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Abstract

The main purpose of this paper is to introduce a new sum analogous to

Dedekind sum, then using the properties of Dirichlet L-functions to study

the mean value of the new sum.
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1 Introduction

For a positive integer k and an arbitrary integer h, the classical Dedekind sum
S(h, k) is defined by

S(h, k) =

k
∑

a=1

((a

k

))

((

ah

k

))

,

where

((x)) =

{

x − [x] − 1
2 , if x is not an integer;

0, if x is an integer.

The various properties of S(h, k) were investigated by many authors, see [2]-
[4], [6]-[10]. For example, one of the most important properties of S(h, q) is its
reciprocity theorem. That is, for all positive integers h and q with (h, q) = 1, we
have the identity

S(h, q) + S(q, h) =
h2 + q2 + 1

12hq
−

1

4
.
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In this paper, we introduce a new sum C(h, k) as follows:

C(h, k) =

k
∑′

a=1

cot

(

πha

k

)

cot
(πa

k

)

,

where h be any integer with (h, k) = 1,

k
∑′

a=1

denotes that the sum is taken only

over the a satisfying (a, k) = 1, and cot(x) = cos(x)/ sin(x).
This sum is analogous to Dedekind sum, so we think that it must have some

similar properties as the Dedekind sum. Based on this reason, we use the orthogo-
nality relations for characters and the properties of Dirichlet L-functions to study
the mean value distribution of C(h, k), and obtain some interesting identities and
asymptotic formulae. That is, we shall prove the following:

Theorem 1. For any integer q > 1, we have the asymptotic formula

q
∑′

h=1

C2(h, q) =
5

9
· q4 ·

∏

p|q

(p2 − 1)2

p2(p2 + 1)
+ O

(

q3 · exp

(

4 ln q

ln ln q

))

,

where
∏

p|q

denotes the product over all distinct prime divisors p of q, exp(y) = ey.

Theorem 2. Let q > 2 be a square-full number (That is, for any prime p, p|q if
and only if p2|q). Then we have the identity

q
∑′

h=1

C(h, q)Rq(h + 1) = −
1

3
· q · φ2(q) ·

∏

p|q

(

1 +
1

p

)

,

where Rq(c) is the Ramanujan’s sum, defined as (see Theorem 8.6 of [1])

Rq(c) =

q
∑

k=1
(k,q)=1

e
2πikc

q =
∑

d|(c,q)

dµ(q/d),

and µ(n) denotes the Möbius function defined as follows:

µ(n) =







1, if n = 1;
(−1)r, if n = p1p2 · · · pr, pi (i = 1, 2, · · · ) denote distinct primes;
0, otherwise.

.

Theorem 3. For any positive integer q > 1, we have the identity

C(1, q) =
1

3
· φ(q)



q ·
∏

p|q

(

1 +
1

p

)

− 3



 .
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2 Some Lemmas

In this section, we shall give some lemmas which are necessary for the proof of
our theorems. First we have the following:

Lemma 1. Let q > 2 be an integer, and let χ be any Dirichlet character mod q
with χ(−1) = −1. Then we have the identity

L(1, χ) =
π

2q

q
∑

r=1

χ(r) cot

(

πr

q

)

,

where L(1, χ) denotes Dirichlet L-function corresponding to χ mod q.

Proof: See Lemma 1 in [7].

Lemma 2. Let q ≥ 3 be an integer. Then for any integer h with (h, q) = 1, we
have the identity

C(h, q) =
4q2

π2φ(q)

∑

χ mod q

χ(−1)=−1

χ(h)|L(1, χ)|2,

where χ runs through the Dirichlet characters mod q with χ(−1) = −1.

Proof: For any integer a with (a, q) = 1, it is clear that

q
∑

b=1

χ(b) cot

(

πb

q

)

= 0

if χ(−1) = 1. In fact note that cot is an odd function and both χ and cot are
periodic with period q, we have

q
∑

b=1

χ(b) cot

(

πb

q

)

=

q
∑

b=1

χ(−b) cot

(

−πb

q

)

= −

q
∑

b=1

χ(b) cot

(

πb

q

)

,

or
q

∑

b=1

χ(b) cot

(

πb

q

)

= 0.

