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Abstract

In this paper, we further study the GHSS splitting method for non-
Hermitian positive definite linear problems, which is introduced by Benzi
[A generalization of the Hermitian and skew-Hermitian splitting iteration,
SIAM J. Matrix Anal. Appl., 31 (2009), pp. 360-374]. A modified generali-
zation of the Hermitian and skew-Hermitian method (MGHSS) is given, and
it still can be used as an effective preconditioner for saddle point systems.
We will show the effectiveness of our preconditioner.
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1 Introduction

We consider the following Stokes type problem:







−ν∆u + (u.∇)u + ∇p = f, in Ω
−divu = 0, in Ω
u = g, on Γ

(1)

Here u denotes the velocity vector field, p is the pressure, Ω is a bounded domain
in ℜd. A stable finite element or finite difference method applied to discretize (1)
leads to the solution of the following so-called saddle point linear system:

[

A BT

−B C

] [

u
p

]

=

[

f
0

]

. (2)
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Where A = σM+νL+N , L is symmetric positive definite (SPD) and consists of a
direct sum of discrete Laplace operators. N is a skew-symmetric matrix, note that
N = 0 for the generalized Stokes problem, Also, M is a mass matrix, possibly
a scaled identity, C is a symmetric positive semidefinite pressure stabilization
matrix and B has full rank.

The Hermitian and skew-Hermitian splitting (HSS) iteration was first intro-
duced by Bai, Golub, and Ng in [1] and extended in [2] for the solution of a class
of non-Hermitian linear systems Ax = b. In [3], the authors applied the standard
HSS method to the system (2), which is based on the splitting:

(

A BT

−B C

)

=

(

HA 0
0 C

)

+

(

SA BT

−B 0

)

,

where HA = 1

2
(A + AT ), and in [6], Simoncini and Benzi studied the eigenvalue

problem associated with the preconditioned matrix when is symmetric positive
definite and . In [5], in order to have a ”heavier” diagonal corresponding system
which can be solved more easy than the standard HSS method, Benzi gave a
generalization of the hermitian and skew-hermitian splitting iteration, which is
based on the splittings:

(

A BT

−B C

)

=

(

GA 0
0 C

)

+

(

KA + SA BT

−B 0

)

where

HA =
1

2
(A + AT ) = GA + KA,

both GA and KA are Hermitian positive semidefinite matrices.
In this paper, in order to make the coefficient matrix more diagonally dom-

inant, a modified generalization of the hermitian and skew-hermitian method
(MGHSS) is given, and it still can be used as an effective preconditioner. In
section 2, we will describe the MGHSS scheme, and the convergence theorem of
stationary iteration will be given. We applied the MGHSS scheme as a precon-
ditioner to to accelerate the convergence of the GMRES iteration in section 3,
some numerical tests are discussed in section 4. Concluding remarks are given in
section 5.

2 The MGHSS method

In this section, we give the MGHSS method based on the splitting:
(

A BT

−B C

)

=

(

GA 0
0 0

)

+

(

KA + SA BT

−B C

)

= HM + SM , (3)

First, let α > 0, we will show the convergence of the alternating iteration:

{

(HM + αI)xk+ 1

2 = (αI − SM )xk + b,

(SM + αI)xk+1 = (αI − HM )xk+ 1

2 + b.
(4)
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We give the convergence theorem of stationary iteration as follows.

Theorem 2.1. Assume that A ∈ Rn×n has positive definite symmetric part
HA = (A + AT )/2, C ∈ Rm×m is symmetric positive semidefinite and has full
rank. Assume further that HA is split as HA = GA + KA , with GA SPD and
KA positive semidefinite. Then the MGHSS iteration converges unconditionally
to the unique solution of problem (1) based on the splittings (4), that is, ρ(T ) < 1
for all α > 0.

Proof: Consider the splitting (4). The iteration matrix T is similar to

T = (αI − HM )(αI + HM )−1(αI − SM )(αI + SM )−1 = RU,

where

R = (αI − HM )(αI + HM )−1, U = (αI − SM )(αI + SM )−1.

Now, R is orthogonally similar to the (n + m) × (n + m) diagonal matrix

D = diag

(

α − u1

α + u1

, · · · ,
α − un

α + un

, 1, · · · , 1

)

,

where u1, u2, ..., un are the (positive) eigenvalues of GA. That is, there is an
orthogonal matrix V of order n + m such that

V T RV = D =

[

D1 0
0 D2

]

,

with D1 and D2 diagonal matrices of order n and m, respectively.
Note that α−ui

α+ui

< 1, by the famous Kellogg’s lemma [7], we have

ρ(T ) ≤ 1.

