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Abstract

In this paper, we consider one of open problems in Finsler geometry which presented
by Chen-Shen on Douglas surfaces. First, we prove that a Finsler surface has isotropic
Berwald curvature if and only if it is of isotropic mean Berwald and relatively isotropic
Landsberg curvature. Then we solve the open problem and show that on Douglas surfaces,
a Finsler metric has isotropic mean Berwald curvature if and only if it has relatively
isotropic Landsberg curvature
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1 Introduction

The geodesic curves of a Finsler metric F = F (x, y) on a smooth manifold M , are determined
by the system of second order differential equations

d2xi

dt2
+ 2Gi

(
x,
dx

dt

)
= 0,

where the local functions Gi = Gi(x, y) are called the spray coefficients, and given by Gi =
1
4g
il{[F 2]xkyly

k − [F 2]xl}. A Finsler metric F is called a Berwald metric, if Gi are quadratic
in y ∈ TxM for any x ∈ M or equivalently the Berwald curvature Bijkl := [Gi]yjykyl vanishes.
There is an extension of Berwald metrics which introduced by Chen-Shen and called isotropic
Berwald metrics [7]. A Finsler metric F is said to be isotropic Berwald metric if its Berwald
curvature is in the following form

Bijkl = c{Fyjykδil + Fykylδ
i
j + Fylyjδ

i
k + Fyjykyly

i}, (1)

where c = c(x) is a scalar function on M . Funk metrics are non-trivial isotropic Berwald metrics
[13][18].

Other than isotropic Berwald curvature, there are many forms of curvatures in Finsler
geometry. Let (M,F ) be a Finsler manifold. The third order derivatives of 1

2F
2
x at y ∈ TxM0 is
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the symmetric trilinear forms Cyon TxM , which called the Cartan torsion. The rate of change
of Cy along geodesics is the Landsberg curvature Ly on TxM . F is called of relatively isotropic
Landsberg curvature if it satisfies L + cFC = 0, where c = c(x) is a scalar function on M .
Every isotropic Berwald metric is of relatively isotropic Landsberg curvature.

Every Finsler metric of isotropic Berwald curvature is of isotropic mean Berwald curvature
and relatively isotropic Landsberg curvature. In this paper, we show that for every Finsler
surfaces the converse of this fact is true. More precisely, we prove the following.

Theorem 1.1. Let (M,F ) be a Finsler surface. Then the following are equivalent:

(a) F has isotropic Berwald curvature;

(b) F has isotropic mean Berwald and relatively isotropic Landsberg curvature.

On the other hand, the Douglas metrics are another extension of Berwald metrics, which
introduced by Douglas as a projective invariant in Finsler geometry [8]. A Finsler metric is called
a Douglas metric if Gi = 1

2Γijk(x)yjyk + P (x, y)yi. The study shows that the above mentioned
quantities are closely related to the Douglas metrics, namely Bácsó-Matsumoto proved that
every Douglas metric with vanishing Landsberg curvature is a Berwald metric [2].

In [7], Chen-Shen proved that on a Douglas manifold with dimension n ≥ 3, a Finsler
metric has isotropic mean Berwald curvature if and only if it has relatively isotropic Landsberg
curvature. But this fact is unsolved for the case of two-dimensional Finsler manifolds, yet. In
this paper, we prove the following.

Theorem 1.2. Let (M,F ) be a Douglas surface. Then the following are equivalent:

(a) F has isotropic mean Berwald curvature;

(b) F has relatively isotropic Landsberg curvature.

There are many connections in Finsler geometry [5][6] [11][12]. In this paper, we use the
Berwald connection and the h- and v- covariant derivatives of a Finsler tensor field are denoted
by “ | ” and “, ” respectively.

2 Preliminaries

Let M be a n-dimensional C∞ manifold. Denote by TxM the tangent space at x ∈ M , by
TM = ∪x∈MTxM the tangent bundle of M , and by TM0 = TM \ {0} the slit tangent bundle
on M . A Finsler metric on M is a function F : TM → [0,∞) which has the following properties:
(i) F is C∞ on TM0;
(ii) F is positively 1-homogeneous on the fibers of tangent bundle TM ;
(iii) for each y ∈ TxM , the following quadratic form gy on TxM is positive definite,

gy(u, v) :=
1

2

∂2

∂s∂t

[
F 2(y + su+ tv)

]
|s,t=0, u, v ∈ TxM.
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Let x ∈ M and Fx := F |TxM . To measure the non-Euclidean feature of Fx, define Cy :
TxM ⊗ TxM ⊗ TxM → R by

Cy(u, v, w) :=
1

2

d

dt
[gy+tw(u, v)] |t=0, u, v, w ∈ TxM.

The family C := {Cy}y∈TM0
is called the Cartan torsion. It is well known that C = 0 if and

only if F is Riemannian [10].

