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Abstract

Let D1 and D2 be coprime positive integers with min(D1, D2) > 1, and let p be
an odd prime with p 6 |D1D2. Further, let N(D1, D2, p) denote the number of positive
integer solutions (x,m, n) of the equation D1x

2 + Dm
2 = pn. In this paper, we prove

that N(D1, D2, p) ≤ 2 except for N(2, 7, 3) = N(10, 3, 13) = N(10, 3, 37) = N((32l−1 −
1)/a2, 3, 4 · 32l−1 − 1) = 3, where a, l are positive integers.
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1 Introduction

Let Z,N be the sets of all integers and positive integers respectively. Let D1, D2 be coprime
positive integers with D2 > 1, and let p be an odd prime with p 6 |D1D2. In this paper, we deal
with the number of solutions (x,m, n) of the equation

D1x
2 +Dm

2 = pn, x,m, n ∈ N, (1.1)

which is an exponential extension of the Ramanujan-Nagell type equation. Let N(D1, D2, p) de-
note the number of solutions of (1.1). For D1 = 1, sum up the results of [5],[12] and [19], we have

Theorem A. N(1, D2, p) ≤ 2 except for N(1, 2, 3) = 4 and N(1, 2, 5) = N(1, 4, 5) = 3.

Recently, P.-Z. Yuan and Y.-Z. Hu[20] proved that if 4D1+1 is a power of p, thenN(D1, 3D1+
1, p) = 2 except for N(1, 4, 5) = N(2, 7, 3) = 3. In this paper, we prove a more general result
as follows.
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Theorem B.If D1 > 1, then N(D1, D2, p) ≤ 2 except for N(2, 7, 3) = N(10, 3, 13) =
N(10, 3, 37) = N((32l−1 − 1)/a2, 3, 4 · 32l−1 − 1) = 3, where a, l ∈ N.

2 Preliminaries

For any nonnegative integer k, let Fk and Lk denote the k-th Fibonacci number and Lucas
number respectively.

Lemma 2.1 ([16],pp.60-61).

(i) 2|FkLk if and only if 3|k.

(ii) gcd(Fk, Lk) =

{
1, if 3 6 |k,
2, if 3|k.

(iii) F2k = FkLk.

(iv) L2
k − 5F 2

k = (−1)k4.

(v) Every solution (u, v) of the equation

u2 − 5v2 = ±4, u, v ∈ N

can be expressed as (u, v) = (Lk, Fk), where k ∈ N.

Lemma 2.2 ([7]). The equation

Fk = zs, k, z, s ∈ N, z > 1, s > 1

has only the solutions (k, z, s) = (6, 2, 3) and (12, 12, 2). The equation

Lk = zs, k, z, s ∈ N, z > 1, s > 1

has only the solution (k, z, s) = (3, 2, 2).

Lemma 2.3 ([6]). The equation

Fk = 2rzs, k, z, r, s ∈ N, 2 6 |z, z > 1, s > 1

has only the solution (k, z, r, s) = (12, 3, 4, 2) . The equation

Lk = 2rzs, k, z, r, s ∈ N, 2 6 |z, z > 1, s > 1

has no solution (k, z, r, s).

Let d be a nonzero integer with d ≡ 0 or 1 (mod 4), and let h(d) denote the class number
of binary quadratic primitive forms with discriminant d.
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Lemma 2.4 ([10],pp.321-322.Theorem 12.10.1). If d < 0, then

h(d) =
ω
√
|d|

2π
K(d),

where ω = 2, 4 or 6 according to d < −4, d = −4 or d = −3,

K(d) =

∞∑
n=1

(
d

n

)
k

1

n
,

where (∗/∗)k denote the Kronecker symbol.

Lemma 2.5 ([10],pp.322.Theorem 12.11.1 and 12.11.2). Every discriminant d can be expressed
as d = fm2, where f is a fundamental discriminant, m is a positive integer. Then we have

K(d) = K(f)
∏
p|m

(
1−

(
f

p

)
k

1

p

)
,

where
∏
p|m

denote the product through distinct prime divisors p of m.

Lemma 2.6 ([10],pp.324.Theorem 12.12.2). If d < 0 is a fundamental discriminant, then

K(d) = − π

|d|3/2

|d|−1∑
r=1

(
d

r

)
k

r.

