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On the behaviour of Stanley depth under variable

adjunction
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Abstract

Let S = K[x1, . . . , xn] be a polynomial ring in n variables over the field
K. For integers 1 ≤ t < n consider the ideal I = (x1, . . . , xt)∩(xt+1, . . . , xn)
in S. In this paper we bound from above the Stanley depth of the ideal
I ′ = (I, xn+1, . . . , xn+p) ⊂ S′ = S[xn+1, . . . , xn+p]. We give similar upper
bounds for the Stanley depth of the ideal (In,2, xn+1, . . . , xn+p), where In,2

is the squarefree Veronese ideal of degree 2 in n variables.
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1 Introduction

Let S = K[x1, . . . , xn] be the polynomial ring in n variables over a field K and M
be a finitely generated Z

n-graded S-module. If u ∈ M is a homogeneous element
in M and Z ⊂ {x1, . . . , xn} then let uK[Z] ⊂ M denote the linear K-subspace
of all elements of the form uf , f ∈ K[Z]. This space is called a Stanley space
of dimension |Z| if uK[Z] is a free K[Z]-module. A Stanley decomposition of
module M is a presentation of the K-vector space M as a finite direct sum of
Stanley spaces D : M =

⊕r

i=1 uiK[Zi]. Set sdepth(D) = min{|Zi| : i = 1, . . . , r}.
The number

sdepth(M) := max{sdepth(D) : D is a Stanley decomposition of M}

is called the Stanley depth of M . Stanley depth is an invariant which has some
common properties with the homological depth invariant.

∗Both authors are grateful to Professor D. Popescu for helpful discussions during the prepa-
ration of this paper.
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In 1982 Stanley conjectured (see [12]) that sdepthM ≥ depthM . This con-
jecture is still open except some results obtained mainly for n ≤ 5 (see [1], [2],
[9], [10], [11]). A method to compute the Stanley depth is given in [6]. Even
when it does not provide the value of the Stanley depth, this method allows one
to obtain fairly good estimations for the invariant of interest.

In [7], Ishaq proved that if J is a monomial ideal of S = K[x1, . . . , xn] and
J ′ = (J, xn+1) is the ideal of S′ = S[xn+1] then sdepth(J) ≤ sdepth(J ′) ≤
sdepth(J) + 1. When adjoining more variables, a similar result can be easily
obtained by iterating Ishaq’s result.
However, the upper bound for sdepth((J, xn+1, . . . , xn+p)) (p ≥ 2) thus obtained
can be sometimes too pessimistic.

The aim of this paper is to bound from above the Stanley depth of ideals
obtained by adjoining variables to monomial ideals in S belonging to two classes.
A first class consists of radical monomial ideals described in the theorem below,
whose proof is given in the next section.

Theorem 2.1. Let I = (x1, . . . , xt)
⋂

(xt+1, . . . , xn) be a monomial ideal in
S = K[x1, . . . , xn], where 1 ≤ t < n, and let I ′ = (I, xn+1, . . . , xn+p) ⊂ S′ =
S[xn+1, . . . , xn+p], where p ≥ 2. Then

sdepth(I ′) ≤ 2 +

(

n
3

)

−
(

t
3

)

−
(

n − t
3

)

+ p

(

n
2

)

+ n

(

p
2

)

+

(

p
3

)

t(n − t) + np − p(n+2)
4

. (1)

An alternative bound is obtained by imposing some conditions on t, n and p,
see Theorem 2.3 in Section 2 for the precise statement.

The reasoning used to prove the results mentioned above can be adapted to
work for another class of ideals, namely, squarefree Veronese ideals of degree 2.
In Section 3 we shall prove the following.

Theorem 3.1. Let In,2 be the squarefree Veronese ideal of degree 2 in S
and (In,2, xn+1, . . . , xn+p) be the squarefree ideal in S′, where p ≥ 2. Then

sdepth(In,2, xn+1, . . . , xn+p) ≤ 2 +

(

n + p
3

)

(

n
2

)

+ np − p − p
2⌊(

n
3

)/(
n
2

)⌋
.

Also this bound is further improved by imposing some condition on n and p
(cf. Theorem 3.4).

Herzog, Vlădoiu and Zhang [6] have results implying that Stanley’s conjecture
is true for squarefree Veronese ideals. In Section 3 we note that Stanley’s con-
jecture is valid for the ideal obtained by adding several variables to a squarefree
Veronese ideal.
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Proposition 3.8. Let I ⊂ S = K[x1, . . . , xn] be the squarefree Veronese
ideal generated by all monomials of degree d and I ′ = (I, xn+1, . . . , xn+m) ⊂ S′ =
S[xn+1, . . . , xn+m]. Then Stanley’s conjecture holds for the ideal I ′.