The horizontal covariant derivatives of C along geodesics give rise to the Landsberg curvature
Ly : TxM ⊗ TxM ⊗ TxM → R defined by Ly(u, v, w) := Lijk(y)uivjwk, where Lijk := Cijk|sy

s,

u = ui ∂
∂xi |x, v = vi ∂

∂xi |x and w = wi ∂
∂xi |x. The family L := {Ly}y∈TM0 is called the Landsberg

curvature. A Finsler metric is called a Landsberg metric if L=0 [15]. Thus the quotient L/C is
regarded as the relative rate of change of C along Finslerian geodesics. F is said to be relatively
isotropic Landsberg metric if L + cFC = 0, where c = c(x) is a scalar function on M .

Given a Finsler manifold (M,F ), then a global vector field G is induced by F on TM0,
which in a standard coordinate (xi, yi) for TM0 is given by

G = yi
∂

∂xi
− 2Gi(x, y)

∂

∂yi
,

where Gi := 1
4g
il{[F 2]xkyly

k − [F 2]xl}, y ∈ TxM . G is called the spray associated to (M,F ).
In local coordinates, a curve c(t) is a geodesic if and only if its coordinates (ci(t)) satisfy
c̈i + 2Gi(ċ) = 0.

For a tangent vector y ∈ TxM0, define By : TxM ⊗ TxM ⊗ TxM → TxM and Ey : TxM ⊗
TxM → R by By(u, v, w) := Bijkl(y)ujvkwl ∂

∂xi |x and Ey(u, v) := Ejk(y)ujvk where

Bijkl :=
∂3Gi

∂yj∂yk∂yl
, Ejk :=

1

2
Bmjkm.

The B and E are called the Berwald curvature and mean Berwald curvature, respectively.
Then F is called a Berwald metric and weakly Berwald metric if B = 0 and E = 0, respectively
[10][16].

A Finsler metric F is said to be isotropic Berwald metric and isotropic mean Berwald metric
if its Berwald curvature and mean Berwald curvature is in the following form, respectively

Bijkl = c{Fyjykδil + Fykylδ
i
j + Fylyjδ

i
k + Fyjykyly

i}, (2)

Eij =
1

2
(n+ 1)cF−1hij (3)

where c = c(x) is a scalar function on M and hij is the angular metric [14].

Define Dy : TxM ⊗ TxM ⊗ TxM → TxM by Dy(u, v, w) := Di
jkl(y)uivjwk ∂

∂xi |x where

Di
jkl := Bijkl −

2

n+ 1
{Ejkδil + Ejlδ

i
k + Eklδ

i
j + Ejk,ly

i}.
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We call D := {Dy}y∈TM0
the Douglas curvature. A Finsler metric with D = 0 is called

a Douglas metric. The notion of Douglas metrics was proposed by Bácsó-Matsumoto as a
generalization of Berwald metrics [3]. The Douglas tensor D is a projective invariant, namely,
if two Finsler metrics F and F̄ are projectively equivalent, Gi = Ḡi + Pyi, where P = P (x, y)
is positively y-homogeneous of degree one, then the Douglas tensor of F is same as that of F̄ .

3 Proof of Theorem 1.1

The special and useful Berwald frame was introduced and developed by Berwald [4]. Let (M,F )
be a two-dimensional Finsler manifold. We study two dimensional Finsler space and define a
local field of orthonormal frame (`i,mi) called the Berwald frame, where `i = yi/F (y), mi is
the unit vector with `im

i = 0, `i = gij`
i and gij is defined by gij = `i`j +mimj .

Lemma 3.1. Let (M,F ) be a Finsler surface. Then F is of isotropic Berwald curvature

Bijkl = c{hijhkl + hikhjl + hilhjk + 2Cjkly
i} (4)

if an only if the main scalar of F satisfies

I,1 + cI = 0 and I2 = 3c, (5)

where c = c(x) is a scalar function on M .

Proof: The Berwald curvature of Finsler surfaces is given by

Bijkl = F−1(−2I,1`
i + I2m

i)mjmkml, (6)

where I is 0-homogeneous function called the main scalar of Finsler metric and I2 = I,2 + I,1|2
(see page 689 in [1]). On the other hand, the Cartan tensor of F is in the following form

Cijk = F−1Imimjmk. (7)

By (6) and (7), we have

Bijkl = −2I,1
I
Cjkl`

i +
I2
3F
{hjkhil + hklh

i
j + hljh

i
k}, (8)

Then for a Finsler surface, the Berwald curvature can be written as follows

Bijkl = µCjkl`
i + λ(hijhkl + hikhjl + hilhjk), (9)

where µ := − 2I,1
I and λ := I2

3F are homogeneous functions on TM of degrees 0 and -1 with
respect to y, respectively. Thus if we put µ = 2c and λ = cF−1, where c = c(x) is a scalar
function on M , then F reduces to a isotropic Berwald metric. Indeed, F is of isotropic Berwald
curvature if and only if I,1 + cI = 0 and I2 = 3c, where c = c(x) is a scalar function on M .
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Lemma 3.2. Let (M,F ) be a Finsler surface. Then F is of isotropic mean Berwald curvature
if an only if the main scalar of F satisfies I2 = 3c, where c = c(x) is a scalar function on M .

Proof: Taking a trace of (9) yields

Ejk =
3

2
λhjk. (10)

Thus F has isotropic mean Berwald curvature Eij = 3
2cF

−1hij if and only if I2 = 3c, where
c = c(x) is a scalar function on M .

