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Abstract

In this paper, we prove the general invertibility theorem for non-local
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1 Introduction

In their monumental work [18], Sato, Kawai and Kashiwara introduced the micro-
local analysis to establish the local theory of linear partial differential equations.
Especially, the notion of pseudo-differential operators as micro-localization of
diffrerential operators has allowed them to obtain quite general theorems on sys-
tem of partial differential equations. Ever since, local pseudo-differential equa-
tions have been studied by many authors (e.g. Aoki [3], Aoki, Kataoka and Ya-
mazaki [4], Kashiwara and Kawai [10], Kashiwara and Schapira [11] or Ishimura
[5] and so on).

As for the non-local equations which include the linear differential-difference
equations, mainely the convolution equations have been studied in the complex
domain (e.g. Malgrange [17], Korobĕınik [13], Krivosheev [14], Kawai [12], Lelong
and Gruman [15], Sébbar [19] or Ishimura and Okada [9]).

In the prededing article [6], we proposed to introduce the non-local pseudo-
differential operators to be a natural generalization of both the (micro-local)
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pseudo-differential operators and the convolution operators and proved the in-
vertibility theorem for such operators under some conditions (see also [7] and
[8]).

In the present article, we employ the exponential calculus developped by Aoki
[1], [2] and applying it to the non-local situation, we generalize the invertivility
theorem. By using this theorem, we first prove the analytic continuation theorem
of solutions to such equations and then we establish an existence theorem for non-
local pseudo-differential equations in the complex domain.

2 Notations and recall

In this section, we recall some notations and definitions which we will need later.

Let S2n−1
∞ := (Cn\{0})/R+ be the sphere at infinity and D

2n := C
n⊔S2n−1

∞ be
the compactification by directions of C

n ≃ R
2n. For any ζ ∈ C

n \ {0}, we denote
by ζ∞ ∈ S2n−1

∞ the class defined by ζ: ζ∞ := (the closure of R+ · ζ in D
2n) ∩

S2n−1
∞ . For any A ⊂ C

n, we set A∞ := {ζ∞ ∈ S2n−1
∞ | R+ · ζ ⊂ A} and for any

Ω ⊂ C
n × S2n−1

∞ ≃ S∗
C

n (the co-sphere bundle of C
n), we also write

Ω∞ := {(z, ζ)∞ := (z, ζ∞) ∈ S∗
C

n | {z} × (R+ · ζ) ⊂ Ω}.

In this paper, we take a fixed point p = (x0, ξ0) ∈ T ∗
C

n. For any compact
convex set M ⊂ C

n, we use the following two supporting functions:

HM (ζ) := sup
z∈M

Re〈z, ζ〉, IM (ζ) := inf
z∈M

Re〈z, ζ〉 (2.1)

where 〈z, ζ〉 :=
∑n

j=1 zjζj with z = (z1, z2, · · · , zn) and ζ = (ζ1, ζ2, · · · , ζn). For
any A,B ⊂ C

n, set A + B := {a + b | a ∈ A, b ∈ B} and A − B := {a − b | a ∈
A, b ∈ B}.

For any δ > 0, consider the cones

Γ1,δ = Γ1 := {z ∈ C
n | δ|Imz1| 6 −Rez1}, (2.2)

Γj,δ = Γj := {z ∈ C
n | δ|zj | 6 |z1|} (2 6 j 6 n). (2.3)

For a compact convex set M ⊂ C
n, we set

G = Gδ = G(M) := ∩n
k=1(Γk + M). (2.4)

An open set W ⊂ C
n is said to be G-open if there exists a point a ∈ C

n such
that W + (G + a) ⊂ W . An open set D ⊂ C

n is said to be a G-round if there
exists a point a ∈ C

n s.t. {y ∈ C
n | (x, y) ∈ G + a, (y, z) ∈ G + a, x ∈ D, z ∈

D+M +M} ⊂ D+M (see [11]). We will denote by OCn the sheaf of holomorphic
functions in C

n.

Definition 2.1. Let M ⊂ C
n be a compact convex set. By a rotation, we may

assume ξ0 = (1, 0, · · · , 0). Let Γ1,Γ2, · · · ,Γn and G = G(M) be as in (2.2) -
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(2.4) for some δ > 0 and M . We set Z := {(x, y) ∈ C
n × C

n | y − x ∈ G =
∩n

k=1(Γk + M)}. For any G-round open set D with x0 ∈ D, we set

E(G;D) := Hn
Z(D × (D + M),O(0,n)

Cn×Cn),

here O(0,n)
Cn×Cn is the sheaf of holomorphic (0, n)-forms on C

n × C
n. We call any

P ∈ E(G;D) with some δ > 0 and D, a non-local pseudo-differential operator
defined near the point p, (or defined near the direction ξ0), carried by the compact
convex set M . We set

ER

[M ](D)ξ0
:= lim−→

δ

E(Gδ;D), ER

[M ]p := lim−→
D∋x0

ER

[M ](D)ξ0
.

In [6], we established the compositon of two operators belonging to ER

[M ]p ([6],

Proposition 3.5).

Let D be a convex open set. In the sequel, for the simplicity, we will often
write

D̃ := D + M.

We take the following holomorphically convex domains:

V1 := D × D̃ \ {(x, y) | z = y − x ∈ (Γ1 + M)}, (2.5)

Vj := D × D̃ \ {(x, y) | z = y − x ∈ (Γj + M)} (2 6 j 6 n). (2.6)

The family V := {V1, V2, · · · , Vn} is an open covering of D × D̃ \ Z. Write
V := ∩n

k=1Vk and V
k̂

:= ∩l 6=kVl for k = 1, 2, · · · , n. We have V = D × D̃ \
∪n

k=1{(x, y) | z = y − x ∈ (Γk + M)}. We easily see that

Hn
Z(D × D̃,O(0,n)

Cn×Cn) ≃ Hn−1(D × D̃ \ Z,O(0,n)
Cn×Cn)

≃ O(0,n)
Cn×Cn(V )

∑n
k=1 O

(0,n)
Cn×Cn(V

k̂
)
. (2.7)

So to any P ∈ E(G;D), a (0, n)-form K(x, z)dy = K(x, y)dy ∈ O(0,n)
Cn×Cn(V )

determined uniquely modulo the denominator
∑n

k=1 O
(0,n)
Cn×Cn(V

k̂
) corresponds.