Using this identity, Lemma 1 and the orthogonality of characters mod q we have

∑

χ mod q

χ(−1)=−1

χ(a)L(1, χ) =
∑

χ mod q

χ(−1)=−1

χ(a)

(

π

2q

q
∑

r=1

χ(r) cot

(

πr

q

)

)

=
π

2q

∑

χ mod q

χ(a)

(

q
∑

r=1

χ(r) cot

(

πr

q

)

)

=
πφ(q)

2q
· cot

(

πa

q

)

,
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or

cot

(

πa

q

)

=
2q

πφ(q)

∑

χ mod q

χ(−1)=−1

χ(a)L(1, χ). (1)

Then from the definition of C(h, q), (1) and the orthogonality of characters mod
q we have

C(h, q) =

q
∑′

a=1

cot

(

πha

q

)

cot

(

πa

q

)

=
4q2

π2φ2(q)

∑

χ1 mod q

χ1(−1)=−1

∑

χ2 mod q

χ2(−1)=−1

q
∑

a=1

χ1(ha)χ2(a)L(1, χ1)L(1, χ2)

=
4q2

π2φ(q)

∑

χ mod q

χ(−1)=−1

χ(h)|L(1, χ)|2.

This proves Lemma 2.

Lemma 3. Let q ≥ 3 be an integer. Then we have the asymptotic formula and
identity

(A).
∑

χ mod q

χ(−1)=−1

|L(1, χ)|4 =
5π4

144
φ(q)

∏

p|q

(p2 − 1)2

p2(p2 + 1)
+ O

(

q · exp

(

4 ln q

ln ln q

))

;

(B).
∑

χ mod q

χ(−1)=−1

|L(1, χ)|2 =
π2

12
·
φ2(q)

q2



q
∏

p|q

(

1 +
1

p

)

− 3



 .

Lemma 4. Let q ≥ 3 be a square-full number. Then we have the identity

∑∗

χ mod q

χ(−1)=−1

|L(1, χ)|2 =
π2

12

φ3(q)

q2

∏

p|q

(

1 +
1

p

)

,

where
∑∗

χ mod q

χ(−1)=−1

denotes the summation over all primitive odd characters mod q.

Proof: The proofs of Lemma 3 and Lemma 4 can be found in [9].
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3 Proof of Theorems

In this section, we shall complete the proofs of our theorems. First we prove
Theorem 1. For any integer q ≥ 3, from Lemma 2, (A) of Lemma 3 and the
orthogonality of characters mod q we have

q
∑′

h=1

C2(h, q) =
16q4

π4φ2(q)

∑

χ1 mod q

χ1(−1)=−1

∑

χ2 mod q

χ2(−1)=−1

q
∑

h=1

χ1(h)χ2(h)|L(1, χ1)|
2 ·

·|L(1, χ2)|
2 =

16q4

π4φ(q)

∑

χ mod q

χ(−1)=−1

|L(1, χ)|4

=
5

9
· q4 ·

∏

p|q

(p2 − 1)2

p2(p2 + 1)
+ O

(

q3 · exp

(

4 ln q

ln ln q

))

,

where
∏

p|q

denotes the product over all distinct prime divisors p of q. This proves

Theorem 1.
Now we prove Theorem 2. Note the identity

q
∑

c=1
(c,q)=1

χ(c)Rq(c + 1) =

q
∑

a=1
(a,q)=1

e

(

a

q

) q
∑

c=1
(c,q)=1

χ(c)e

(

ac

q

)

= χ(−1) |τ(χ)|
2
, (2)

where τ(χ) =

q
∑

a=1

χ(a)e

(

a

q

)

denotes the Gauss sum, and e(z) = exp(2πiz).

If q is a square-full number and χ is not a primitive character mod q, then
from the properties of Gauss sums (see [1] and [5]) we know that τ(χ) = 0. If χ
is a primitive character mod q, then |τ(χ)|2 = q. Then from Lemma 2, Lemma
4 and (2) we have

q
∑′

h=1

C(h, q)Rq(h + 1) =
4q2

π2φ(q)

∑

χ mod q

χ(−1)=−1

q
∑′

h=1

χ(h)Rq(h + 1)|L(1, χ)|2

=
4q2

π2φ(q)

∑

χ mod q

χ(−1)=−1

χ(−1) |τ(χ)|
2
· |L(1, χ)|2 = −

4q3

π2φ(q)

∑∗

χ mod q

χ(−1)=−1

|L(1, χ)|2

= −
4q3

π2φ(q)
·
π2

12

φ3(q)

q2

∏

p|q

(

1 +
1

p

)

= −
1

3
· q · φ2(q) ·

∏

p|q

(

1 +
1

p

)

,

where
∑∗

χ mod q

χ(−1)=−1

denotes the summation over all primitive odd characters mod q.
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This proves Theorem 2.
Theorem 3 follows from Lemma 2 with h = 1 and (B) of Lemma 3.
This completes the proof of our all theorems.
Acknowledgment The authors would like to thank the referee for his very
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