Lemma 3.3. Let (M,F ) be a Finsler surface. Then F is of relatively isotropic Landsberg
curvature if an only if the main scalar of F satisfies I,1 + cI = 0, where c = c(x) is a scalar
function on M .

Proof: Contracting (9) with yi implies that

Ljkl +
µ

2
FCjkl = 0. (11)

Thus F has relatively isotropic Landsberg curvature Ljkl+cFCjkl = 0 if and only if I,1+cI = 0,
where c = c(x) is a scalar function on M .

Proof of the Theorem 1.1: By Lemmas 3.1, 3.2 and 3.3, we get the proof.

Corollary 3.1. ([10]) Let (M,F ) be a Finsler surface. Then B = 0 if an only if E = 0 and
L = 0.

4 Proof of Theorem 1.2

In this section, we are going to prove Theorem 1.2. First we find the necessary and sufficient
condition for a Finsler surface to be a Douglas surface. More precisely, we prove the following.

Lemma 4.1. Let (M,F ) be a Finsler surface. Then F is a Douglas metric if and only if it
satisfies

L + F 2λC = 0. (12)

The equation (12) is equal to II2 − 3I,1 = 0.

Proof: By assumption, we have

Bijkl = µCjkl`
i + λ(hijhkl + hikhjl + hilhjk), (13)

By (10) we get

Bijkl = µCjkl`
i +

2

3
(Ejkh

i
l + Eklh

i
j + Ejlh

i
k). (14)
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Taking (11) in (14), yields

Bijkl = −2F−1Ljkl`
i +

2

n+ 1
(Ejkh

i
l + Eklh

i
j + Ejlh

i
k). (15)

On the other hand, we have

hij,k = 2Cijk − F−2(yjhik + yihjk), (16)

which implies that

2Ejk,l = 3λ,lhjk + 3λ
{

2Cjkl − F−2(ykhjl + yjhkl)
}
. (17)

The Douglas tensor is given by

Di
jkl = Bijkl −

2

3
{Ejkδil + Eklδ

i
j + Eljδ

i
k + Ejk,ly

i}. (18)

Putting (10), (15) and (17) in (18) yields

Di
jkl = −2{F−2Ljkl + λCjkl}yi − (λylF

−2 + λ,l)hjky
i. (19)

Since Di
jkl = Di

jlk, then

λylF
−2 + λ,l = 0. (20)

From (19) and (20), we deduce that

Di
jkl = −2{F−2Ljkl + λCjkl}yi. (21)

Therefore F is a Douglas metric if and only if it satisfies Ljkl + F 2λCjkl = 0. By considering
(11), F is a Douglas metric if and only if it satisfies II2 − 3I,1 = 0. This completes the proof.

Lemma 4.2. Let (M,F ) be a non-Riemannian Douglas surface. Suppose that F has isotropic
mean Berwald curvature. Then F has relatively isotropic Landsberg curvature.

Proof: By Lemma 3.2, Ejk = 3
2λhjk. By assumption, F has isotropic mean Berwald curvature

Ejk = 3
2cF

−1hjk, thus λ = cF−1. Since F is a Douglas metric then by Lemma 4.1, we have
Ljkl = −F 2λCjkl. It conclude that F has isotropic Landsberg curvature Ljkl + cFCjkl = 0.

Lemma 4.3. Let (M,F ) be a non-Riemannian Douglas surface. Suppose that F has isotropic
relatively Landsberg curvature. Then F has isotropic mean Berwald curvature.
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Proof: F has relatively isotropic Landsberg curvature Ljkl + cFλCjkl = 0. By Lemma 4.1, we
have Ljkl = −F 2λCjkl. Then we have λ = cF−1. By (10), we get Ejk = 3

2λhjk. Therefore F
has isotropic mean Berwald curvature Ejk = 3

2cF
−1hjk.

Proof of the Theorem 1.2: By Lemmas 4.2 and 4.3, we get the proof.

Finally, we can prove the following.

Corollary 4.1. Let (M,F ) be a Finsler surface. The following are equivalent.

(a) F is of isotropic Berwald curvature;

(b) F is a Douglas metric with isotropic mean Berwald curvature;

(c) F is a Douglas metric with relatively isotropic Landsberg curvature.

Proof: Every isotropic Berwald metric is a Douglas metric with isotropic mean Berwald curva-
ture and relatively isotropic Landsberg curvature. By Theorem 1.2, (a) and (b) are equivalent.
Thus it is sufficient to prove (c)⇒ (a). Let F is a Douglas metric with relatively isotropic Lands-
berg curvature L + cFC = 0. Since F is a Douglas metric, then by Lemma 4.1, L +F 2λC = 0,
which implies that λ = cF−1. By Lemma 3.3, we have L+ µ

2FC = 0. This deduce that µ = 2c.
Thus by the Lemma 3.1, we conclude that F is of isotropic Berwald curvature.

Corollary 4.2. ([2]) Let (M,F ) be a Douglas surface. Suppose that L = 0. Then F is a
Berwald metric.
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