In the last section of the paper we compare the bounds which we obtained
without conditions with those which we obtained when appropriate conditions
are imposed.

Some results from [4], [5], [7] and [8] are very important for our estimations
of Stanley depth and precise references will be given in appropriate places. For
unexplained notation, the reader is referred to [6].

2 Upper bounds for the Stanley depth of squarefree monomial ideal

when some variables are added

Theorem 2.1. Let I = (x1, . . . , xt)
⋂

(xt+1, . . . , xn) be a monomial ideal in
S = K[x1, . . . , xn], where 1 ≤ t < n, and let I ′ = (I, xn+1, . . . , xn+p) ⊂ S′ =
S[xn+1, . . . , xn+p], where p ≥ 2. Then

sdepth(I ′) ≤ 2+

(

n
3

)

−
(

t
3

)

−
(

n − t
3

)

+ p

(

n
2

)

+ n

(

p
2

)

+

(

p
3

)

t(n − t) + np − p(n+2)
4

.

Proof: Note that I ′ is a squarefree monomial ideal generated by monomials
of degree 2 and 1. Let k = sdepth(I ′). The poset PI′ has the partition P :
PI′ =

⋃s

i=1[Ci,Di], satisfying sdepth(D(P)) = k, where D(P) is the Stanley
decomposition of I ′ with respect to the partition P. We may choose P such that
|D| = k whenever C 6= D in the interval [C,D].

For each interval [Ci,Di] in P with |Ci| = 2 when in the corresponding mono-
mial, one variable belongs to {x1, . . . , xt} and one to {xt+1, . . . , xn} we have
|Di| − |Ci| subsets of cardinality 3 in this interval. Now for each interval [Cj ,Dj ]

when | Cj |= 1 we have at least

(

k − 1
2

)

subsets of cardinality 3 in this in-

terval. We have p such intervals. So we have p

(

k − 1
2

)

subsets of cardinality

3.

Now we consider those intervals [Cl,Dl] such that |Cl| = 2 and the corre-
sponding monomial is of the form xlxλ, where xl ∈ {xn+1, . . . , xn+p}. Now
either xλ ∈ {x1, . . . , xn} or xλ ∈ {xn+1, . . . , xn+p}. If xλ ∈ {x1, . . . , xn} then
we have np such intervals and each has at least k − 2 subsets of cardinality 3. If

xλ ∈ {xn+1, . . . , xn+p} then we have

(

p
2

)

such intervals and each has at least

k−2 subsets of cardinality 3. Some subsets of cardinality 2 of the form Cl already
appear in the intervals [Cj ,Dj ] and such subsets are p(k − 1) in number. Since
the partition is disjoint, we subtract this from total number of Cl’s, so that we
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have at least
[

(

n
2

)

−
(

t
2

)

−
(

n − t
2

)

]

(k−2)+p

(

k − 1
2

)

+
[

np+

(

p
2

)

−p(k−1)
]

(k−2)

subsets of cardinality 3. This number is less than or equal to the total number
of subsets of cardinality 3. So

[

(

n
2

)

−
(

t
2

)

−
(

n − t
2

)

]

(k − 2) +
[

np +

(

p
2

)

− p(k − 1)

2

]

(k − 2)

≤
(

n
3

)

−
(

t
3

)

−
(

n − t
3

)

+ p

(

n
2

)

+ n

(

p
2

)

+

(

p
3

)

.

(2)

Now we know by [7, Theorem 2.11] that k ≤ n+2
2 + p. This implies −(k − 1) ≥

−n+2
2 − p + 1. Using this in the left side of inequality (2), one gets

[

t(n − t) + np − p(n + 2)

4

]

(k − 2)

≤
[

(

n
2

)

−
(

t
2

)

−
(

n − t
2

)

]

(k − 2) +
[

np +

(

p
2

)

− p(k − 1)

2

]

(k − 2).

Combining both inequalities we get the required result.

Example 2.2. Let us consider I = (x1, x2, x3)∩(x4, x5, x6) ⊆ S = K[x1, . . . , x6].
By [7, Theorem 2.8], we have sdepth(I) ≤ 4. Let I ′ = (I, x7, x8, x9) ⊆ S′ =
S[x7, x8, x9] then by [7, Lemma 2.11] we have sdepth(I ′) ≤ 7. Now by our The-
orem 2.1 we have sdepth(I ′) ≤ 5.

We can further improve the upper bound if we impose some additional con-
dition on n, t and p.