We call K(x, y)dy the kernel of P . We define also the space of non-local differential
operators carried by M :

D∞
[M ](C

n) := Hn
∆M

(Cn × C
n;O(0,n)

Cn×Cn).

Here we set ∆M := {(x, y) ∈ C
n × C

n | y − x ∈ M}.
Let Ω be a conic neighbourhood of p = (x0, ξ0) ∈ T ∗

C
n. For any r > 0, we

set Ω(r) := {(x, ξ) ∈ Ω | |ξ| > r} and Ω[r] := {(x, ξ) ∈ Ω | |ξ| > r}.
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Definition 2.2. For a compact convex set M , set

SM (Ω) :=
⋃

r>0

{P (x, ξ) ∈ O(Ω(r)) | ∀Ω′
⋐ Ω conic,∀r′ > r,∀ε > 0,∃Cε > 0

s.t.

|P (x, ξ)| 6 Cεe
HM (ξ)+ε|ξ| (∀(x, ξ) ∈ Ω′[r′])}, (2.8)

NM (Ω) :=
⋃

r>0

{P (x, ξ) ∈ SM (Ω) | P (x, ξ) ∈ O(Ω(r)),∀Ω′
⋐ Ω conic,∀r′ > r,

∃ε0 > 0,∃C > 0 s.t.

|P (x, ξ)| 6 CeIM (ξ)−ε0|ξ| (∀(x, ξ) ∈ Ω′[r′])}. (2.9)

We call any P (x, ξ) ∈ SM (Ω) a symbol on Ω with support M and P (x, ξ) ∈ NM (Ω)
a nul symbol. In this paper, we set also

TM (Ω) :=
⋃

r>0

{P (x, ξ) ∈ SM (Ω) | P (x, ξ) ∈ O(Ω(r)),∀Ω′
⋐ Ω conic,

∀r′ > r,∃ε0 > 0,∃C > 0 s.t.

|P (x, ξ)| 6 Cεe
IM (ξ)+ε|ξ| (∀(x, ξ) ∈ Ω′[r′]) (2.10)

( instead of (2.8))}.

Definition 2.3. In the situation of Definition 2.3, let P (x, ξ) ∈ SM (Ω) (resp.
P (x, ξ) ∈ TM (Ω)) and suppose (2.8) (resp. suppose (2.10)). Any point p ∈
Ω is said to be non M -characteristic or non M -characteristic with respect to
the corresponding non-local pseudo-differential operator P , or P is non M -
characteristic (abbreviatory non M -char) or non M -characteristic (abbreviatory
non M -char) at p, if there exist an open conic neighbourhood Ω′ ⊂ Ω of p and
r′ > r so that we have:

∀ε > 0,∃Cε > 0 s.t. ∀(x, ξ) ∈ Ω′(r′)

|P (x, ξ)| > Cεe
HM (ξ)−ε|ξ|

or

|P (x, ξ)| > Cεe
IM (ξ)−ε|ξ|. (2.11)

We define

CarM
∞ (P ) := {(x, ξ∞) ∈ Ω∞ | P is not non M -char at (x, ξ)},

CarM
∞(P ) := {(x, ξ∞) ∈ Ω∞ | P is not nonM -char at(x, ξ)}. (2.12)

A point q ∈ Ω is also said to be M -characteristic (resp. M -characteristic) with
respect to P if q∞ ∈ CarM

∞ (P ) (resp. if q∞ ∈ CarM
∞(P )).

In this article, we will set Z+ := {ν ∈ Z | ν > 0}. We have to consider also
the formal symbols:
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Definition 2.4. Let M ⊂ C
n be a compact convex set and Ω ⊂ T ∗

C
n a conic

open set.

ŜM (Ω) := {P (t;x, ξ) =

∞
∑

ν=0

tνPν(x, ξ) | ∃r > 0 s.t.

Pν(x, ξ) ∈ O(Ω((ν + 1)r)) (∀ν ∈ Z+),

∀Ω′
⋐ Ω conic,∃d > r, 0 < ∃A < 1 : ∀ε > 0,∃Cε > 0 (2.13)

|Pν(x, ξ)| 6 CεA
νeHM (ξ)+ε|ξ| (∀ν ∈ Z+,∀(x, ξ) ∈ Ω′[(ν + 1)d])}

and

N̂M (Ω) := {P (t;x, ξ) =

∞
∑

ν=0

tνPν(x, ξ) ∈ ŜM (Ω) | ∃r > 0 s.t.

Pν(x, ξ) ∈ O(Ω((ν + 1)r)),

∀q = (y, η) ∈ Ω(r),∃Ω′
⋐ Ω a conic neighbourhood of q,

∃d > r, 0 < ∃A < 1 :

0 6 µ := HM (η/|η|) − IM (η/|η|) < − lnA

d
(2.14)

∀ε > 0,∃Cε > 0 s.t. (2.15)

|
m−1
∑

ν=0

Pν(x, ξ)| 6 CεA
meHM (ξ)+ε|ξ| (∀m ∈ Z+,∀(x, ξ) ∈ Ω′[md])}.

We call any P (t;x, ξ) ∈ ŜM (Ω) a formal symbol and P (t;x, ξ) ∈ N̂M (Ω) a formal
nul symbol. We set also

T̂M (Ω) := {P (t;x, ξ) ∈ ŜM (Ω) | ∃r > 0 s.t.

Pν(x, ξ) ∈ O(Ω((ν + 1)r)) (∀ν ∈ Z+),∀ Ω′
⋐ Ω conic,

∃d > r, 0 < ∃A < 1 : ∀ε > 0,∃Cε > 0, (2.16)

|Pν(x, ξ)| 6 CεA
νeIM (ξ)+ε|ξ| (∀ν > 0,∀(x, ξ) ∈ Ω′[(ν + 1)d])

(instead of (2.13))},

ŝM (Ω) := {P (t;x, ξ) =

∞
∑

ν=0

tνPν(x, ξ) | ∃r > 0 s.t.