Lemma 2.7 ([8],Lemma 1). Let d1, d2 be coprime positive integers with d1d2 > 1, and let p be
an odd prime with p 6 |d1d2. If The equation

d1X
2 + d2Y

2 = pZ , X, Y, Z ∈ Z, gcd(X,Y ) = 1, Z > 0 (2.1)

has solutions (X,Y, Z), then it has a unique positive integer solution (X1, Y1, Z1) satisfying
Z1 ≤ Z, where Z through all solutions (X,Y, Z) of (2.1). Such (X1, Y1, Z1) is called the least
solution of (2.1). Then we have

(i) h(−4d1d2) ≡
{

0 (mod Z1), if d1 = 1,
0 (mod 2Z1), if d1 > 1.

(ii) Every solution (X,Y, Z) of (2.1) can be expressed as

Z = Z1t,X
√
d1 + Y

√
−d2 = λ1(X1

√
d1 + λ2Y1

√
−d2)t,

where t ≥ 1 is an integer, λ2 ∈ {−1, 1}. If min(d1, d2) > 1, then t is odd. If
d1d2 6= 3, and d2 > 1 or t is odd, then λ1 ∈ {−1, 1}. If d1d2 = 3, then λ1 ∈
{−1, 1,−i, i, 1+

√
−3

2 , 1−
√
−3

2 , −1+
√
−3

2 , −1−
√
−3

2 }.

By (ii) of Lemma 2.7, we can obtain the following lemma immediately.
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Lemma 2.8 . If (X,Y, Z) and (X ′, Y ′, Z ′) are positive integer solutions of (2.1) with (X,Y, Z) 6=
(X ′, Y ′, Z ′), then Z 6= Z ′.

Lemma 2.9 ([8],Theorem 1). A necessary and sufficient condition that the equation

d1y
2 + d2 = pz, y, z ∈ N (2.2)

has solutions (y, z) is that (2.1) has solutions (X,Y, Z) and its least solution (X1, Y1, Z1) satisfies
Y1 = 1. Moreover, if Y1 = 1, then (2.2) has only the solution (y, z) = (X1, Z1) except for
3d1X

2
1 − d2 = λ, where λ ∈ {−1, 1}, and (2.2) has exactly two solutions (y, z) = (X1, Z1) and

(X1(8d1X
2
1 − 3λ), 3Z1).

Lemma 2.10 Let d1 = 1 and (X1, Y1, Z1) be the least solution of (2.1). If (y, z) is a solution
of the equation

1 + d2y
2 = pz, y, z ∈ N, (2.3)

then one of the following conditions must be satisfied.

(i) X1 = 1, (y, z) = (Y1, Z1).

(ii) |X2
1 − d2Y 2

1 | = 1, (y, z) = (2X1Y1, 2Z1).

(iii) d2 = 6, p = 7, X1 = Y1 = Z1 = 1, (y, z) = (20, 4).

(iv) d2 = 2, p = 3, X1 = Y1 = Z1 = 1, (y, z) = (11, 5).

Proof: This lemma can be immediately inferred from ([14],Theorem) and
([8],Theorem 1) for d2 = 2 and d2 > 2, respectively.

Lemma 2.11 [15]. The equation

3x2 = y3 ± 1, x, y ∈ N

has no integer solution (x, y) .

Lemma 2.12 [11, 13]. The equation

x2 − yn = λ, x, y, n ∈ N, n > 1, λ = ±1

has only the solution (x, y, n) = (3, 2, 3).

Lemma 2.13 [17]. The equation

x2 + 4 = yn, x, y, n ∈ N, gcd(x, y) = 1, n > 1

has only the integer solution (x, y, n) = (11, 5, 3).
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Lemma 2.14 [3, 4]. The equation

x2 + 3m = yn, x, y,m, n ∈ N, gcd(x, y) = 1, n > 1

has no integer solution (x, y,m, n) with 2 6 |m .

Lemma 2.15 The equation
3r + 4 = ps, r, s ∈ N, s > 1 (2.4)

has no solution (r, s).

Proof: If s > 1, we infer from Lemma 2.13 that r is odd. Then, by Lemma 2.14, we know that
(2.4) has no solution (r, s). The lemma is proved.

Lemma 2.16 The equation

4 · 3r + λ = ps, λ ∈ {−1, 1}, r, s ∈ N, s > 1 (2.5)

has no solution (r, s).

