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Abstract

In this paper we deal with the form of the solutions of some difference

systems on a rational form of second order with nonzero real number initial

conditions.
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1 Introduction

Difference equations appear naturally as discrete analogues and as numerical
solutions of differential and delay differential equations having applications in
biology, ecology, economy, physics, and so on. Although difference equations
are very simple in form, it is extremely difficult to understand thoroughly the
behaviors of their solution see [1]–[16] and the references cited therein. There are
many papers related to the difference equations system, see for example [5], [6],
[17]–[18].

Our aim in this paper is to get the form of the solutions of the following
rational difference systems

xn+1 =
yn

xn−1(±1 ± yn)
, yn+1 =

xn

yn−1(±1 ± xn)
,

with nonzero real number initial conditions.

2 The System: xn+1 = yn

xn−1(1+yn) , yn+1 = xn

yn−1(1+xn)

In this section, we study the solutions of the system of the difference equations

xn+1 =
yn

xn−1(1 + yn)
, yn+1 =

xn

yn−1(1 + xn)
, n = 0, 1, ..., (1)
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with nonzero real initials conditions x0, x−1, y0, y−1 such that x0, x−1, y0, y−1 6=
−1, (x0 + y−1x0 + y−1)(y0 + x−1y0 + x−1) 6= 0.

Theorem 1. Let {xn, yn}
+∞

n=−1 be solutions of system (1). Then

1. xn+5 = yn, yn+5 = xn for n ≥ −1.

2. {xn}
+∞

n=−1 and {yn}
+∞

n=−1 are periodic with period ten i.e.,

xn+10 = xn, yn+10 = yn,

for n ≥ −1.

3. We have

x10n−1 = x−1, x10n = x0, x10n+1 =
y0

x−1(1 + y0)
,

x10n+2 =
1

x0 + y−1x0 + y−1
,

x10n+3 =
x−1

y0(1 + x−1)
, x10n+4 = y

−1
, x10n+5 = y0,

x10n+6 =
x0

y−1(1 + x0)
, x10n+7 =

1

y0 + x−1y0 + x−1
, x10n+8 =

y−1

x0(1 + y−1)
,

and

y10n−1 = y−1, y10n = y0, y10n+1 =
x0

y−1(x0 + 1)
,

y10n+2 =
1

y0 + x−1y0 + x−1
,

y10n+3 =
y−1

x0(1 + y−1)
, y10n+4 = x

−1
, y10n+5 = x0,

y10n+6 =
y0

x−1(y0 + 1)
, y10n+7 =

1

x0 + y−1x0 + y−1
, y10n+8 =

x−1

y0(1 + x−1)
.

Or equivalently

{xn}
+∞

n=−1 =

{

x−1, x0,
y0

x
−1(1+y0)

, 1
x0+y

−1x0+y
−1

, x
−1

y0(1+x
−1)

, y
−1

, y0,
x0

y
−1(1+x0)

, 1
y0+x

−1y0+x
−1

, y
−1

x0(1+y
−1)

, x−1, x0, ...

}

{yn}
+∞

n=−1 =

{

y−1, y0,
x0

y
−1(1+x0)

, 1
y0+x

−1y0+x
−1

, y
−1

x0(1+y
−1)

, x
−1

, x0,
y0

x
−1(1+y0)

, 1
x0+y

−1x0+y
−1

, x
−1

y0(1+x
−1)

, y−1, y0, ...

}

.
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Proof: 1. From Eq.(1) we see that

xn+5 =
yn+4

xn+3(1 + yn+4)
, yn+5 =

xn+4

yn+3(1 + xn+4)
,

xn+5 =

xn+3

yn+2(1+xn+3)

xn+3(1 + xn+3

yn+2(1+xn+3)
)
, yn+5 =

yn+3

xn+2(1+yn+3)

yn+3(1 + yn+3

xn+2(1+yn+3)
)
,

xn+5 =
1

xn+3(1 + yn+2) + yn+2
, yn+5 =

1

yn+3(1 + xn+2) + xn+2
,

xn+5 =
1

yn+2(1+yn+2)
xn+1(1+yn+2)

+ yn+2

, yn+5 =
1

xn+2(1+xn+2)
yn+1(1+xn+2)

+ xn+2

,

xn+5 =
xn+1

yn+2(1 + xn+1)
, yn+5 =

yn+1

xn+2(1 + yn+1)
,

xn+5 =
xn+1

xn+1(1+xn+1)
yn(1+xn+1)

, yn+5 =
yn+1

yn+1(1+yn+1)
xn(1+yn+1)

.