Pν(x, ξ) ∈ O(Ω((ν + 1)r)) (∀ν ∈ Z+),

∀Ω′
⋐ Ω conic,∀h > 0,∃d > r : ∀ε > 0,∃Cε > 0, (2.17)

|Pν(x, ξ)| 6 Cεh
νeHM (ξ)+ε|ξ| ∀ν ∈ Z+,∀(x, ξ) ∈ Ω′[(ν + 1)d])},
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t̂M (Ω) := {P (t;x, ξ) ∈ ŝM (Ω) | ∃r > 0 s.t.

Pν(x, ξ) ∈ O(Ω((ν + 1)r)) (∀ν ∈ Z+),

∀Ω′
⋐ Ω conic,∀h > 0,∃d > r : ∀ε > 0,∃Cε > 0,

|Pν(x, ξ)| 6 Cεh
νeIM (ξ)+ε|ξ| (∀ν ∈ Z+,∀(x, ξ) ∈ Ω′[(ν + 1)d])

(instead of (2.17))}. (2.18)

In the preceding paper [6] (Propositions 4.2, 4.3, 6.5, 6.7 and 6.8), we have
proved the following:

Theorem 2.5. There is a natural isomorphism

SM (Ω)/NM (Ω)
∼→ ŜM (Ω)/N̂M (Ω).

And there is a natural isomorphism

σ : ER

[M ],ξ0

∼→ lim−→
Ω∋p

SM (Ω)/NM (Ω).

Remark 2.6. By the proof of Propositions 6.5, 6.7 and 6.8 [6], we can also prove
that if P (t;x, ξ) ∈ T̂M (Ω), there exists a symbol P (x, ξ) ∈ TM (Ω) corresponding
to P (t;x, ξ).

In this paper, we will give a generalization of the main theorem of [6]:

Theorem 2.7. Let M ⊂ C
n be a compact convex set and Ω ⊂ T ∗

C
n a conic open

set of the form C
n×ω with an open cone ω with vertex at 0. Let P (x, ξ) ∈ SM (Ω)

(resp. P (x, ξ) ∈ TM (Ω)) be a symbol satisfying (2.5) for any Ω′ ⊂ Ω of the form
C

n×ω′ with ω′ ⋐ ω). Suppose that the corresponding non-local pseudo-differential
operator P carried by M is non M -characteristic (resp. non M -characteristic)
on Ω. Then there exists a non-local pseudo-differential operator, which we denote
by P−1, defined on Ω1 := C

n × ω1 with an open cone ω1 ⋐ ω, with a symbol in
T̂−M (Ω1) (reap. in Ŝ−M (Ω1)) such that we have P ◦ P−1 = P−1 ◦ P = id. Here
id is the identity operator of the space of non-local pseudo-differential operators
carried by the compact convex set M − M .

We will see briefly the proof of this theorem by using the exponential calculus
developped by Aoki [2].

Remark 2.8. We remark also that in the theorem, the inverse operator P−1 has a
formal symbol P−1(t;x, ξ) which, in fact, belongs to t̂−M (Ω1) (resp. to ŝ−M (Ω1))
(see the proof).

3 Exponential calculus for non-local pseudo-differential operators

In this section, we review the exponential calculus for the formal symbols of non-
local pseudo-differential operators. The methods employed in this section are
those developed by Aoki [1], [2] for (micro-)local pseudo-differential operators
(see also Aoki, Kataoka and Yamazaki [4]).
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Definition 3.1. Suppose Ω = U ×ω with an open set U ⊂ C
n and an open cone

ω ⊂ C
n with vertex at 0. A formal symbol p(t;x, ξ) =

∑∞
j=0 tjpj(x, ξ) ∈ Ŝ{0}(Ω)

satisfying (2.13) with M = {0}, is said to be of type M+ (resp. M−) when we
have the following conditions:

for any conic set Ω′ ⋐ Ω and any δ > 0, there exists d > r such that for any
ε > 0, there is Cε > 0 so that we have

Re p0(x, ξ) 6 HM (ξ) + ε|ξ| + Cε

( resp. Re p0(x, ξ) 6 IM (ξ) + ε|ξ| + Cε), (3.1)

|p0(x, ξ)| 6 H · |ξ| + ε|ξ| + Cε on Ω′[d], (3.2)

and

|pj(x, ξ)| 6 δj(H · |ξ| + ε|ξ| + Cε) on Ω′[(j + 1)d] (j = 1, 2, 3, · · · ).(3.3)

By a translation on C
n, we may asssume that HM (ξ) > 0 on ω. Then if we take

δ > 0 smaller, the estimate (3.3) can be replaced by

|pj(x, ξ)| 6 δj(HM (ξ) + ε|ξ| + Cε) (3.4)

or rather by
|pj(x, ξ)| 6 δj(ε|ξ| + Cε) (3.5)

on Ω[(j + 1)d] (∀j > 1).

Proposition 3.2. If p(t;x, ξ) ∈ Ŝ{0}(Ω) is of type M+ (resp. M−), then
P (t;x, ξ) := ep(t;x,ξ) which is calculated formally, belongs to ŝM (Ω) (resp. to
t̂M (Ω)).

Proof: We assume that p(t;x, ξ) =
∑∞

j=0 tjpj(x, ξ) satisfies (3.1) – (3.3). For-
mally we have

ep(t;x,ξ) =

∞
∑

k=0

1

k!
p(t;x, ξ)k =

∞
∑

k=0

1

k!
(

∞
∑

j=0

tjpj(x, ξ))k

= 1 +

∞
∑

k=1

1

k!

∞
∑

j1,j2,··· ,jk=0

tj1+j2+···+jkpj1(x, ξ)pj2(x, ξ) · · · pjk
(x, ξ).

And this must be formally equal to P (t;x, ξ) =
∑∞

ν=0 tνPν(x, ξ), that is, for any
ν ∈ Z+, we have

Pν(x, ξ) =























1 +

∞
∑

k=1

1

k!
p0(x, ξ)k = ep0(x,ξ) (ν = 0),

∞
∑

k=1

1

k!

∑

j1+j2+···+jk=ν

pj1(x, ξ)pj2(x, ξ) · · · pjk
(x, ξ) (ν > 1).

By (3.1), for any ε > 0, there exists C = Cε > 0 such that we have |P0(x, ξ)| =
eRep0(x,ξ) 6 CeHM (ξ)+ε|ξ| (resp. |P0(x, ξ)| 6 CeIM (ξ)+ε|ξ|). By (3.1) – (3.3),
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for any ν > 1 and any (x, ξ) ∈ Ω′[(ν + 1)d], we have the following: ∀ε > 0,
∃C ′ = C ′

ε > 0 s.t.

|Pν(x, ξ)| 6

∞
∑

k=1

1

k!

