently xD : yD = xD).

Proposition 10 Let D be a sharp domain and x, y two nonzero v-coprime elements. Then
xD + yD = D.

Proof: We have (x, y)2 ⊆ (x2, y), so (x2, y) = AB with A,B ideals such that A,B ⊇ (x, y).
Note that (x2, y) : (x, y) = (x, y). Indeed, if a ∈ (x2, y) : (x, y), then ax = bx2 + cy for some
b, c ∈ D, so c ∈ xD : yD = xD, hence a = bx + (c/x)y belongs to (x, y). From (x2, y) = AB,
we get A ⊆ (x2, y) : B ⊆ (x2, y) : (x, y) = (x, y), so A = (x, y). Similarly, we get B = (x, y).
Then (x2, y) = (x, y)2. So y = fx + gy2 for some f, g ∈ D, hence f ∈ yD : xD = yD, thus
1 = (f/y)x + gy, that is, xD + yD = D.

Theorems 11 and 15 are the main results of this paper.

Theorem 11 If D is a sharp domain, then DM is a valuation domain with value group a
complete subgroup of the reals, for each maximal ideal M of D. In particular, a sharp domain
is a Prüfer domain of dimension ≤ 1.

Proof: By Proposition 7, we may assume that D is quasi-local with nonzero maximal ideal
M . Suppose that the height of M is ≥ 2. By Proposition 4, D is a quasi-local GGCD domain,
hence a GCD domain, cf. [2, Corollary 1]. By Proposition 9, M is not a t-ideal, so Mt = D.
Since D is a GCD domain, there exist two v-coprime elements x, y ∈ M (see the paragraph
before Theorem 4.8 in [1]). But this contradicts Proposition 10. It remains that M has height
one, hence it is a t-prime, cf. [11, Proposition 6.6]. Now apply Proposition 9 to conclude. The
“in particular” assertion is clear.

According to [12], a TV domain is a domain in which every t-ideal is a v-ideal. Noetherian
domains and Krull domains are TV domains, cf. [12, page 291].

Corollary 12 If D is a sharp TV domain, then D is a Dedekind domain. In particular, if a
sharp domain is Noetherian or Krull, then it is a Dedekind domain.

Proof: Let D be a sharp TV domain. By Theorem 11, D is a Prüfer domain, so every nonzero
ideal of D is a t-ideal, hence a v-ideal, because D is a TV domain. Since D is also a pseudo-
Dedekind domain (cf. Proposition 4), it follows that every nonzero ideal of D is invertible.
Thus D is a Dedekind domain.



A Schreier domain type condition 245

The converse of Theorem 11 is not true. Recall [10, page 434] that a domain D is said to
be almost Dedekind if DM is a discrete (Noetherian) valuation domain for each maximal ideal
M of D. We exhibit an almost Dedekind domain which is not a sharp domain (not even
pseudo-Dedekind).

Example 13 Let D be the almost Dedekind domain constructed in the proof of [7, Proposition
7]. We recall some properties of D proved there. The maximal ideals of D are the principal
ideals (piD)i≥1 and the ideal M = (q0, q1, ..., qn, ...). Here (qi)i≥0 are nonzero elements of D
such that qi−1 = piqi and pi does not divide qi for all i ≥ 1. Note that M is not finitely
generated, because it is the union of the strictly ascending chain of principal ideals (qiD)i≥0.
We claim that D is not pseudo-Dedekind, so it is not a sharp domain (cf. Proposition 5). For
that, it suffices to prove that the v-ideal ∩i≥1p2i−1D equals the union of the strictly ascending
chain of principal ideals p1q2D ⊂ p1p3q4D ⊂ p1p3p5q6D · · · , so it is not finitely generated.
Indeed, the inclusion ⊇ is clear. Conversely, let x ∈ ∩i≥1p2i−1D. If x /∈M , then 1 = ax+ bq2n

for some a, b ∈ D and n ≥ 0. But this is a contradiction, because p2n+1 divides both x and q2n.
So x ∈ M , say x = cq2n for some c ∈ D and n ≥ 1. Since x ∈ ∩i≥1p2i−1D and q2n is not
divisible by p1,p3,...,p2n−1, we get that x ∈ p1p3 · · · p2n−1q2nD. •

We give a partial converse of Theorem 11. Recall that a domain D is said to be of finite
character if every nonzero element is contained in only finitely many maximal ideals. And D is
said to be h-local if D is of finite character and every nonzero prime ideal of D is contained in a
unique maximal ideal of D. It is easy to see that a one-dimensional domain of finite character
is h-local. The next lemma was implicit in [15, Proposition 3.1].