Formula (2) in the proof of Theorem 2.1 is equivalent to

0 ≤ 3pk2 − 3(2np + 2nt + p2 − 2t2 + 2p)k

+ 6np + 6nt + 3n2p− 6t2 − 3nt2 + 3n2t + 3p2 + 3np2 + 2p + p3.

Consider it as a quadratic polynomial in k of discriminant

D := (36pt + 36t2)n2 − 36(t2p − tp2 + 2t3)n + 12p2 − 36p2t2 − 3p4 + 36t4. (3)

Since this quadratic polynomial in n has the discriminant

∆ := 432tp2(t + p)(3t2 + 3pt − 4 + p2)

obviously positive, we have D ≥ 0 for either

n ≤ t − p

2
− p

√

1 +
p2 − 4

3t(t + p)
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or

n ≥ t − p

2
+ p

√

1 +
p2 − 4

3t(t + p)
. (4)

The former possibility is excluded by the fact that n > t, so that, assuming the
latter inequality, we conclude that either

k ≤ n +
p

2
+

t(n − t)

p
+ 1 −

√
D

6p

or

k ≥ n +
p

2
+

t(n − t)

p
+ 1 +

√
D

6p
. (5)

The latter bound for k does not hold (see Lemma 2.4 below). We have thus
obtained the following result.

Theorem 2.3. Keep the notation and hypotheses of Theorem 2.1. If

n ≥ t − p

2
+ p

√

1 +
p2 − 4

3t(t + p)

then

sdepth(I ′) ≤ n +
p

2
+

t(n − t)

p
+ 1 −

√
D

6p
, (6)

where

D = (36pt + 36t2)n2 − 36(t2p − tp2 + 2t3)n + 12p2 − 36p2t2 − 3p4 + 36t4.

Lemma 2.4. Conditions (4) and (5) do not hold simultaneously.

Proof: Suppose that both inequalities (4) and (5) are satisfied. From the relation
k ≤ p + 1 + n/2 known from [7, Theorem 2.11] it results, on the one hand, that
p > n and, on the other hand, that p(p − n) > 2t(n − t), so that

p2 + 2t2 > (p + 2t)n. (7)

From (4) we obtain in particular

n > t +
p

2
.

This and (7) give
p > 4t. (8)

We shall discuss two cases.
Case t ≥ 2. It is easily seen that the function p 7→ p2

−4
3t(t+p) is increasing.

Therefore
p2 − 4

3t(t + p)
>

16t2 − 4

15t2
≥ 1.
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From (4) it then follows n > t + p(
√

2 − 0.5) > t + 0.91p. Using this in (7), we
get 0.09p > 2.82t, whence p > 31t. Then

p2 − 4

3t(t + p)
>

961t2 − 4

96t2
≥ 10,

so that n > t + (
√

11 − 0.5)p > p. This is a contradiction, which shows that our
assumption is false in this case.

Case t = 1. From p > 4 we now get

p2 − 4

3(1 + p)
≥ 7

6

and n ≥ 1 +
(
√

13
6 − 0.5

)

p > 0.97p + 1. Using this lower bound for n in (7), we

get 0.03p > 2.94, and therefore p > 98 > 31t. We have seen that this contradicts
p > n.

Example 2.5. For n = 7, t = 3, p = 5, the latter theorem gives k ≤ 7, while
Theorem 2.1 yields a slightly weaker bound k ≤ 8. However, for n = 66, t =
2, p = 3 one gets k ≤ 42 by using Theorem 2.3 and k ≤ 41 when applying
Theorem 2.1.

Corollary 2.6. Let I = Q
⋂

Q′ be a monomial ideal in S = K[x1, . . . , xn] where
Q and Q′ are monomial primary ideals in S such that

√
Q = (x1, . . . , xt) and√

Q′ = (xr+1, . . . , xn) for some integers 1 ≤ r ≤ t < n. Then

sdepth(I) ≤ 2+
“

n − t + r

3

”

−

“

r

3

”

−

“

n − t

3

”

+ (t − r)
“

n − t + r

2

”

+ (n − t + r)
“

t − r

2

”

+
“

t − r

3

”

r(n − t) + (n − t + r)(t − r) − (t−r)(n−t+r+2)
4

.

Proof: Note that
√

I = (P ′∩S′, xr+1, . . . , xt) where S′ = K[x1, . . . , xr, xt+1, . . . , xn]

and P ′ = (x1, . . . , xr)∩ (xt+1, . . . , xn) ⊂ S′. Now we can apply Theorem 2.1 and
[7, Theorem 2.1].