∑

j1+j2+···+jk=ν

δν(HM (ξ) + ε|ξ| + C ′)k

= δν

∞
∑

k=1

1

k!

(

ν + k − 1

ν

)

(HM (ξ) + ε|ξ| + C ′)k. (3.6)

By a formula due to Aoki ([1], P.234), setting C1 := eC′

, (3.6) is equal to

= δν

ν
∑

l=1

(ν − 1)!

l!(l − 1)!(ν − l)!
(HM (ξ) + ε|ξ| + C ′)leHM (ξ)+ε|ξ|+C′

= C1δ
ν

ν
∑

l=1

(

ν − 1

l − 1

) |ξ|l
l!

(HM (
ξ

|ξ| ) + ε +
C ′

|ξ| )
leHM (ξ)+ε|ξ|.

There exists C0 > 0 independent of ε > 0 such that HM (
ξ

|ξ| ) + ε +
C ′

|ξ| 6 C0 for

any ξ with |ξ| > (ν + 1)d. So taking ε smaller than 1, this last is estimated as:

6 C1δ
ν

ν
∑

l=1

(

ν − 1

l − 1

)

Cl
0|ξ|l
l!

eHM (ξ)+ε|ξ|
6 C1δ

ν

ν
∑

l=1

(

ν − 1

l − 1

)

(
1

ε
)leHM (ξ)+ε(1+C0)|ξ|

= C1δ
ν(1 +

1

ε
)ν−1 1

ε
eHM (ξ)+ε(1+C0)|ξ| 6 C1[δ

1 + ε

ε
]νeHM (ξ)+ε(1+C0)|ξ|.

Therefore, for any h > 0, taking δ > 0 so small that we have 0 < δ <
hε

1 + ε
, we

have |Pν(x, ξ)| 6 C1h
νeHM (ξ)+ε(1+C0)|ξ| on Ω′[(ν +1)d]. Thus P (t;x, ξ) ∈ ŝM (Ω).

The proof of the case of type M− is similar.

By the similar way with Aoki [2], Théorème 2.1, we have

Proposition 3.3. We assume Ω = C
n × ω with an open cone ω ⊂ C

n. Let
formal symbols p(t;x, ξ), r(t;x, ξ) ∈ Ŝ{0}(Ω) be respectively of type M+, {0}+ and
let q(t;x, ξ) ∈ Ŝ{0}(Ω). Suppose, in the situation of Definition 3.1, for any conic
set Ω′ ⋐ Ω, there exist d′ > d such that p(t;x, ξ) and r(t;x, ξ) satisfy the following:
∀ε > 0, ∃C > 0 s.t.

{

Re p0(x, ξ) > HM (ξ) − ε|ξ| − C,

Re r0(x, ξ) > −ε|ξ| − C
(3.7)

on Ω′[d′]. Set P (t;x, ξ) := ep(t;x,ξ), Q(t;x, ξ) := eq(t;x,ξ), R(t;x, ξ) := er(t;x,ξ) and
respectively, we denote by P,Q,R corresponding non-local pseudo-differential op-
erators. Suppose that we have σ(P ◦Q) = σ(R) formally, then q(t;x, ξ) is of type
(−M)−.

By using these propositions, as Aoki [1], Théorème 5.1, we have Theorem 2.7.
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4 Continuation of holomorphic solutions of non-local pseudo-differential

equations

First let M ⊂ C
n be a compact convex set and Ω ⊂ C

n × C
n an open conic

set. In the sequel, we assume Ω = C
n × ω with an open cone ω ⊂ C

n. We
recall without proof, a way to define concretely the action of non-local pseudo-
differential operators on holomorphic functions (see [6], section 4, in particular,
Proposition 4.3):

For η′ = (η2, η3, · · · , ηn) with |η′| ≪ 1, set η := (1, η′) := (1, η2, η3, · · · , ηn).
For any small ε > 0 and z with zj 6= 0 (2 6 j 6 n), define the (n − 1)-chain

β̃ := [0,
ε

z2
] × [0,

ε

z3
] × · · · [0, ε

zn

], (4.1)

where we set [0, w] := {cw | 0 6 c 6 1} for any w ∈ C. Then there exist cones
Γ1,δ,Γ2,δ, · · · ,Γn,δ of the form (2.2) and (2.3) with some δ > 0 and a convex
G := ∩n

k=1(Γk,δ + M)-round open set D such that we can associate to a symbol

P (x, ξ), its kernel K(x, y), by the following formula: let ξ := (1, η′) and take β̃
for z := y − x. For any x ∈ U and ρ ∈ C so that |ρ| ≫ 1 and ρξ ∈ ω, set

K(x, y) :=
1

(2π
√
−1)n

∫

β̃

dη′
∫ ∞

ρ

e−τ(y−x)·ξτn−1P (x, τξ)dτ (4.2)

where the path of integration for dτ is taken in the direction ρ. In the nota-
tions of (2.7), we can prove that K(x, y) is uniquely determined by P (x, ξ) in

O(0,n)
Cn×Cn(V )

∑n
k=1 O

(0,n)
Cn×Cn(V

k̂
)

and thus, by (2.7), determines an operator P ∈ E(G;D) =

Hn
Z(D × (D + M),O(0,n)

Cn×Cn) so that K(x, y) is a kernel of P . Thus any symbol
P (x, ξ) defines a non-local pseudo-differential operator P ∈ E(G;D). Further-
more P is equal to 0 if the symbol P (x, ξ) is contained in NM (Ω).

Thanks of the G-roundness, D satisfies the following: let πk be the k-th
projection on C

n to C. Set Ak := πk({z ∈ C
n | Re〈z, ξ0〉 > IM (ξ0)} ∩ G),

B1 := π1(G) and Cj := convAj (2 6 j 6 n) (here convE being the convex-hull
of a set E ⊂ C). We remark that

A1 = {z1 = w1 +x1 | δ|Imw1| 6 −Rew1, x ∈ M}∩{z ∈ C
n | Re〈z, ξ0〉 > IM (ξ0)}.