Proof: Since ps ≡ 4 · 3r + λ ≡ 3 or 5 (mod 8), we get 2 6 |s. Then, we infer from Lemma 2.12
that 2 6 |r. Hence, by (2.5), we get

3 · (2 · 3(r−1)/2)2 = 4 · 3r = ps − λ = (p− λ)

(
ps − λ
p− λ

)
. (2.6)

Notice that gcd(p−λ, p
s−λ
p−λ )|s and ps−λ

p−λ is an odd. If gcd(p−λ, p
s−λ
p−λ ) 6= 1, then 3|s and a solution

of the equation in Lemma 2.11 would be obtained, a contradiction. Hence, we get ps−λ
p−λ = 3r or

1. If ps−λ
p−λ = 3r, then we get p− λ = 4, which means p = 3, λ = −1 or p = 5, λ = 1. By taking

modulo 3 on (2.6), we get 0 ≡ ps − λ ≡ −1 or 1 (mod 3), this is impossible. If ps−λ
p−λ = 1, then

s = 1, a contradiction to s > 1. Thus, the lemma is proved.

A Lehmer pair is a pair(α, β) of algebraic integers such that (α+ β)2 and αβ are non-zero
coprime rational integers and α/β is not a root of unity. For a given Lehmer pair (α, β), one
defines the corresponding sequence of Lehmer numbers by

un = un(α, β) =

{
αn−βn

α−β , if 2 6 |n
αn−βn

α2−β2 , if 2|n.
(n = 1, 2, . . .). (2.7)

Let (α, β)be a Lehmer pair. The prime number p is a primitive divisor of the Lehmer number
un(α, β) if p divides un(α, β) but does not divide (α2 − β2)2u1...un−1.

A Lehmer pair (α, β) such that un(α, β) has no primitive divisors will be called n-defective
Lehmer pair. Further, a positive integer n is totally non-defective if no Lehmer pair is n-
defective.

Two Lehmer pair (α1, β1) and (α2, β2) are equivalent if α1/α2 = β1/β2 ∈ {±1,±
√
−1}.

For equivalent Lehmer pairs, we have un(α1, β1) = ±un(α2, β2). Therefore, one of them is
n-defective if and only if the other is.
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Lemma 2.17 [1, 18].
Let n satisfy 7 ≤ n ≤ 30 and 2 6 |n. Then, up to equivalence,all n-defective Lehmer pairs are

of the form (
√
a−
√
b)/2, (

√
a+
√
b)/2), where n, a, b are given below:

(i) n = 7, (a, b) = (1,−7), (1,−19), (3,−5), (5,−7), (13,−3), (14,−22);

(ii) n = 9, (a, b) = (5,−3), (7,−1), (7,−5);

(iii) n = 13,(a, b) = (1,−7);

(iv) n = 15,(a, b) = (7,−1), (10,−2).

Lemma 2.18 ([2], Theorem 1.4) If n > 30, then n is totally non-defective.

3 The solutions of (1.1) with 2 6 |m

Let min(D1, D2) > 1, and let (x,m, n) be a solution of (1.1) with 2 6 |m. Then (2.1) has the
solution

(X,Y, Z) = (x,D
(m−1)/2
2 , n). (3.1)

Since min(D1, D2) > 1, by (ii) of Lemma 2.7, we get from (3.1) that

n = Z1t, t ∈ N, 2 6 |t, (3.2)

x
√
D1 +D

(m−1)/2
2

√
−D2 = λ1(X1

√
D1 + λ2Y1

√
−D2)t, λ1, λ2{−1, 1}, (3.3)

where (X1, Y1, Z1) is the least solution of (2.1).

Lemma 3.1 t ∈ {1, 3} for (3.2).

Proof: Let
α = X1

√
D1 + Y1

√
−D2, β = X1

√
D1 − Y1

√
−D2. (3.4)

Since
D1X

2
1 +D2Y

2
1 = pZ1 , X1, Y1, Z1 ∈ N, gcd(D1X

2
1 , D2Y

2
1 ) = 1, (3.5)

we see from (3.4) that α and β are roots of z4 − 2(D1X
2
1 − D2Y

2
1 )z2 + p2Z1 = 0, and hence,

they are algebraic integers. Notice that (α+ β)2 = 4D1X
2
1 and αβ = pZ1 are coprime positive

integers, α/β = ((D1X
2
1−D2Y

2
1 )+2X1Y1

√
−D1D2)/pZ1 and it satisfies pZ1(α/β)2−2(D1X

2
1−

D2Y
2
1 )(α/β) + pZ1 = 0, where pZ1 > 1 and gcd(pZ1 , 2(D1X

2
1 − D2Y

2
1 )) = 1, so α/β is not a

root of unity. Therefore, (α, β) is a Lehmer pair with parameter (a, b) = (4D1X
2
1 ,−4D2Y

2
1 ).

