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1 Introduction

Consider the bilinear system:

{ .
x(t) = Ax(t) + u(t)Bx(t)
x (0) = x0,

(1)

where A and B are bounded linear operators on a Hilbert space E, x(t) ∈ E is
the trajectory associated to the control u(t) ∈ R and [0, T ] is a fixed time interval,
where T > 0. Then for all t ∈ [0, T ] we consider the following problem: under the
constraint (1), find the control u(t) which minimizes the functional

J(u) =

∫ T

0

u2dt + 〈x(T ), Fx(T )〉 , (2)

where F is a coercive symmetric bounded operator. To determine the opti-

mal control in finite dimension, we apply the Pontryagin’s Maximum Principle
[18]. This process is not always valid in infinite dimensional. In the context of
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our bilinear system (1) and (2), if u is a bounded control we use the results of
[4] to obtain the optimal controls in terms of state vector and adjoint one. If
the Lie algebra generated by operators A and B is nilpotent for the bracket
[A,B] = AB − BA, the optimal control can be written in terms of time and
initial conditions.

Our objective is to construct explicit operators B commuting with a given
operator A for finite dimensional operators, finite rank operators and compact
ones.

In the second section of this work, we obtain an explicit expression of the ex-
tremal control, where the degree of nilpotency is equal to one (Theorem 1 [19]). In
the third section, we look to the existence of nilpotent bilinear systems of degree
one in finite dimension. The idea is to write one matrix in Jordan normal form,
this allows to define all matrices commuting with it. These results are generalized
to the infinite dimensional for an operator of finite rank in a Hilbert space. In
the fourth and fifth sections, the study is extended to a compact operator in a
Banach space with a positive quasinilpotent part which is the limit of the normed
nilpotent operators. We use in this context the properties of the spectrum of this
operator to define the set of commuting matrices. We conclude this work with
examples and application.

2 Optimal control for a bilinear system and a quadratic cost

2.1 The finite dimensional case

To find the optimal control when E is a finite dimensional vector space, we can
apply the Pontryagin’s Maximum Principle [18], it follows that for optimal
control u(t), there exists an adjoint vector λ(t) solution of:





.
x(t) = ∂

∂λ
H(x, u, λ)

.

λ(t) = − ∂
∂x

H(x, u, λ)
0 = ∂

∂u
H(x, u, λ),

(3)

where

H(x, u, λ) = 〈λ(t), (A + uB)x(t)〉 − u2(t),

with terminal condition: λ(T ) = Fx(T ).

Since the extremal are solutions of (3), then:

∂

∂u
H(x, u, λ) = 0 =⇒ 〈λ(t), Bx(t)〉 − 2u(t) = 0,
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we obtain the optimal control in terms of the state vector and adjoint one

û(x, λ) =
1

2
〈λ(t), Bx(t)〉 . (4)

2.2 The infinite dimensional case

In this paragraph, we propose a generalization of the previous characterization
of optimal control, when E is an infinite Hilbert space.The proof is obtained
by applying the results of [4].

Proposition 2.1. [19] If ū is a bounded optimal control which belongs to
L2([0, T ], R) then

ū(t) =
1

2

〈
λ(t), Bx(t)

〉
, (5)

where x(t) is the trajectory associated to ū(t) and λ(t) is the solution of adjoint
system: { .

λ(t) = −
〈
λ(t), (A + ūB)

〉

λ(T ) = F x(T ).
(6)

Proof: Let ū be a bounded optimal control, we set

a = max {|ū(t)| , t ∈ [0, T ]} ,

and Kn = [−n, n] a compact of R, with n ∈ N. Then for n ≥ a, ū(t) is an optimal
control among all controls u(.) ∈ L2([0, T ],Kn).

From ([4] Theorem 3.1), ū(t) satisfies the following relation for almost all
t ∈ [0, T ] :

〈
λ(t), (A + ū(t)B)x(t)

〉
− ū(t)2 = max

v∈Kn

{〈
λ(t), (A + vB)x(t)

〉
− v2

}
,

where x(t) is the trajectory associated to ū(t) and λ(t) is the solution of adjoint
system (6).