There exists an open set U0 ⊂ D,U0 6= ∅ such that we have

U0 + [(∂A1 ∩ ∂B1) × ∂C2 × · · · × ∂Cn] ⊂ D + M,

where ∂C is the boundary set of a set C ⊂ C. Let define an integral path
γ in C

n such that for an open set U ⋐ U0, U 6= ∅, the set {(x, x + z) | x ∈
U, z ∈ γ} is included in the domain V = ∩n

k=1Vk where K(x, y)dy is defined:
there are two points a, b ∈ C near ∂A1 such that Re a,Re b < IM (ξ0) and
Im a < infz∈M Imz1, Im b > supz∈M Imz1. Let take an oriented smooth Jordan
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path γ1 ⊂ C having a1 as the start point and b1 as the terminal point so that
γ̃1 := {(x, x + (z1, z2, · · · , zn)) | x ∈ U, z1 ∈ γ1, zj ∈ C (2 6 j 6 n)} ⊂ V1. For
z1 ∈ γ1 and j > 2, let γj = γj(z1) ⊂ C be an oriented smooth Jordan closed curve
with positive orientation in C so that γ̃j := {(x, x+(z1, z2, · · · , zn)) | x ∈ U, zj ∈
γj , zi ∈ C (i 6= 1, j)} ⊂ Vj . (These are possible if we take U small enough). We
remark that γj may be taken independently of z1.

Let W,W0 ⊂ C
n be two G-open sets (G being defined in (2.4)) such that

W ⊃ W0 and W \W0 ⊂ D. We showed in the Corollary 3.7, [6] that we have the
operation

P : O(D̃ ∩ W0)/O(D̃ ∩ W ) → O(D ∩ W0)/O(D ∩ W ).

Setting γ := γ1 × γ2 × · · · × γn, this action of P on a holomorphic function
f(x) ∈ O(D̃ ∩ W0), which is determined modulo O(D ∩ W ), is given by

Pf(x) =

∫

γ

K(x, x + z)f(x + z)dz. (4.3)

We remark here, W and W0 being G-open, W + M = W, W0 + M = W0.

Theorem 4.1. Take p = (x0, ξ0) with ξ0 = (1, 0, · · · , 0) and fix it. Let M be
a compact convex set, Ω = C

n × ω with an open cone ω ⊂ C
n with ξ0 ∈ ω and

P (x, ξ) ∈ SM (Ω) a symbol. As stated above, there are cones Γ1,δ,Γ2,δ, · · · ,Γn,δ as
in (2.2) - (2.3) and, setting G := ∩n

k=1(Γk,δ +M), a non-local pseudo-differential
operator P ∈ E(G; Cn), carried by M , with the symbol P (x, ξ). Suppose that P
is non M -characteristic in Ω. Let W,W0 ⊂ C

n be two G-open sets such that
W0 ⊂ W and W \ W0 is relatively compact. If u(x) ∈ O(W0 − M) satisfies to
the equation Pu(x) ≡ 0 mod O(W − M), then u(x) ∈ O(W ), that is, u(x) can
be analytically continued to W ∪ (W0 − M).

Here we remark W ⊂ W − M .

Proof: By Theorem 2.7, there exists ω′ ⊂ ω such that P has the inverse P−1 in
Ω′ := C

n×ω′. By Remark 2.7, taking Ω smaller, we may suppose that P−1 has a
symbol Q(x, ξ) ∈ T−M (Ω). For any ξ, we set H+

ξ := {z ∈ C
n | I−M (ξ) < Re z ·ξ}

and we define
Y :=

⋃

|Imτ |<δReτ, 0<δ′<δ

(
⋂

|η′|6δ′

H+
τξ)

◦ (4.4)

where ξ = (1, η′) and A◦ means the interior of A. We may assume ω = {ξ | |Im ξ1| <
δ Re ξ1, |ξj | < δ|ξ1| (2 6 j 6 n)}. Then, in this case, we will prove K(x, y) de-
fined in (4.2) for Q(x, ξ) is analytically continued to the open set Z := {(x, y) ∈
C

n × C
n | z := y − x ∈ Y } as follows: in fact, for any z ∈ Y , there exists τ with

|Imτ | < δReτ and δ′ with 0 < δ′ < δ such that for any ξ = (1, η′) with |η′| 6 δ′,
we have I−M (τξ) < Re τξ · z. Then there exists ε > 0 so small enough that we
have

I−M (τξ) < Re τξ · z + ε|τξ| (4.5)
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for any ξ = (1, η′) with |η′| 6 δ′. For such τ and ξ, we have τξ = (τ, τξ′) ∈ ω.
Let consider the integral (4.2). By (2.10), for any ε′ > 0 with ε′ < ε, there is
C > 0 such that

|e−τz·ξτn−1Q(x, τξ)| 6 C|τ |n−1e−Re τz·ξ+I−M (τξ)+ε′|τξ|

6 C|τ |n−1e−(ε−ε′)|τξ|.

This last is estimated by a constant independent of τ and ξ. Therefore the integral
(4.2) is holomorphic for any (x, y) ∈ C

n × C
n with z := y − x ∈ Y .

We remark that
Y ⋑ {z | Rez1 > I−M (ξ0)} (4.6)

where ξ0 := (1, 0, · · · , 0): in fact, let z be so that Rez1 > I−M (ξ0). If z′ = 0,
then we have clearly z ∈ Y . So we assume z′ 6= 0. There exists ε > 0 such
that Rez1 − I−M (ξ0) > 2ε|z′| and |η′|maxw∈−M |w′| < ε|z′|. For any δ′ > 0 with
δ′ < min(δ, ε) and any η′ with |η′| 6 δ′, we have

Rez · ξ > Rez1 − Rez′ · η′ > I−M (ξ0) + 2ε|z′| − Rez′ · η′
> I−M (ξ0) + ε|z′|.

Then we have for ξ = (1, η′),

I−M (ξ) = inf
w∈−M

Rew1 + Rew′ · η′
6 inf

w∈−M
Rew1 + max

w∈−M
|w′||η′|

< inf
w∈−M

Rew1 + ε|z′| = I−M (ξ0) + ε|z′| 6 Rez · ξ

that means z ∈ Y .
Let f(x) ∈ O(W − M), and by (4.3) for −M and Q(x, ξ), we set g(x) :=

P−1f(x). Then g(x) is holomorphic on W (and this is also true for W0 instead
of W ): in fact, for any x ∈ W , thanks to (4.6), we may change, in (4.3) for −M
and Q(x, ξ), the integral path γ to be in an arbitrary small neighbourhood of any
point −m ∈ −M . Then for any z ∈ γ, we have x + z ∈ W − M and thus g(x) is
well-defined and holomorphic in the set W . The proof for W0 is similar.