Lemma 14 Let D be a h-local domain, A,B nonzero ideals of D and M ∈ Max(D). Then
(A : B)DM = ADM : BDM .

Proof: Let K denote the quotient field of D. The inclusion (⊆) is clear. Conversely, let
x ∈ ADM : BDM . We may assume that x ∈ D. Pick a ∈ A − {0}. Since D is h-local, we
have [M ]DM = K where [M ] = ∩{DN | N ∈ Max(D) and N 6= M}, cf. [15, Proposition
3.1]. Consequently, there exist y ∈ [M ] and s ∈ D −M such that x/a = y/s. So sx = ay.
Note that ayB ⊆ ADN for each N ∈ Max(D)− {M}. So ayBDQ = sxBDQ ⊆ ADQ for each
Q ∈Max(D), hence sx ∈ A : B. Thus x ∈ (A : B)DM .

We show that the converse of Theorem 11 is true for a domain of finite character.

Theorem 15 Let D be a domain of finite character such that DM is a valuation domain with
value group a complete subgroup of the reals for each M ∈Max(D). Then D is a sharp domain.

Proof: Let I, A be nonzero ideals of D. By Proposition 2, it suffices to check locally that
(I : A)[I : (I : A)] = I. Let M be a maximal ideal of D. Since D is one-dimensional of finite
character, it is h-local. By Lemma 14, we have (I : A)[I : (I : A)]DM = (IDM : ADM )[IDM :
(IDM : ADM )] = IDM , where the last equality follows from Propositions 6 and 2.
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We do not know if a sharp domain is necessarily of finite character. A connected question,
which is up to our knowleadge not solved, is whether a pseudo-Dedekind almost Dedekind
domain is necessarily a Dedekind domain. We end our paper with two results for countable
domains.

Proposition 16 If D is a countable pseudo-Dedekind Prüfer domain, then D is of finite cha-
racter.

Proof: Assume that D is not of finite character. By [9, Corollary 7], there exists a nonzero
element z and an infinite family (In)n≥1 of invertible proper mutually comaximal ideals con-
taining z. For each nonempty set of natural numbers Λ, consider the v-ideal IΛ = ∩n∈ΛIn
(note that IΛ contains z). As D is pseudo-Dedekind, IΛ is invertible. We claim that IΛ 6= IΛ′

whenever Λ, Λ′ are distinct nonempty sets of natural numbers. Deny. Then there exists a
nonempty set of natural numbers Γ and some k /∈ Γ such that Ik ⊇ IΓ. Consider the ideal
H = I−1

k IΓ ⊇ IΓ. If n ∈ Γ, then In ⊇ IΓ = IkH, so In ⊇ H, because In + Ik = D. It follows
that IΓ ⊇ H, so IΓ = H = I−1

k IΓ. Since IΓ is invertible, we get Ik = D, a contradiction.
Thus the claim is proved. But then it follows that {IΛ | ∅ 6= Λ ⊆ N} is an uncountable set of
invertible ideals. This leads to a contradiction, because D being countable, it has countably
many finitely generated ideals.

Corollary 17 If D is a countable sharp domain, then D is a Dedekind domain.

Proof: We may assume that D is not a field. By Theorem 11, D is a Prüfer domain. Now
Propositions 4 and 16 show that D is of finite character. Let M be a maximal ideal of D. By
Theorem 11, DM is a countable valuation domain with value group Z or R, so DM is a DVR.
Thus D is a Dedekind domain, cf. [10, Theorem 37.2].
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