Let un(α, β)(n ∈ N) be the corresponding Lehmer numbers defined as in (2.7). From (3.3) and
(3.4), we get

D
(m−1)/2
2 = Y1|ut(α, β)|. (3.6)

Since (α2−β2)2 = −16D1D2X
2
1Y

2
1 , we see from (3.6) that the Lehmer number ut(α, β) has no

primitive divisor. Therefore, by Lemmas (2.17) and (2.18), we obtain t ≤ 5.
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We are now to remove the case t = 5. For this case, by (3.2) and (3.3) we have n = 5Z1 and

D
(m−1)/2
2 = Y1|5(D1X

2
1 )2 − 10(D1X

2
1 )(D2Y

2
1 ) + (D2Y

2
1 )2|. (3.7)

If m = 1, then from (3.7) we get Y1 = 1. Hence, by (3.5), (2.2) has two solutions (y, z) =
(X1, Z1) and (x, 5Z1). But, by Lemma 2.9, it is impossible.

If m > 1 and 5 6 |D2, since gcd(D1X
2
1 , D2Y

2
1 ) = 1, then from (3.7) we get Y1 = D

(m−1)/2
2

and

4D2m
2 − 5(D1X

2
1 −Dm

2 )2 = −1. (3.8)

Notice that D2 > 1 and L3 = 4, we infer from Lemma 2.1 that 4Dm
2 = L6l+3 for some

positive integer l. Thus, we can simply exclude this case by applying Lemma 2.2 or 2.3 according
to whether D2 is a power of 2 or not.

If m > 1 and 5|D2, then we have Y1 = 1
5D

(m−1)/2
2 and

(D1X
2
1 −D2Y

2
1 )2 − 20(

1

5
D2Y

2
1 )2 = 1. (3.9)

Notice that D2 > 1 and F6 = 8, we infer from Lemma 2.1 that

4

5
D2Y

2
1 =

4

125
Dm

2 = F6l+6, l ∈ N, (3.10)

then we have min( 1
2F3l+3,

1
2L3l+3) > 1. Using (ii) and (iii)of Lemma 2.1 on (3.10), we get either

F3l+3 = 2zm or L3l+3 = 2zm with some positive integer z > 1. We can also exclude this case
by applying Lemma 2.2 or 2.3 according to whether z is a power of 2 or not. Thus, we get t 6= 5
and t ∈ {1, 3}. The lemma is proved.

Let N1(D1, D2, p) denote the number of solutions of (1.1) with 2 6 |m. Then we have

Lemma 3.2 N1(D1, D2, p) ≤ 1 except for the following three cases:

(i)
3D1X

2
1 = D2Y

2
1 + λ, Y1 = Dl

2, λ ∈ {−1, 1}, l ∈ Z, l ≥ 0, (3.11)

(x,m, n) ∈ {(X1, 2l + 1, Z1), (X1(8D1X
2
1 − 3λ), 2l + 1, 3Z1)}.

(ii)
D1X

2
1 = 3l + 1, D2 = 3, Y1 = 1, p = 3l + 4, l ∈ Z, l ≥ 0, (3.12)

(x,m, n) ∈ {(X1, 1, 1), (X1|3l − 8|, 2l + 3, 3)}.

(iii)
D1X

2
1 = 32l + 1, D2 = 3, Y1 = 3l, p = 4 · 32l + 1, l ∈ Z, l ≥ 0, (3.13)

(x,m, n) ∈ {(X1, 2l + 1, 1), (X1(8 · 32l − 1), 2l + 3, 3)}.
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Proof: By Lemmas 2.8 and 3.1, we have N1(D1, D2, p) ≤ 2. Moreover, by Lemma 3.1, if (1.1)
has two solutions (x1,m1, n1) and (x2,m2, n2) with n1 < n2 and 2 6 |m1m2, then

x1 = X1, Y1 = D
(m1−1)/2
2 , n1 = Z1 (3.14)

and

x2 = X1|3D1X
2
1 −D2Y

2
1 |, D

(m2−1)/2
2 = Y1|3D1X

2
1 −D2Y

2
1 |, n2 = 3Z1. (3.15)

By (3.14) and (3.15), we get

D
(m2−m1)/2
2 = |3D1X

2
1 −D

m1
2 |. (3.16)

When m2 = m1, by (3.14) ,(3.15) and (3.16), we obtain the case (i) immediately.