Now set f(x) := Pu(x) which is, by the hypothesis, holomorphic in W −
M . Then the function v(x) defined by (4.3) for −M and Q(x, ξ) with f(x), is
holomorphic in W . Therefore we have

u(x) ≡ P−1Pu(x) = P−1f(x) = v(x) ∈ O(W )

mod O(W ) and thus u(x) is continued analytically to W .

Example 4.2. Let consider the difference operator P (D) = 1 + eD on C and we
restrict ourselves at ξ0 = −1. In this case, it has the unique support M = [0, 1]
(because n = 1). The characteristic set of the corresponding operator 1 + eD

is, as easily proved, the imaginary axis directions {±
√
−1∞ ∈ S1

∞}. For any
δ > 0, set the closed cone Γ := {z | Rez > δ|Imz|}. Let W,W0 be two Γ =
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(Γ+ [0, 1])-open sets with W ⊃ W0 and so that W \W0 is relatively compact and
k := [inf{Rez | z ∈ W}− inf{Rez | z ∈ W0}], where [·] is the Gauss’ notation. In
this case, P (D) has the inverse Q(D) = 1/(1 + eD). We remark here that there
exists C > 0 such that for any ξ, we have

| 1

1 + eξ
| 6 Ce−H[0,1](ξ) = CeI[−1,0](ξ) 6 eH[−1,0](ξ) = CeH−M (ξ)

(c.f. Theorem 2.7). Fix any ρ > 0, recalling (4.2), we set

G(z) :=

∫ ∞

ρ

e−τz

1 + eτ
dτ. (4.7)

It is easy to see that we have for any l ∈ Z+,

G(z) =
e−ρz

z
− · · · + (−1)l e

−ρ(z−l)

z − l
+ (−1)l+1G(z − l − 1); (4.8)

thus G(z) is continued analytically to C \ Z+ and has pole of ordre 1 at any
l ∈ Z+.

Let f(z) be a holomorphic function on W − [0, 1] = W + [−1, 0] and u(z) a
holomorphic function on W0 − [0, 1] so that (1 + eD)u(z) = u(z) + u(z + 1) =
f(z) on W0. If we take a positively oriented Jordan closed path γ including
0, 1, 2, · · · , k + 1 inside, but not other point of Z, we have mod O(W )

u(x) ≡ 1

1 + eD
f(x) =

1

2π
√
−1

∫

γ

G(z)f(x + z)dz

=
1

2π
√
−1

∫

γ

e−ρz

z
f(x + z)dz − · · · + (−1)k+1

2π
√
−1

∫

γ

e−ρ(z−k−1)

z − k − 1
f(x + z)dz

+
(−1)k+2

2π
√
−1

∫

γ

G(z − k − 2)f(x + z)dz

= f(x) − f(x + 1) + · · · + (−1)k+1f(x + k + 1)

but this last is holomorphic in W − [0, 1]. We remark also that this last satisfies
the equation u(x) + u(x + 1) ≡ f(x) mod O(W − [0, k + 2]).

5 Existence of holomorphic solutions of some non-local

differential equations of infinite ordre

In this section, according to Aoki [3], we will give a sufficient condition for the
existence of holomorphic solutions to a non-local differential equation, which will
be the generalization of the Theorem 4.1.2 of [3] to our situation. Let P ∈
D∞

[M ](C
n) be a non-local differential operator carried by M . In this section, we

make use of the following assumption: there exists δ > 0 with δ < 1 such that
we have

CarM
∞ (P ) ⊂ C

n × {ξ∞ ∈ S2n−1
∞ | Re ξ1 > δ|Im ξ1| or |ξ′| > δ|ξ1|} (5.1)
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where ξ′ := (ξ2, · · · , ξn) when ξ = (ξ1, ξ2, · · · , ξn). Then by Propositions 2.8, The-
orem 2.9 and Remark 2.10, for any open conic set Ω ⊂ C

n × {ξ ∈ C
n | Re ξ1 <

δ|Im ξ1|, |ξ′| < δ|ξ1|}, we have a non-local pseudo-differential operator Q, in-
verse to P , carried by −M with a formal symbol Q(t;x, ξ) =

∑∞
ν=0 tνQν(x, ξ) ∈

t̂−M (Ω) where each Qν(x, ξ) ∈ O(Ω((ν + 1)r)) with r > 0 and satisfy the follow-
ing:

for any open conic set Ω′ ⋐ Ω and any h > 0, there exists d > r such that for
any ε > 0, there exists Cε > 0 so that we have

|Qν(x, ξ)| 6 Cεh
νeI−M (ξ)+ε|ξ| on Ω′[(ν + 1)d]. (5.2)

For any δ′ > 0 with δ′ < δ, take δ1 > 0 with 0 < δ′ < δ1 < δ and define the
path as follows: set r1 := d, r2 := δd and for any ν ∈ Z+ and α ∈ Z

n
+, set

Bk,ν,α := (ν + |α| + 1)rk (k = 1, 2),

λ±
1,ν,α := {ξ1 ∈ C | Re ξ1 = ±δ1Im ξ1, |ξ1| > B1,ν,α}, (5.3)

λ0
1,ν,α := {ξ1 ∈ C | Re ξ1 6 δ1|Im ξ1|, |ξ1| = B1,ν,α} (5.4)

and λ1,ν,α := λ0
1,ν,α + λ+

1,ν,α + λ−
1,ν,α. And also for any i = 2, 3, · · · , n, we set

λi,ν,α := {ξi ∈ C | |ξi| = B2,ν,α}. (5.5)

We set λν,α := λ1,ν,α × λ2,ν,α × · · · × λn,ν,α and also λ0
ν,α := λ0

1,ν,α × λ2,ν,α ×
· · · × λn,ν,α and λ±

ν,α := λ±
1,ν,α × λ2,ν,α × · · · × λn,ν,α. Then we have λν,α =

λ0
ν,α + λ+

ν,α + λ−
ν,α.