Example 2.7. Let I = Q ∩ Q′ be a monomial ideal in S = K[x1, . . . , x8], where
Q and Q′ are monomial primary ideals with

√
Q = (x1, . . . , x6) and

√
Q′ =

(x5, . . . , x8). Then by [7, Proposition 2.13] we have sdepth I ≤ 6 and by our
Corollary 2.6 we have sdepth(I) ≤ 5.
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3 Upper bounds for the Stanley depth of squarefree Veronese ideal

when some variables are added

We denote by In,d the squarefree Veronese ideal of degree d in the polynomial
ring in n variables over a field K. Our first bound for the Stanley depth of such
an ideal is given by the next result.

Theorem 3.1. Let K be a field and n, p ≥ 2 integers. Let In,2 be the squarefree
Veronese ideal in S = K[x1, . . . , xn] and I ′ = (In,2, xn+1, . . . , xn+p) ⊆ S′ =
S[xn+1, . . . , xn+p]. Then

sdepth(I ′) ≤ 2 +

(

n + p
3

)

(

n
2

)

+ np − p − p
2⌊(

n
3

)/(
n
2

)⌋
.

Proof: Note that I ′ is a squarefree monomial ideal generated by monomials
of degree 2 and 1. Let k = sdepth(I ′). The poset PI′ has the partition P :
PI′ =

⋃s

i=1[Ci,Di] satisfying sdepth(D(P)) = k, where D(P) is the Stanley
decomposition of I ′ with respect to the partition P. We may choose P such that
|D| = k whenever C 6= D in the interval [C,D].

For each interval [Ci,Di] in P with |Ci| = 2, when in the corresponding
monomial both variables belong to {x1, . . . , xn} we have at least |Di|−|Ci| subsets
of cardinality 3 in this interval. Now for each interval [Cj ,Dj ], when |Cj | = 1 we

have at least

(

k − 1
2

)

subsets of cardinality 3 and we have p such intervals.

Now we consider those intervals [Cl,Dl] such that |Cl| = 2 and the corre-
sponding monomial is of the form xlxλ, where xl ∈ {xn+1, . . . , xn+p}. Now
either xλ ∈ {x1, . . . , xn} or xλ ∈ {xn+1, . . . , xn+p}. If xλ ∈ {x1, . . . , xn}, then we
have np such intervals and each of them has at least k − 2 subsets of cardinality

3. If xλ ∈ {xn+1, . . . , xn+p} then we have

(

p
2

)

such intervals, each of which

having at least k − 2 subsets of cardinality 3. Some subsets of cardinality 2 of
the form Cl already appear in the interval when the interval starts from a single
variable, and there are p(k − 1) such subsets. Since the partition is disjoint, we
subtract this from the total number of Cl’s, so that we have at least

(

n
2

)

(k − 2) + p

(

k − 1
2

)

+
[

np +

(

p
2

)

− p(k − 1)
]

(k − 2)

subsets of cardinality 3, and this number is less than or equal to the total number
of subsets of cardinality 3. So

(

n
2

)

(k−2)+p

(

k − 1
2

)

+
[

np+

(

p
2

)

−p(k−1)
]

(k−2) ≤
(

n + p
3

)

. (9)
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Now
(

n
2

)

(k − 2) + p

(

k − 1
2

)

+
[

np +

(

p
2

)

− p(k − 1)
]

(k − 2)

=

[ (

n
2

)

+ np +

(

p
2

)

+
p

2
(1 − k)

]

(k − 2).

(10)

Since by [5, Theorem 1.2] we know that sdepth(In,2) ≤ ⌊( n
3

)/(
n
2

)⌋+2, apply-

ing [7, Theorem 2.11] we get k ≤ ⌊( n
3

)/(
n
2

)⌋ + 2 + p.

Putting

−k ≥ −⌊( n
3

)/(
n
2

)⌋ − 2 − p

in (10), we get
(

n
2

)

(k − 2) + p

(

k − 1
2

)

+
[

np +

(

p
2

)

− p(k − 1)
]

(k − 2)

≥
[ (

n
2

)

+ np +

(

p
2

)

+
p

2

(

1 − ⌊( n
3

)/(
n
2

)⌋ − 2 − p

)]

(k − 2).

The required result is obtained by combining the above inequality with (9).

Example 3.2. Let S = K[x1, . . . , x5] and I5,2 be the squarefree Veronese ideal.
Then by [4, Corollary 1.5] or [5, Theorem 1.2] we have sdepth(I5,2) = 3.

Now let I ′ = (I5,2, x6, x7) be the monomial ideal in S′ = S[x6, x7]. By [7,
Lemma 2.11] we have sdepth(I ′) ≤ 5, while our Theorem 3.1 yields the better
bound sdepth(I ′) ≤ 4.

Example 3.3. Let S = K[x1, . . . , x11] and I11,2 be the squarefree Veronese ideal.
Then by [5, Theorem 1.2] we have 4 ≤ sdepth(I11,2) ≤ 5.