Therefore
xn+5 = yn, yn+5 = xn.

2. From 1), we get
xn+10 = yn+5 = xn,

and
yn+10 = xn+5 = yn.

3. For n = 0 the result holds. Now suppose that n > 0 and that our assump-
tion holds for n − 1. That is;

x10n−11 = x−1, x10n−10 = x0, x10n−9 =
y0

x−1(1 + y0)
,

x10n−8 =
1

x0 + y−1x0 + y−1
,

x10n−7 =
x−1

y0(1 + x−1)
, x10n−6 = y

−1
, x10n−5 = y0,

x10n−4 =
x0

y−1(1 + x0)
, x10n−3 =

1

y0 + x−1y0 + x−1
, x10n−2 =

y−1

x0(1 + y−1)
,

and

y10n−11 = y−1, y10n−10 = y0, y10n−9 =
x0

y−1(x0 + 1)
,

y10n−8 =
1

y0 + x−1 + y0 + x−1
,

y10n−7 =
y−1

x0(1 + y−1)
, y10n−6 = x

−1
, y10n−5 = x0,

y10n−4 =
y0

x−1(y0 + 1)
, y10n−3 =

1

x0 + y−1x0 + y−1
, y10n−2 =

x−1

y0(1 + x−1)
.
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Now, it follows from Eq.(1) that

x10n−1 =
y10n−2

x10n−3(1 + y10n−2)
=

x−1

y0(1 + x−1)
(

1
y0+x

−1y0+x
−1

)(

1 + x
−1

y0(1+x
−1)

) = x−1,

y10n−1 =
x10n−2

y10n−3(1 + x10n−2)
=

y
−1

x0(1+y
−1)

(

1
x0+y

−1x0+y
−1

)(

1 + y
−1

x0(1+y
−1)

) = y−1,

x10n =
y10n−1

x10n−2(1 + y10n−1)
=

y−1
(

y
−1

(1+y
−1)x0

)

(1 + y−1)
= x0,

y10n =
x10n−1

y10n−2(1 + x10n−1)
=

x−1
(

x
−1

(1+x
−1)y0

)

(1 + x−1)
= y0,

and

x10n+1 =
y10n

x10n−1(1 + y10n)
=

y0

x−1(1 + y0)
,

y10n+1 =
x10n

y10n−1(1 + x10n)
=

x0

y−1(1 + x0)
.

Similarly one can prove the others relations. The proof is complete.

Example 1. In order to illustrate the results of this section and to support
our theoretical discussions, we consider interesting numerical example for the
difference system (1) with the initial conditions x−1 = −2, x0 = 0.5, y−1 =
0.7 and y0 = 0.6.(See Fig. 1).

The following cases can be proved similarly.

3 The System: xn+1 = yn

xn−1(−1+yn) , yn+1 = xn

yn−1(−1+xn)

In this section, we obtain the solutions of the following system of difference equa-
tions

xn+1 =
yn

xn−1(−1 + yn)
, yn+1 =

xn

yn−1(−1 + xn)
, n = 0, 1, ..., (2)

with nonzero real initials conditions x0, x−1, y0, y−1 such that x0, x−1, y0, y−1 6=
1, (x0 − y−1x0 + y−1)(y0 − x−1y0 + x−1) 6= 0.

Theorem 2. Let {xn, yn}
+∞

n=−1 be solutions of system (2). Then
1. xn+5 = yn, yn+5 = xn for n ≥ −1.
2. {xn}

+∞

n=−1 and {yn}
+∞

n=−1 are periodic with period ten i.e.,

xn+10 = xn, yn+10 = yn,
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Figure 1: This figure shows the periodicity of the solutions of system (1) with
the initial conditions x−1 = −2, x0 = 0.5, y−1 = 0.7 and y0 = 0.6.