For any ρ > 0 and c ∈ C
n, we set the polydisk ∆(a; ρ) := {x ∈ C

n| |xj − cj | <
ρ (1 6 j 6 n)}. Now let U, V ⊂ C

n be open sets with V ⋐ U so small that
we have the following: there exist b ∈ U , m ∈ M and ρ > 0 such that, setting
a := b − m, we have

V ⊂ ∆(b; ln(dρ)/
√

nd) ∩ [{x ∈ C
n| δRe x1 < |Im x1|, δ|x′| < |x1|} + a],

∆(a; ρ) ⊂ U + M − M. (5.6)

Then for small ε > 0 and x ∈ V , we have

Re (x − a) · ξ + I−M (ξ) + ε|ξ| = Re (x − b) · ξ + (I−M (ξ) − Re (−m) · ξ) + ε|ξ|
6 Re (x − b) · ξ + ε|ξ|.

By (5.6), taking ε > 0 small enough, we have Re (x − b) · ξ + ε|ξ| < ln(dρ)√
nd

|ξ| and

on λ±
ν,α, we have Re (x− b) · ξ + ε|ξ| < 0. Now let f(x) ∈ OCn(U + M −M) and

expand f(x) into the Taylor series at a: f(x) =
∑

α∈Zn
+

cα(x − a)α. We define

u(x) :=
1

(2π
√
−1)n

∑

ν∈Z+,α∈Zn
+

cα

∫

λν,α

Qν(x, ξ)
α!

ξα+l
e(x−a)·ξdξ (5.7)
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with l := (1, 1, · · · , 1) and we will prove the right-hand side converges for x ∈ V
(x ∈ V being arbitrary, this means u(x) ∈ OCn(V )): At first, by (5.6), we remark
that there exists C1 > 0 such that |cα| 6 C1ρ

−|α|. Then by (5.2), we have

|cαQν(x, ξ)
α!

ξα+l
e(x−a)·ξ| 6 C1Cεh

ν ρnα!

[ρ(ν + |α| + 1)d]|α|+n
eRe(x−a)·ξ+I−M (ξ)+ε|ξ|.

On λ±
ν,α, the right-hand side is estimated as < C1Cεh

ν ρnα!
[ρ(ν+|α|+1)d]|α|+n and on

λ0
ν,α, the right-hand side is estimated as < C1Cε(hdρ)νρd1−n. Thus, taking h > 0

small enough, (5.7) gives well-defined holomorphic function on V . We are ready
to prove:

Theorem 5.1. Let M ⊂ C
n be a comact convex set and P a non-local differential

operator carried by M . We suppose CarM
∞ (P ) ⊂ C

n × {ξ∞ ∈ S2n−1
∞ | Re ξ1 >

δ|Im ξ1| or |ξ′| > δ|ξ1|}. Then for any open sets U ⊂ C
n, any point a ∈ U and

f(x) ∈ O(U +M −M), we can find an open neighbourhood V ⊂ U of a such that
we have a solution u(x) ∈ O(V ) of the equation Pu(x) = f(x) on V .

Proof: We continue to work in the above situation. Denote by P (x, ξ) the symbol
of P . Then we have

Pu(x) =
1

(2π
√
−1)n

∑

ν∈Z+,α∈Zn
+

cα

∫

λν,α

α!

ξα+l
P (Qν(x, ξ)e(x−a)·ξ)dξ

=
1

(2π
√
−1)n

∑

ν∈Z+,α∈Zn
+

cα

∫

λν,α

α!

ξα+l
e(x−a)·ξ

∑

β

1

β!
∂β

ξ P (x, ξ)∂β
x Qν(x, ξ)dξ

=
1

(2π
√
−1)n

∑

γ

cγ

∫

λν,α

γ!

ξγ+l
e(x−a)·ξdξ =

∑

γ

cγ(x − a)γ = f(x).

Example 5.2. Let n = 1 and consider the operator P = ecxD with c ∈ C. We know

for any δ > 0, its symbol P (x, ξ) = ecxξ is contained in SB(0;|c|δ)(B(0; δ) × C). As

we can see easily that we have CarB(0;|c|δ)
∞ (ecxD) = ∅, but supposing ξ 6= 0, c 6= 0,

we have CarB(0;|c|δ)
∞ (ecxD) 6= ∅. The equation ecxDu(x) = u((c+1)x) = f(x) has

for any c 6= −1, unique solution u(x) = f(x/(c + 1)) and no solution for c = −1
in general (the equation being u(0) = f(x) in this case). Thus for c 6= −1,
the non-local operator ecxD has the inverse operator e−

c
c+1 xD having the symbol

e−
c

c+1 xξ ∈ SB(0;|c|δ)(B(0; |c + 1|δ) × C).

Remark 5.3. The proof of Theorem 5.1 is not true with the assumption of non
M -charactericity instead of the non M -charactericity. Above example is not
an application of Theorem 5.1 but we may conclude that the definition of non
M -charactericity is better than the non M -charactericity.
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6 Construction of entire holomorphic solutions to non-local differen-

tial equations with constant coefficients

In section 5, for a non-local differential equation Pu(x) = f(x), we gave a suf-
ficient condition - call it Aoki’s condition - for the existence of a holomorphic
solution. But in many case, in fact, this condition is not satisfied. For example,
we recall the following difference equation in one variable: u(x)+u(x+1) = f(x).
The characteristic set of the corresponding operator 1 + eD being the imaginary
axis directions C × {±

√
−1∞ ∈ S1

∞}, the Aoki’s condition (5.1) could not be
satisfied.

However, we will present another way to construct concretely a holomorphic
solution to non-local differential equations in the case of constant coeffocients.
We emphasize that in such method, we do not assume any non-characterisity
condition. This make us possible to calculate many examples, for example, we
will present an operational calculus for constant coefficients differential-differnce
equations. Let P ∈ D∞

[M ](C
n) be a non-local differential operator with constant

coefficient symbol P (ξ) ∈ SM (Cn × C
n) satisfying (2.8) with r = 0 (and in

particular P (ξ) ∈ O(Cn)), and we define the zero divisor of its symbol

ZP := {ξ ∈ C
n | P (ξ) = 0}. (6.1)

(Remark that in the differential operator case, the symbol is uniquely deter-
mined). So, in the above example, we have Z(1+eD) = {(2k + 1)π

√
−1 | k ∈ Z}.