Let I ′ = (I11,2, x12, . . . , x17) be the monomial ideal in S′ = S[x12, . . . , x17],
then by [7, Lemma 2.11] we have sdepth(I ′) ≤ 11 and by Theorem 3.1 we get the
better bound sdepth(I ′) ≤ 8.

If we impose some condition on n and p we can improve the bound given in
Theorem 3.1.

The last expression given in the proof of Theorem 3.1 is equivalent to

0 ≤ 3pk2−3(n2−n+2np+p2+2p)k+n3+3n2p+3n2+3np2+6np−4n+p3+3p2+2p.

The quadratic in k has discriminant

E := 9n4 + (24p − 18)n3 + (18p2 − 36p + 9)n2 − (18p2 − 12p)n + 12p2 − 3p4
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obviously positive for n ≥ p. A simple computation convince ourselves that the
discriminant is actually positive for n ≥ p − 1. Since, on the one hand, one has
E > 9(p − 1)4 for p ≥ 2, n ≥ max{2, p − 1}, and, on the other hand, from [5,
Theorem 1.2] and [7, Theorem 2.11] it is known that k ≤ p + 2 + ⌊(n− 2)/3⌋, we
conclude that the next result holds.

Theorem 3.4. Keep the notation and hypotheses from Theorem 3.1. Then for
n ≥ p − 1 one has

k ≤ n(n − 1)

2p
+

p

2
+ n + 1 −

√
E

6p
,

where

E = 9n4 + (24p − 18)n3 + (18p2 − 36p + 9)n2 − (18p2 − 12p)n + 12p2 − 3p4.

Corollary 3.5. Let S′ = K[x1, . . . , xn, xn+1, . . . , xn+p] be a polynomial ring and
let Pi = (x1, . . . , xi−1, xi+1, . . . , xn), i = 1, . . . , n, be monomial prime ideals in
S′. Denote Qi = (Pi, xn+1, . . . , xn+p). If Ass(S′/I ′) = {Q1, . . . , Qn}, then

sdepth(I) ≤ 2 +

(

n + p
3

)

(

n
2

)

+ np − p − p
2⌊(

n
3

)/(
n
2

)⌋
.

Example 3.6. For n = 11, p = 6, Theorem 3.4 gives k ≤ 7 instead of k ≤ 8 cf.
Theorem 3.1.

Example 3.7. For n = 5, p = 2, this result gives k ≤ 3, while Theorem 3.1
yields a slightly weaker bound k ≤ 4. Therefore, in the situation described in
Example 3.2 one has

sdepthS(I) = sdepthS′(I ′).

We now prove that Stanley’s conjecture is verified by ideals of the type studied
in this section.

Proposition 3.8. For positive integers n and d, let I ⊂ S = K[x1, . . . , xn] be
the squarefree Veronese ideal generated by all monomials of degree d and I ′ =
(I, xn+1, . . . , xn+m) ⊂ S′ = S[xn+1, . . . , xn+m]. Then Stanley’s conjecture holds
for the ideal I ′.

Proof: From depthS′(S′/I ′) = depthS(S/I) it follows depthS′(I ′) = depthS(I).
As a consequence of results established in [6] (or by applying [4, Corollary 1.2]),
Stanley’s conjecture holds for squarefree Veronese ideals, so that sdepthS(I) ≥
depthS(I). By [8, Lemma 2.1], the sdepth does not decrease when passing from
I to I ′. Therefore, Stanley’s conjecture holds for I ′, too.
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4 Comparison of bounds

First we compare the bounds provided in Theorems 3.1 and 3.4. The outcome of
our study is the following.

Theorem 4.1. Let K be a field and n, p ≥ 2 integers. Let In,2 be the square-
free Veronese ideal in S = K[x1, . . . , xn] and I ′ = (In,2, xn+1, . . . , xn+p) ⊆ S′ =
S[xn+1, . . . , xn+p]. If n ≥ p − 1 then the bound for sdepth(I ′) given by Theo-
rem 3.4 is smaller than that given by Theorem 3.1.

Since
⌊(

n

3

)

/

(

n

2

)⌋

= ⌊(n − 2)/3⌋ ,

we shall distinguish the values of n according to their residues mod 3.

Case n = 3s + 1, s ≥ 1. The bound given in Theorem 3.1 specialises to

u1 :=
27s3 + 27s2(p + 2) + 3s(3p2 + 10p + 5) + p3 + 5p

3s(9s + 5p + 3) + 3p
, (11)

while that given in Theorem 3.4 becomes in this case

l1 :=
27s2 + 9(2p + 1)s + 3p2 + 12p −

√
dv1

6p
, (12)

with

dv1 := 729s4 +(648p+486)s3 +(162p2 +324p+81)s2 +(54p2 +36p)s+12p2−3p4.