Note that RU is orthogonally similar to

V T RUV = (V T RV )(V T UV T ) = DQ,

where Q = V T UV T , therefore,

ρ(T ) = ρ(DQ) = ρ(QD).

Let

Q =

[

Q11 Q12

Q21 Q22

]

.

Then,

QD =

[

Q11D1 Q12D2

Q21D1 Q22D2

]

.
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Now, let λ ∈ C be an eigenvalue of QD and let x ∈ Cn+m be a corresponding
eigenvector with ‖x‖

2
= 1. We assume λ 6= 0, then we have QDx = λx, and

taking norms on both sides, we have

|λ| = ‖QDx‖
2
≤ ‖Dx‖

2
=

n
∑

i=1

(

α − ui

α + ui

)

xi xi +
n+m
∑

i=n+1

xi xi.

To prove that λ < 1, we show that there exists at least one i (1 ≤ i ≤ n)
such that xi 6= 0. Using the assumption that B has full rank, we will show that
xi = 0 for all 1 ≤ i ≤ n implies x = 0, a contradiction. Indeed, if the eigenvector
x = [0; x̂] (where x̂ ∈ Cm), the identity DQx = λx becomes

DQx =

[

D1Q11 D2Q12

D1Q21 D2Q22

] [

0
x̂

]

=

[

D1Q12x̂
D1Q12x̂

]

=

[

0
λx̂

]

.

Therefore, in particular, it must be D1Q12 6= 0. We will show that Q12 has
full column rank; hence, it must be x̂ = 0. Recall that Q = V T UV with

V =

[

V11 0
0 V22

]

,

where V11 ∈ Rn×n is the orthogonal matrix that diagonalizes (αI − HA)(αI +
HA)−1 and V22 = Im×m. Recall that the orthogonal matrix U is given by

(αI − SM )(αI + SM )−1 =

[

αIn − KA − SA −BT

B αIm − C

] [

αIn + KA + SA −BT

B αIm + C

]

−1

[

U11 U12

U21 U22

]

.

An explicit calculation shows that

U12 = −[(αIn − S)(αIn + S)−1 + In]BT [αIm + C + B(αIn + S)BT ]−1,

where S = KA + SA. And we can get Q12 = V T
11U12V22, showing that Q12 has

full column rank since V11 and V22 are orthogonal and BT has full column rank.
This completes the proof.

Remark 2.1. In fact, if we split C = GC + KC , where GC and KC are
Hermitian positive semidefinite matrices, we can get the different splitting:

(

A BT

−B C

)

=

(

GA 0
0 GC

)

+

(

KA + SA BT

−B KC

)

= ĤM + ŜM . (5)
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Similarly, we can get the convergence theorem of the alternating iteration based
on the splittings, we will not discuss it anymore.

Let

Pα =
1

2α
(αI + HM )(αI + SM ), Qα =

1

2α
(αI − HM )(αI − SM ), Tα = P−1

α Qα,

then, we have
A = Pα − Qα, Tα = P−1

α Qα = I − P−1
α A,

T and Tα have the same spectrum, ℑ(λ), ℜ(λ) denote the imaginary and real part
of λ, which is the eigenvalue of the preconditioned matrix P−1

α A. From Theorem
2.1, we can know that,

|1 − λ| < 1

so,
λ ∈ D(1, 1) := {z ∈ C; |z − 1| ≤ 1} \{0}.

3 Krylov subspace acceleration

The basic algorithm of the Krylov subspace methods is the conjugate gradient
method (CG) which has the nice properties that it uses only three vectors in
memory and minimizes the error in the A-norm. However, the algorithm mainly
performs well if the matrix is symmetric, and positive definite. In cases where
one of these two properties is violated, CG may break down. GMRES method
has the advantage that theoretically the algorithm does not break down unless
convergence has been reached. The main problem in GMRES method is that
the amount of storage increases as the iteration number increases. Therefore,
the application of GMRES method may be limited by the computer storage. To
remedy this problem, a restarted version, GMRES(m). See [10] for more about
the Krylov subspace methods.