When m2 > m1, we see from (3.16) that 3|D2 and

1

3
D

(m2−m1)/2
2 = |D1X

2
1 −

1

3
Dm1

2 |. (3.17)

Further, since gcd(D1X
2
1 , D2Y

2
1 ) = 1, we get from (3.17) that D2 = 3 and either m1 = 1 or

m2 = m1 + 2.

If m1 = 1, then from (3.14) and (3.17) we obtain

D2Y
2
1 = 3, D1X

2
1 = 3l + 1, l =

1

2
(m2 −m1)− 1. (3.18)

Substitute (3.18) into (3.5), we have

pZ1 = 3l + 4. (3.19)

By applying Lemma 2.15 to (3.19), we get Z1 = 1. Thus, by (3.18) and (3.19), we obtain the
case (ii).

If m2 = m1 + 2, then from (3.14) and (3.17) we obtain

D2Y
2
1 = 32l+1, D1X

2
1 − 32l = λ, l =

1

2
(m1 − 1), λ ∈ {−1, 1}. (3.20)

Substitute (3.20) into (3.5), we have

pZ1 = 4 · 32l + λ. (3.21)

Further, since p is an odd prime, if λ = −1, then from (3.21) we get 2 · 3l + 1 = pZ1 and
2 · 3l − 1 = 1. It implies that l = 0 and p = 3, which contradicts the assumption p 6 |D1D2. So
we have λ = 1. By applying Lemma 2.16 to (3.21), we get Z1 = 1. Thus, we obtain the case
(iii). The lemma is proved.
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4 The solutions of (1.1) with 2|m

Let min(D1, D2) > 1, and let (x,m, n) be a solution of (1.1) with 2|m. Then the equation

D1X
′2 +D2

2Y
′2 = pZ

′
, X ′, Y ′, Z ′ ∈ Z, gcd(X ′, Y ′) = 1, Z ′ > 0 (4.1)

has the solution

(X ′, Y ′, Z ′) = (x,D
(m−2)/2
2 , n). (4.2)

Since min(D1, D2) > 1, by applying Lemma 2.7 to (4.1) and (4.2), we have

n = Z ′1t
′, t′ ∈ N, 2 6 |t′, (4.3)

x
√
D1 +D

(m−2)/2
2

√
−D2

2 = λ1(X ′1
√
D1 + λ2Y

′
1

√
−D2

2)t
′
, λ1, λ2{−1, 1}, (4.4)

where (X ′1, Y
′
1 , Z

′
1) is the least solution of (4.1). Using the same method as in the proof of

Lemma 3.1, we can prove a similar result as follows.

Lemma 4.1 t′ ∈ {1, 3} for (4.3).

Let N2(D1, D2, p) denote the number of solutions (x,m, n) of (1.1) with 2|m. Then we have

Lemma 4.2 N2(D1, D2, p) ≤ 1 except for

D1X
′
1
2

= 32l−1 + λ,D2 = 3, Y ′1 = 3l−1, p = 4 · 32l−1 + λ, λ ∈ {−1, 1}, (4.5)

where l is a positive integer.

Proof: By Lemma 4.1, we have N2(D1, D2, p) ≤ 2. Moreover, If (1.1) has two solutions
(x1,m1, n1) and (x2,m2, n2) such that 2|m1, 2|m2 and n1 < n2, then, from (4.4) we have

x1 = X ′1, Y
′
1 = D

(m1−2)/2
2 , n1 = Z ′1 (4.6)

and
x2 = X ′1|D1X

′
1
2 − 3D2

2Y
′
1
2|, D(m2−2)/2

2 = Y ′1 |3D1X
′
1
2 −D2

2Y
′
1
2|, n2 = 3Z ′1. (4.7)

By (4.6) and (4.7), we get

D
(m2−m1)/2
2 = |3D1X

′
1
2 −Dm1

2 |. (4.8)

When m2 = m1, since 2|m1, by taking modulo 3 on two sides of (4.8), we obtain

3D1X
′
1
2

= Dm1
2 − 1. (4.9)