We want to know for what values of s we have l1 ≤ u1 for all p ≥ 2, or
equivalently

(

9s2 + (5p + 3)s + p
)

√

dv1 ≥ r1,

where

r1 := 243s4+(243p+162)s3+(63p2+126p+27)s2+(15p+27p2−3p3)s+2p2+3p3−2p4.

The second derivative of the function function r1 : [(p − 2)/3,+∞) −→ R

being positive, the first derivative is at least as large as

r′1(
p − 2

3
) = 3(52p3 − 153p2 + 135p − 36).

Since the expression in the right side is positive for p ≥ 2, for these values r1 is
greater than or equal to

r1(
p − 2

3
) = 2(2p − 3)(p − 2)(2p − 1)2,
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which is nonnegative for p ≥ 2. This analysis shows that the desired inequality is
equivalent to that obtained by squaring it, which, with some computer assistance,
is found to be

p2(3s+1+p)(3s+p)(3s−1+p)
(

s2(15p − 18) + (6p2 − 3p − 6)s − p3 + 3p2 − 2p
)

≥ 0.

This is true if and only if

f1 := (15p−18)s2+(6p2−3p−6)s−p3+3p2−2p ≥ 0 for p ≥ 2, s ≥ max{2, (p−2)/3}.

Since the discriminant

D1 = 96p4 − 288p3 + 273p2 − 108p + 36

is positive for p ≥ 2, f1(s) ≥ 0 if and only if

s ≥ −(6p2 − 3p − 6) +
√

D1

6(5p − 6)
=: s1.

In terms of the number of variables n, this means that the bound given in
Theorem 3.4 is better than that given in Theorem 3.1 for

n ≥ n1 :=

√
D1 − 6p2 + 13p − 6

2(5p − 6)
.

Case n = 3s + 2, s ≥ 0. Now

u2 :=
27s3 + 27(p + 3)s2 + (9p2 + 48p + 60)s + p3 + 3p2 + 14p + 12

27s2 + 3(5p + 9)s + 6p + 6
,

l2 :=
27s2 + 9(2p + 3)s + 3p2 + 18p + 6 −

√
dv2

6p
,

dv2 := 729s4 + (648p + 1458)s3 + (162p2 + 972p + 1053)s2

+ (162p2 + 468p + 324)s − 3p4 + 48p2 + 72p + 36.

Since dv2 increases with s, its minimal value in the range of interest is

dv2(
p − 3

3
) = 3(p − 2)(16p3 − 40p2 + 27p − 6) ≥ 0.

Therefore, l2 ≤ u2 is equivalent to

(

9s2 + (5p + 9)s + 2p + 2
)

√

dv2 ≥ r2,

with

r2 := 243s4 + 243(p + 2)s3 + (63p2 + 351p + 351)s2
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+ (−3p3 + 57p2 + 162p + 108)s − 2p4 + 14p2 + 24p + 12.

We further find

r′2 ≥ r′2

(

p − 3

3

)

= 3(52p3 − 161p2 + 141p − 36) > 0 for p ≥ 2,

so that

r2 ≥ r2

(

p − 3

3

)

= 2(8p4 − 40p3 + 61p2 − 33p + 6) > 0 for p ≥ 3.

As for p = 2 the right side of the desired inequality l2 ≤ u2 is 3(3s + 2)(27s3 +
90s2 +85s+14) > 0, we may square both sides of the inequality under study and
find that for p ≥ 2 it is equivalent to

p3(p + 2 + 3s)(p + 1 + 3s)(p + 3s)
(

15s2 + (6p + 15)s − p2 + 3p + 4
)

≥ 0.

This holds precisely when

f2 := 15s2 + (6p + 15)s − p2 + 3p + 4 ≥ 0.

The discriminant being 96p2 − 15 > 0, f2 takes positive values for

s ≥ −3(2p + 5) +
√

96p2 − 15

30
=: s2.

Thus we conclude that l2 ≤ u2 holds for n ≡ 2 (mod 3) and

n ≥ n2 :=

√

96p2 − 15 − 6p + 5

10
.

Case n = 3s, s ≥ 1. We study the inequality l3 ≤ u3, with

l3 :=
27s2 + 9(2p − 1)s + 3p2 + 6p −

√
dv3

6p
,

u3 :=
27s3 + 27(p + 1)s2 + (9p2 + 12p − 12)s + p3 − 3p2 − 4p

27s2 + 3(5p − 3)s − 3p
,

and

dv3 := 729s4+(648p−486)s3+(162p2−324p+81)s2+(−54p2+36p)s+12p2−3p4.