Note that as a preconditioner we can use

Pα =
1

2α
(αI + HM )(αI + SM ).

Application of the alternating preconditioner within GMRES method requires
solving a linear system of the form Mαz = r at each iteration. This is done by
first solving

(HM + αI)v = r

for v, followed by
(SM + αI)z = v.

Therefore, the main potential advantage of the MGHSS scheme over the stan-
dard HSS or the GHSS scheme is that the matrix (SM + αI) have a ”heavier”
diagonal form and better conditioned. So it can be expected to be less expensive
when we use the GMRES method.
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4 Numerical examples

In this section we present a sample of numerical experiments conducted in order
to assess the effectiveness of the alternating algorithm (4) as a preconditioner for
the GMRES method. All experiments were performed in Matlab 7.0.

The generated test problems are leaky two-dimensional lid-driven cavity pro-
blems in square domain (−1, 1)×(−1, 1) with the lid flowing from the left to right.
A Dirichlet no-flow condition is applied on the side and bottom boundaries. The
nonzero horizontal velocity on the lid is chosen to be {y = 1;−1 ≤ x ≤ 1 |ux = 1}.
Using the IFISS software written by Silvester, Elman and Ramage [8] to discretize
(1), we take a finite element subdivision based on uniform grids of square ele-
ments. The mixed finite element used is the bilinear-constant velocity u pressure:
Q1 −P0 pair. Thus, the (1, 1) block A of the coefficient matrix corresponding to
the discretization of the conservative term is symmetric positive definite, and the
(1, 2) block B corresponding to the discrete divergence operator is rank deficient.
The example is derived by discretizing (1) on 16 × 16 meshes with stabilization
(i.e., C 6= 0, β = 0.25 were used for the viscosity and stabilization parameters).

Grid n m nnz(A) nnz(B)
8 × 8 162 64 786 392
16 × 16 578 256 3806 1800
32 × 32 2078 1024 16818 7688
64 × 64 8450 4096 70450 31752

Table 1: Size and number of nonzeros of the relevant matrices.

Method m × m 8 × 8 16 × 16 32 × 32
MGHSS IT 38 51 55

CPU 0.4814 8.6060 44.3390
GHSS IT 84 73 58

CPU 1.0643 13.5072 47.3624
HSS IT 103 95 70

CPU 1.2587 17.0489 267.3157

Table 2: IT and CPU for the example with α = 0.02.

In Figure 1, we display the eigenvalues of the preconditioned matrix P−1M
in the case of 16×16 meshes when we use the MGHSS preconditioners. In Figure
2, we display the eigenvalues of the preconditioned matrix P−1M in the case of
16×16 meshes when we use the standard HSS preconditioners. We can find that
they are all strongly clustered. All set α = 0.04.

In Figure 3, we compare the performances of the GMRES iterations, with
a convergence tolerance of 10−6, and the inner GMRES iteration was precon-
ditioned by an incomplete LU factorization, in both cases, the drop tolerance



A modified splitting iteration 153

−0.5 0 0.5 1 1.5 2 2.5
−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

Figure 1: Eigenvalues of P−1M(MGHSS) with α = 0.04 on 16 × 16 grid .
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Figure 2: Eigenvalues of P−1M(HSS) with α = 0.04 on 16 × 16 grid
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Figure 3: Convergence curve and total numbers of GMRES(10) iterations with
α = 0.02 on 16 × 16 grid

was set to 0.01. We can find that, with the same value α = 0.02, the MGHSS
preconditioner can outperform the optimally tuned HSS preconditioner, this is
still true when we compare the results between the MGHSS preconditioner and
GHSS preconditioner.

In Table 1, problem sizes and sparse information on the relevant matrices on
different meshes are given.

In Table 2, we observe that as preconditioners for GMRES(10) with α = 0.02,
MGHSS performs much better than HSS and GHSS in both iteration steps and
CPU times.

5 Conclusion

In this paper, a modified generalization of the HSS splitting method of Bai, Golub,
and Ng has been described. The new scheme has been shown to be uncondition-
ally convergent. Similar to the PHSS method and the PGHSS method, the new
method (PMGHSS) can also be accelerated by a Krylov subspace method with
inexact inner solves. Numerical tests have shown the effectiveness of the new
approach, but we can not sure that the PMGHSS method always performs better
than the PGHSS method and the method PHSS, in that case, we choose the
PGHSS method or the PHSS method.
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