Since D1X
′
1
2

+ D2
2Y
′
1
2

= D1X
′
1
2

+ Dm1
2 = pZ

′
1 , we get from (4.9) that 3pZ

′
1 = 4Dm1

2 − 1 =

(2D
m1/2
2 + 1)(2D

m1/2
2 − 1). Further, since gcd(2D

m1/2
2 + 1, 2D

m1/2
2 − 1) = 1 and 2D

m1/2
2 + 1 >
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2D
m1/2
2 − 1 ≥ 3, we get 2D

m1/2
2 + 1 = pZ

′
1 , 2D

m1/2
2 − 1 = 3. It implies that D

m1/2
2 = 2 and

D1 = 1 by (4.9), a contradiction to D1 > 1.
When m2 > m1, we see from (4.8) that D2 = 3,m2 = m1 + 2 and

D1X
′
1
2

= 3m1−1 + λ, λ ∈ {−1, 1}. (4.10)

Put l = m1/2. By (4.6) and (4.10), we get the first three equalities of (4.5). Substituting them
into (4.1), we get 4 · 32l−1 + λ = pZ

′
1 . By Lemma 2.16, we have Z ′1 = 1, and the 4th equality of

(4.5) follows. Thus, the lemma is proved.

5 Further lemmas on the solutions of (1.1)

Lemma 5.1 If D1, D2 and p satisfy (3.11) with λ = 1, then N2(D1, D2, p) = 0.

Proof: Under the assumption, we have 3D1X
2
1 = D2l+1

2 + 1 and

pZ1 = 4D1X
2
1 − 1. (5.1)

By (5.1), we get pZ1 ≡ 3 (mod 4), which implies that p ≡ 3 (mod 4). We suppose that (1.1)
has a solution (x,m, n) with 2|m. Then we have (−D1/p) = 1, where (∗/∗) denotes the Jacobi
symbol. But, by (5.1) , we get

1 =

(
−D1

p

)
= −

(
D1

p

)
= −

(
4D1X

2
1

p

)
= −

(
pZ1 + 1

p

)
= −

(
1

p

)
= −1,

a contradiction. Thus, we have N2(D1, D2, p) = 0. The lemma is proved.

Lemma 5.2 ([19]). Let a ∈ N. If 4a+ 1 is a power of p, then the equation

ax2 + (3a+ 1)m = (4a+ 1)n

has no solution (x,m, n) with 2|m except for a = 1 or 2.

Lemma 5.3 . The equation

6u2 + 18012r = 7s, u, r, s ∈ N (5.2)

has no solution (u, r, s).

Proof: We suppose that (5.2) has a solution (u, r, s). If 4|s, then we have 6u2 ≡ 7s−18012r ≡ 0
(mod 200). It implies that 10|u and therefore u = 10v, where v ∈ N. Substitute it into (5.2) ,
we get 600v2 + 18012r = 7s. But, since 4|s, 1801 = 3 · 600 + 1 and 4 · 600 + 1 = 74, by Lemma
5.2, it is impossible.

If 2||s, then we have u2 ≡ 6u2 ≡ 7s − 18012r ≡ 3 (mod 5). But, since (3/5) = −1, it is
impossible. Therefore, we obtain 2 6 |s.
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We see from (5.2) that the equation

X2 + 6Y 2 = 7Z , X, Y, Z ∈ Z, gcd(X,Y ) = 1, Z > 0 (5.3)

has the solution (X,Y, Z) = (1801r, u, s). Since the least solution of (5.3) is (X1, Y1, Z1) =
(1, 1, 1), by (ii) of Lemma 2.7, we have

1801r + u
√
−6 = λ1(1 + λ2

√
−6)s, λ1, λ2 ∈ {−1, 1}. (5.4)

Let θ = 1 +
√
−6 and θ = 1−

√
−6. By (5.4), we get

1801r =
1

2
|θs + θ

s|. (5.5)

Notice that 1
2 |θ

3 + θ
3| = 17, 12 |θ

5 + θ
5| = 121, 2 6 |s and 1801 is an odd prime. We find from

(5.5) that
gcd(30, s) = 1. (5.6)

On the other hand, we see from (5.2) that the equation

6x2 + (18012)m = 7n, x,m, n ∈ N (5.7)

has the solution (x,m, n) = (u, r, s). Therefore, since 3 6 |s, by Lemma 4.1, we have s = Z ′1,
where (X ′1, Y

′
1 , Z

′
1) is the least solution of (4.1) for (D1, D2, p) = (6, 1801, 7). By (i) of Lemma

2.7, we get 2Z ′1|h(−4 · 6 · 18012). But, by Lemmas 2.4 , 2.5 and 2.6, we can calculate that
h(−4 · 6 · 18012) = 3600, a contradiction. Thus, the lemma is proved.