With arguments similar to those given in the previous cases one finds

dv3 ≥ dv3(
p − 1

3
) = 3(p − 2)(16p3 − 40p2 + 27p − 6) ≥ 0 for p ≥ 2.

Therefore, l3 ≤ u3 is equivalent to

(

9s2 + (5p − 3)s − p
)

√

dv3 ≥ r3,
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where

r3 := 243s4+(243p−162)s3+(63p2−126p+27)s2+(−3p3−21p2+15p)s+2p2+3p3−2p4.

After we check that r3 is positive in the range p ≥ 2, s ≥ max{1, (p − 1)/3}, we
may square the last inequality and find that it is equivalent to

4p2(3s + p − 2)(3s + p)(3s + p − 1)
(

s2(15p − 9) + (6p2 − 9p + 3)s − p3 + p
)

≥ 0.

Since the quadratic polynomial in s

f3 = (15p − 9)s2 + (6p2 − 9p + 3)s − p3 + p

has discriminant

D3 := 3(p − 1)(32p3 − 16p2 + 3p − 3) > 0,

we have f3(s) ≥ 0 if and only if

s ≥ −6p2 + 9p − 3 +
√

D3

6(5p − 3)
=: s3.

The conclusion is that, for n ≡ 3 (mod 3), the bound provided in Theorem 3.4
is tighter than that given in Theorem 3.1 if and only if

n ≥ −6p2 + 9p − 3 +
√

D3

2(5p − 3)
=: n3.

It remains to compare n1, n2, n3 and p − 1.

Lemma 4.2. One has n1 = 1, n2 ≃ 1.22, n3 ≃ 1.07 for p = 2, and p− 1 ≥ n2 >
n3 > n1 for p ≥ 3.

Proof: Assume p ≥ 3. The inequality n2 > n3 is successively equivalent to

(5p − 3)
√

96p2 − 15 > 2p + 5
√

D3,

36p3 − 47p2 + 45p − 18 > p
√

D3,

and
(5p − 3)2(12p4 − 18p3 + 28p2 − 15p + 9) > 0,

which is obviously true.
The inequality n1 < n3 is rewritten

2p2 + (5p − 3)
√

D1 < (5p − 6)
√

D3.

Squaring this, one finds after some easy computations

(5p − 3)p
√

D1 < (5p − 3)(36p3 − 119p2 + 150p − 72).
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After simplification and squaring one gets

1200p6 − 8424p5 + 24904p4 − 40866p3 + 39627p2 − 21600p + 5184 > 0,

which is readily checked to be true for p ≥ 3.
Finally, n2 < p − 1 is put into the equivalent form

√

96p2 − 15 < 16p − 15,

which holds because the left side is less than 10p, while the right side is at least
11p for p ≥ 3. Now the proof of Theorem 4.1 is complete.

Now the proof of Theorem 4.1 is complete.

The bounds for the class of ideals studied in Section 2 can be compared by
analogue reasoning. The details of the analysis are, however, much more involved.
As seen by Example 2.5, none of Theorems 2.1 and 2.3 is uniformly better than
the other. Our final result specifies conditions under which Theorem 2.3 yields a
tighter bound than that given in Theorem 2.1.

Theorem 4.3. Let I = (x1, . . . , xt)
⋂

(xt+1, . . . , xn) be a monomial ideal in
S = K[x1, . . . , xn], where 1 ≤ t < n, and let I ′ = (I, xn+1, . . . , xn+p) ⊂ S′ =
S[xn+1, . . . , xn+p], where p ≥ 2. Suppose that it holds

n ≥ n0 := t − p

2
+ p

√

1 +
p2 − 4

3t(t + p)
.

Then the bound for sdepth(I ′) given in (6) is tighter than that given in (1) if
and only if

0 ≤ 3n2 + 6np − 4p2 + 4 and max{1, tl} ≤ t ≤ min{n − 1, tu},

where

tl :=
6n −

√

6(3n2 + 6np − 4p2 + 4)

12
, tu :=

6n +
√

6(3n2 + 6np − 4p2 + 4)

12
.

Proof: For n = 2 one has t = 1 and therefore (by hypothesis n ≥ n0) p = 2,
so that the bounds given in Theorems 2.1 and 2.3 are 10/3 and 3, respectively.
From now on we shall assume n ≥ 3.