Instead of the Aoki’s condition, we impose the following conditions:
(I) There exists a sequence (ρν) with ρν > 0 such that the following limit exists:

c := lim
ν→∞

ρν

ν
> 0. (6.2)

(II) There exist δ > 0, b > 0 and positively oriented Jordan closed curves Cj
ν

(1 6 j 6 n) in C arround 0, depending continuously on x, such that, setting
Cν := C1

ν × C2
ν × · · · × Cn

ν , for any ν ∈ Z+, we have

bρν 6 |ξ| 6 b−1ρν (∀ξ ∈ Cν), (6.3)

dist(ZP , Cν) > δ. (6.4)

By a translation, we may assume that we have P (0) 6= 0. For any ξ ∈ Cν , set

η :=
ξ

|ξ| . Recall H = max|ζ|=1 HM (ζ). Then, setting K := max|ζ|=2e HM (ζ)+2e,

there exists C > 0 such that we have for any R > 0

max
|τ |=2eR

ln |P (τη)| 6 max
|τ |=2eR

(C + HM (τη) + |τη|)

6 C + R max
|τ |=2eR

(HM (
τη

R
) + |τη

R
|) 6 C + RK.
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By Levin [16], p.21 Theorem 11, for 0 < ∀ε < 3e/2, there exist a1, a2, · · · , aN ∈
B(0;R) and r1, r2, · · · , rN > 0 such that we have

r1 + r2 + · · · + rN < 4εR, B(aj ; rj) ∩ {τ | P (τη) = 0} 6= ∅ (1 6 j 6 N),

(B(0;R) \ ∪N
j=1B(aj ; rj)) ∩ {τ | P (τη) = 0} = ∅

and that we have ln |P (τη)| > −h(ε)(C + RK) + (h(ε) + 1) ln |P (0)| for any
τ ∈ B(0;R) \ ∪N

j=1B(aj ; rj). Now for ξ ∈ Cν , take R := b−1ρν + δ and τ := |ξ|:
we have τ 6 |ξ| 6 R. There is j with dist(τ,B(aj ; rj)) = min

16k6N
dist(τ,B(ak; rk)).

So ∃τ ′ ∈ B(aj ; rj) ∩ {τ ′′|P (τ ′′η) = 0} s. t.

|τ − τ ′| = min
τ ′′∈B(aj ;rj)∩{τ ′′|P (τ ′′η)=0}

|τ − τ ′′|.

Set ξ′ := τ ′η, then ξ′ ∈ ZP . By (6.4), we have δ < |ξ−ξ′| = |τ −τ ′| · |η| = |τ −τ ′|.
Taking ε > 0 so small that we have δ > 16εR > 2rj , we have |τ − τ ′| > 2rj

and so τ /∈ B(aj ; rj). Then for any k, we have τ /∈ B(ak; rk) i.e. τ ∈ B(0;R) \
∪N

j=1B(aj ; rj). Thus we have

ln |P (ξ)| > −h(ε)(C + (b−1ρν + δ)K) + (h(ε) + 1) ln |P (0)|.

Therefore setting Kε := b−2h(ε)K and Cε := eCh(ε)+δK + (h(ε)− 1) ln |P (0)|, by
(6.3), we have on each Cν ,

1

|P (ξ)| 6 Cεe
Kε|ξ|. (6.5)

Now for any entire function f(x) =
∑

α∈Zn
+

cαxα ∈ O(Cn), we define

u(x) :=
∑

α∈Zn
+

cα

∮

C|α|

ex·ξ

P (ξ)
Φα(−ξ)dξ (6.6)

(where the function Φα(ξ) is defined in [18]; for example, we refere to [6], (5.8)).
For any δ > 0, there exists C ′ > 0 such that |cα| 6 C ′δ|α| for any α. By (II),
setting d := c/b (b, c being in (6.2) and (6.3)), we have that u(x) converges and
then is a holomorphic function for any x ∈ C

n. We can easily verify that u(x) is
a solution of the equation Pu(x) = f(x). We have thus proved the following:

Theorem 6.1. Let P (ξ) be a constant coefficient symbol of a non-local differential
operator P . Suppose that P (ξ) satisfies the conditions (I) and (II). Then for any
f(x) ∈ O(Cn), the function u(x) defined by the above formula (6.6) is an entire
holomorphic function on C

n and is a special solution of the non-local differential
equation Pu(x) = f(x).
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7 Example: An operational calculus for differential-difference equa-

tions with constant coefficients

As the following Example shows, Theorem 6.1 leads to develop an operational
calculus for differential-difference equations with constant coefficients.

Example 7.1. u(x) + u(x + 1) = eλx.
Recall Z(1+eD) = C × {(2k + 1)π

√
−1 | k ∈ Z}; ∃δ > 0 small enough s.t, |λ|−

δ /∈ 2Zπ. Take integral paths Ck := {ξ | |ξ| = 2kπ + δ} (k ∈ Z+). Then
{ξ ∈ C | C × {ξ∞} ⊂ Car∞(P ), ξ is inside of Ck} = {(2j + 1)π

√
−1 | − k 6

j 6 k − 1}. Setting Fk(x) :=
1

2π
√
−1

∮

Ck

exξ

1 + eξ

k!

ξk+1
dξ, we have a solution

u(x) =

∞
∑

k=0

λk

k!
Fk(x):

Fk(x) = Resξ=0
k!exξ

ξk+1(1 + eξ)
+

k−1
∑

j=−k

Resξ=(2j+1)π
√
−1

k!exξ

ξk+1(1 + eξ)

= ∂k
ξ (

exξ

1 + eξ
)|ξ=0 −

k−1
∑

j=−k

e(2j+1)π
√
−1x

((2j + 1)π
√
−1)k+1

,

Fk(x + 1) = ∂k
ξ (

e(x+1)ξ

1 + eξ
)|ξ=0 −

k−1
∑

j=−k

e(2j+1)π
√
−1(x+1)

((2j + 1)π
√
−1)k+1

= xk − Fk(x).

Thus we have

(1 + eD)u(x) = u(x) + u(x + 1) =

∞
∑

k=0

λk

k!
(Fk(x) + Fk(x + 1)) =

∞
∑

k=0

λkxk

k!
= eλx.
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