Lemma 5.4 ([8],in the proof of Lemma 2). The equation

1 + 3x2 = yn, x, y, n ∈ N, n > 2

has no solution (x, y, n).

Lemma 5.5 . If positive integers X,Z satisfy

1 + 12X2 = pZ , (5.8)

then the equation
(9X2 + 1)m + 3x2 = pn, x,m, n ∈ N, 2|m (5.9)

has no solution (x,m, n).

Proof: By (5.8) and Lemma 5.4, we get Z = 1 or 2. Let (x,m, n) be a solution of (5.9). If
(1, 2X,Z) is the least solution of (2.1) for d1 = 1, d2 = 3, then Z|n. By (5.9), we have X|x.
From Lemma 5.2 applied for a = 3X2, we know that m must be odd, a contradiction. Arguing
in the same way, we can prove that (5.9) has no solution with 2|n.

Now, we suppose that n is odd. If (1, 2X,Z) is not the least solution of (2.1) for d1 = 1, d2 =
3, by Lemma 2.8 we have

1 + 12X2 = p2 (5.10)
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and there are two positive integers A and B such that (A,B, 1) is the least solution of (2.1) for
d1 = 1, d2 = 3. Then

A2 + 3B2 = p. (5.11)

If 2 6 |X. By (5.9) we get p ≡ −1 (mod 8) and therefore p2 ≡ 1 (mod 8). By (5.10) we get
p2 ≡ 5 (mod 8), a contradiction.

If 2|X. By (5.9) we get p ≡ 1 (mod 4). By (5.10) we get p2 ≡ 1 (mod 16). Thus, p ≡ 1
(mod 8) and therefore 4|B.

On using Lemma2.7, we have

1 + 2X
√
−3 = λ′1(A±

√
−3B)2 (5.12)

and

(9X2 + 1)m/2 + x
√
−3 = λ′1

′
(A±

√
−3B)n. (5.13)

Notice that 4|B and 2 6 |n, we can simple exclude λ′1, λ
′
1
′ ∈ {±i,± 1±

√
−3

2 }. So we have λ′1, λ
′
1
′ ∈

{−1, 1}.
Now,we can deduce from (5.12) and (5.13)that

A|X,A2 − 3B2 = ±1, (5.14)

and any prime factor of A is a factor of 9X2 + 1. So we get A = 1 and 3B2 = 0 or 2, a
contradiction. Thus, the lemma is proved.

Lemma 5.6 . Let D1 > 1. If D1, D2 and p satisfy (3.11) with λ = −1, then N2(D1, D2, p) = 0
except for (D1, D2, p) = (2, 7, 3).

Proof: Under the assumption, we have

3D1X
2
1 = D2l+1

2 − 1, l > 0 (5.15)

and

4D1X
2
1 + 1 = pZ1 . (5.16)

We see from (5.16) that the equation

A2 +D1B
2 = pC , A,B,C ∈ Z, gcd(A,B) = 1, C > 0 (5.17)

has the solution (A,B,C) = (1, 2X1, Z1). Let (A1, B1, C1) be the least solution of (5.17), by
Lemma 2.10, one of the following three conditions must be satisfied:

(A1, B1, C1) = (1, 2X1, Z1); (5.18)

(|A2
1 −D1B

2
1 |, 2A1B1, 2C1) = (1, 2X1, Z1); (5.19)

D1 = 6, p = 7, X1 = 10, Z1 = 4. (5.20)
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We now suppose that (1.1) has a solution (x,m, n) with 2|m. Then (5.17) has the solution

(A,B,C) = (D
m/2
2 , x, n). From (5.15) and (5.16) one can easily exclude D1 = 3 for l > 0 or

l = 0 by Lemma 2.12 and Lemma 5.5. By applying (ii) of Lemma 2.7, we get

n = C1t, t ∈ N, (5.21)

D
m/2
2 + x

√
−D1 = λ1(A1 + λ2B1

√
−D1)t, λ1, λ2 ∈ {−1, 1}. (5.22)

For the case (5.18), (5.21) and (5.22) can be written as

n = Z1t, t ∈ N, (5.23)