With notation

L := n +
p

2
+

t(n − t)

p
+ 1 −

√
D

6p
,

U := 2 +

(

n
3

)

−
(

t
3

)

−
(

n − t
3

)

+ p

(

n
2

)

+ n

(

p
2

)

+

(

p
3

)

t(n − t) + np − p(n+2)
4

,
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we have to find when does it hold L ≤ U . Routine computations bring this
inequality to the equivalent form

f4 ≤ g4

√
D, (13)

with

f4 := (6p2 + 30tp + 24t2)n2 + (−3p3 + 12p2t − 6p2 − 12tp − 30t2p − 48t3)n

− 4p4 + 6p3 + 4p2 − 12p2t2 + 12t2p + 24t4,

g4 := 4nt + 3np − 4t2 − 2p,

D := (36pt + 36t2)n2 − 36(t2p − tp2 + 2t3)n + 12p2 − 36p2t2 − 3p4 + 36t4.

The discriminant of f4, which is found to be

df4 := 3p2
(

35p4 + (136t − 36)p3 + (332t2 − 264t − 20)p2

+ (336t3 − 264t2 − 112t)p + 108t4 − 48t3 − 80t2
)

,

is positive in our hypothesis (for t ≥ 2 the coefficients of powers of p are obviously
positive, and a direct verification leads to the same conclusion if t = 1). Therefore,
f4 takes nonnegative values for either

n ≤ nl :=
3p3 − 12p2t + 6p2 + 12tp + 30t2p + 48t3 −

√
df4

2(6p2 + 30tp + 24t2)

or

n ≥ nu :=
3p3 − 12p2t + 6p2 + 12tp + 30t2p + 48t3 +

√
df4

2(6p2 + 30tp + 24t2)
.

As will shall prove in Lemma 4.4 below, one has nu ≤ n0. Therefore, the hypoth-
esis of Theorem 4.3 ensures that Eq. (13) is equivalent to

h := g2
4D − f2

4 ≥ 0.

With some computer assistance, we find

h = 4p3h1h2,

where the quadratic polynomials in t

h1 := 3(n − 2)t2 − (3n2 − 6n)t + 3n2p + 3np2 − 6np + 2p − 3p2 + p3,

h2 := 24t2 − 24nt + 3n2 − 6np + 4p2 − 4

have discriminant

∆1 := 3(n − 2)(3n3 − 6n2 + 12n2p + 12np2 − 24np + 4p3 − 12p2 + 8p)

and respectively
∆2 := 288n2 + 576np − 384p2 + 384.
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Each discriminant is increasing with n, so that

∆1 ≥ ∆1(3) = 3(4p3 + 24p2 + 44p + 27) > 0.

Hence, h1 always has the real roots

t1 :=
3n2 − 6n −

√
∆1

6(n − 2)
, t2 :=

3n2 − 6n +
√

∆1

6(n − 2)
,

while h2 has the real roots

t3 :=
6n −

√

6(3n2 + 6np − 4p2 + 4)

12
, t4 :=

6n +
√

6(3n2 + 6np − 4p2 + 4)

12

provided that
0 ≤ 3n2 + 6np − 4p2 + 4.

In Lemma 4.5 below we show that t1 < 1 and n − 1 < t2. Therefore, h1 is
negative for all admissible values of t, whence h ≥ 0 is equivalent to h2 ≤ 0.
The latter inequality is valid precisely when the conclusion of Theorem 4.3 holds.

The proof of Theorem 4.3 is complete as soon as we prove the next lemmas.

Lemma 4.4. One has nu ≤ n0.

Proof: The desired inequality is successively equivalent to

(60tp + 12p2 + 48t2)

√

1 +
p2 − 4

3t(t + p)
+ 6t2 − 6tp − 9p2 − 12t − 6p ≥

√

df4

and
16p7 + 116p6 + (776t2 − 128)p5 + 4t(763t2 + 66t − 256)p4

+(6837t4 + 876t3 − 5068t2 + 256)p3

+ t(8517t4 + 1884t3 − 11708t2 − 1056t + 2240)p2

+8t2(711t4 + 225t3 − 1578t2 − 204t + 712)p

+ 4t3(135t2 + 48t − 244)(3t2 − 4) ≥ 0.

For t = 1, the last inequality becomes

(p + 2)(16p6 + 84p5 + 480p4 + 1332p3 + 237p2 − 597p + 122) ≥ 0,

for t = 2
8(p + 4)(2p3 + 9p2 + 210p + 392)(p + 2)3 ≥ 0,

while for t ≥ 3 all powers of p have positive coefficients.
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Lemma 4.5. One has t1 < 1, n − 1 < t2.

Proof: The inequality t1 < 1 is readily brought to the equivalent form

0 < (p + 1)
(

3n2 + 3(p − 3)n + p2 − 4p + 6
)

,

which is obviously true for n ≥ max{2, p − 1}. Since t1 + t2 = n, we also have
n − 1 < t2.
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