for n ≥ −1.
3. We have

x10n−1 = x−1, x10n = x0, x10n+1 =
y0

x−1(−1 + y0)
, x10n+2 =

1

x0 − y−1x0 + y−1
,

x10n+3 =
x−1

y0(−1 + x−1)
, x10n+4 = y

−1
, x10n+5 = y0, x10n+6 =

x0

y−1(−1 + x0)
,

x10n+7 =
1

y0 − x−1y0 + x−1
, x10n+8 =

y−1

x0(−1 + y−1)
,

and

y10n−1 = y−1, y10n = y0, y10n+1 =
x0

y−1(−1 + x0)
, y10n+2 =

1

y0 − x−1y0 + x−1
,

y10n+3 =
y−1

x0(−1 + y−1)
, y10n+4 = x−1, y10n+5 = x0, y10n+6 =

y0

x−1(−1 + y0)
,

y10n+7 =
1

x0 − y−1x0 + y−1
, y10n+8 =

x−1

y0(−1 + x−1)
.

Or equivalently

{xn}
+∞

n=−1 =

{

x−1, x0,
y0

x
−1(−1+y0)

, 1
x0−y

−1x0+y
−1

, x
−1

y0(−1+x
−1)

,

y
−1

, y0,
x0

y
−1(−1+x0)

, 1
y0−x

−1y0+x
−1

, y
−1

x0(−1+y
−1)

, x−1, x0, ...

}

,

{yn}
+∞

n=−1 =

{

y−1, y0,
x0

y
−1(−1+x0)

, 1
y0−x

−1y0+x
−1

, y
−1

x0(−1+y
−1)

,

x
−1

, x0,
y0

x
−1(−1+y0)

, 1
x0−y

−1x0+y
−1

, x
−1

y0(−1+x
−1)

, y−1, y0, ...

}

.

Example 2. For the initial conditions x−1 = 0.1, x0 = 0.6, y−1 = 0.5 and
y0 = −0.3 when we take the system (2). (See Fig. 2).
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Figure 2: This figure shows the periodicity of the solutions of system (2) with
the initial values x−1 = 0.1, x0 = 0.6, y−1 = 0.5 and y0 = −0.3.

Remark 1. Consider the systems

xn+1 =
yn

xn−1(1 + yn)
, yn+1 =

xn

yn−1(−1 + xn)
, n = 0, 1, ..., (3)

xn+1 =
yn

xn−1(−1 + yn)
, yn+1 =

xn

yn−1(1 + xn)
, n = 0, 1, ..., (4)

with nonzero real initials conditions x0, x−1, y0, y−1.

• Let {xn, yn}
+∞

n=−1 be solutions of system (3) such that x0, x−1 6= 1, y0, y−1 6=
−1, (−x0 − y−1x0 + y−1)(y0 − x−1y0 − x−1) 6= 0. Then

{xn}
+∞

n=−1 =

{

x−1, x0,
y0

x
−1(1+y0)

, 1
x0+y

−1x0−y
−1

, x
−1

y0(1−x
−1)

, −y−1, −y0,
x0

y
−1(1−x0)

, 1
−y0+x

−1y0+x
−1

, y
−1

x0(1+y
−1)

, x−1, x0, ...

}

{yn}
+∞

n=−1 =

{

y−1, y0,
x0

y
−1(−1+x0)

, 1
y0−x

−1y0−x
−1

, −y
−1

x0(1+y
−1)

, −x−1, −x0,
−y0

x
−1(1+y0)

, 1
−x0−y

−1x0+y
−1

, x
−1

y0(−1+x
−1)

, y−1, y0, ...

}

.

• Let {xn, yn}
+∞

n=−1 be solutions of system (4) such that x0, x−1 6= −1, y0, y−1 6=
1, (x0 − y−1x0 − y−1)(−y0 − x−1y0 + x−1) 6= 0. Then

{xn}
+∞

n=−1 =

{

x−1, x0,
y0

x
−1(−1+y0)

, 1
x0−y

−1x0−y
−1

, −x
−1

y0(1+x
−1)

, −y−1, −y0,
−x0

y
−1(1+x0)

, 1
−y0−x

−1y0+x
−1

, y
−1

x0(−1+y
−1)

, x−1, x0, ...

}

{yn}
+∞

n=−1 =

{

y−1, y0,
x0

y
−1(1+x0)

, 1
y0+x

−1y0−x
−1

, y
−1

x0(1−y
−1)

, −x−1, −x0,
y0

x
−1(1−y0)

, 1
−x0+y

−1x0+y
−1

, x
−1

y0(1+x
−1)

, y−1, y0, ...

}

.

We see that the solutions of the systems (3), (4) are periodic with period ten.
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