D
m/2
2 + x

√
−D1 = λ1(1 + 2λ2X1

√
−D1)t, λ1, λ2 ∈ {−1, 1} (5.24)

respectively. By (5.24), we get 2X1|x. So we have x = 2X1y with y ∈ N. Substituting it into
(1.1), we get

(D1X
2
1 )(2y)2 +Dm

2 = pn. (5.25)

Hence, by (5.16), (5.23) and (5.25), we obtain

Dm
2 ≡ 1 (mod D1X

2
1 ). (5.26)

Let m = (2l + 1)q + δ, where q, δ ∈ Z with 0 ≤ δ < 2l + 1. Since D2l+1
2 ≡ 1 (mod D1X

2
1 ) by

(5.15), we see from (5.26) that
Dδ

2 ≡ 1 (mod D1X
2
1 ). (5.27)

If δ > 0, since D2 > 1 and δ ≤ 2l, then from (5.15) and (5.27) we get D2l
2 − 1 ≥ Dδ

2 − 1 ≥
D1X

2
1 = 1

3 (D2l+1
2 − 1). It implies that D2l

2 (3−D2) ≥ 2 and D2 = 2. However, it is impossible
by taking modulo 3 on (5.15).

If δ = 0, then we have 2l + 1|m. Hence, by (5.25), the equation

(D1X
2
1 )x′

2
+ (D2l+1

2 )m
′

= pn
′
, x′,m′, n′ ∈ N

has the solution (x′,m′, n′) = (2y,m/(2l + 1), n) with 2|m′ and Z1|n′. But, since D2l+1
2 =

3D1X
2
1 + 1 , from (5.16) and Lemma 5.2 applied for a = D1X

2, it is impossible except for
(D1X

2
1 , D

2l+1
2 , p) = (2, 7, 3). Thus, the lemma holds for the case (5.18).

For the case (5.19), we have

A2
1 −D1B

2
1 = λ′, λ′ ∈ {−1, 1} (5.28)

and

A1B1 = X1, C1 =
1

2
Z1. (5.29)

From (5.21) and (5.29), we get

n =
Z1

2
t, t ∈ N. (5.30)

If 2 6 |t, then from (5.22) we get A1|Dm/2
2 . Further, since gcd(D1X

2
1 , D2Y

2
1 ) = 1, by (5.29),

we obtain A1 = 1 and B1 = X1. By (5.28), we have D1 = 2 and X1 = 1. Hence, by (5.15) and
(5.16), we get (D1, D2, p) = (2, 7, 3).
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If 2|t, since (A1 +B1

√
−D1)2 = λ′ + 2X1

√
−D1, then (5.22) can be written as

D
m/2
2 + x

√
−D1 = λ1(λ′ + 2λ2X1

√
−D1)t/2,

t

2
∈ N, λ1, λ2, λ′ ∈ {−1, 1}, (5.31)

whence we get 2X1|x and x = 2X1y with y ∈ N. Therefore, by (1.1), the solution (x,m, n) also
satisfies (5.25). Further, by (5.16), (5.25) and (5.30), we obtain (5.26) again. Thus, using the
same method as in the proof of the case (5.18), we can deduce that the lemma is true for the
case.

For the case (5.20), by (5.15) and (5.16), we have D2 = 1801. Then, by Lemma 5.3, (1.1)
has no solution (x,m, n) with 2|m. Thus, the lemma is proved.

Using the same method as in the proof of Lemma 5.6, we can prove the following two
lemmas.

Lemma 5.7 ([9],(ii) of Theorem 3.3.2). If D1, D2 and p satisfy (3.12) or (3.13), then N2(D1, D2, p) =
0 except for N2(10, 3, 13) = N2(10, 3, 37) = 1.

Lemma 5.8 ([9],(i) of Theorem 3.3.2). If D1, D2 and p satisfy (4.5), then
N1(D1, D2, p) = 0 for λ = 1, and N1(D1, D2, p) = 1, (x,m, n) = (2X ′1, 1, 1) for λ = −1.

6 Proof of Theorem B

Notice that the conditions (3.11),(3.12),(3.13) and (4.5) are independent from each other. Since
N(D1, D2, p) = N1(D1, D2, p) +N2(D1, D2, p), by Lemma 3.2 and 4.2, we have N(D1, D2, p) ≤
3. Further, by Lemmas 5.1, 5.6, 5.7 and 5.8, all the pairs (D1, D2, p) of N(D1, D2, p) = 3 are
determined. Thus, the theorem is proved.
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