According to the Gronwall’s lemma, there exists a constant M such that
‖x(t)‖ and

∥∥λ(t)
∥∥ are uniformly bounded by M for all t ∈ [0, T ] .

Then for t fixed the max
v∈Kn

{〈
λ(t), (A + vB)x(t)

〉
− v2

}
is reached in

ū(t) =
1

2

〈
λ(t), Bx(t)

〉
.
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2.3 Optimal control for a nilpotent bilinear system

We denote by L(E) the space of bounded operators in E, which has a structure
of Lie algebra for the bracket [A,B] = AB − BA.

Let be Adu the endomorphism defined by:

Adu L(E) −→ L(E)
v −→ [u, v] = uv − vu,

and

AdM (N) = {[u, v] Áu ∈ M et v ∈ N } ,

where M and N parts of L(E). We define by recurrence for k ≥ 1

(AdM )k(N) = AdM

{
(AdM )k−1(N)

}
,

(AdM )0(N) = N.

Recall that a Lie sub-algebra M of L(E) is nilpotent of k degree if there
exists an integer l where (AdM )l(M) = {0}, and k is the smallest element of all
these integers l.

We end this section by the following theorem that gives the expression of
optimal control independent of λ(t) and x(t):

Theorem 1. (See [19] Theorem 3.1)Consider the minimization problem (1) and

(2) with k = 1 (i.e. [A,B] = 0) then the optimal control u is constant and this
constant is characterized by the equation:

2u +
〈
e(A+uB)T x0, [FB + B⋆F ] e(A+uB)T x0

〉
= 0,

where B⋆ denotes the adjoint of B.

3 Set of all operators commuting with a given operator A

3.1 Finite dimensional case

In this section, each matrix A of Mn(C) will be assimilate with the canonical
endomorphism of Cn whose matrix is A in the canonical basis of Cn.
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We consider a matrix A of Mn(C) which is characterized by its elementary
divisors (λ− λ1)

n1 , (λ− λ2)
n2 , ..., (λ− λµ)nµ where {λ1, λ2, ..., λµ} are the eigen-

values of A and we look for all matrices B that AdA(B) = [A,B] = 0. This leads
us to the Frobenius problem (See [10] page 218) which determine the set of all
matrices B that commuting with A. This amounts to solve a matrix equation of
the form:

AB = BA.

We reduce A to Jordan normal form, in the basis:
e1 = (A − λ1I)n1−1v1, e2 = (A − λ1I)n1−2v1, ..., en1

= v1,
en1+1 = (A − λ2I)n2−1v2, en1+2 = (A − λ2I)n2−2v2, ..., en1+n2

= v2,
...
en1+...+nµ−1+1 = (A−λµI)nµ−1vµ, ..., en = vµ,

where vi are called generalized eigenvectors (See [21]). In this basis
{e1, e2, ..., en} , A has the form:




λ1 1 0 · · · 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
...

. . .
. . . 1

0 · · · · · · 0 λ1

0 0

0

. . .

. . .
0

0 0

λµ 1 0 · · · 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
...

. . .
. . . 1

0 · · · · · · 0 λµ




Then there exists an invertible matrix U in Mn(C) where A has a Jordan
normal form associated to the elementary divisors:

A = UÃU−1.

We obtain all matrices commuting with A under the following form

B = UB̃U−1,
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where B̃ denotes an arbitrary matrix which commutes with Ã, and B̃ is de-
composed into Bij blocks where i, j = 1, 2, ..., µ (µ is the number of elementary
divisors of A)

B̃ = (Bij) i, j = 1, 2, ..., µ

where Bij is the zero matrix if λi 6= λj , or a regular upper triangular matrix if
λi = λj .The diagrams below show the structure of these matrices when λi = λj :

Bij =




a1 a2 · · · ani

0 a1
. . .

...
...

. . . a2

0 · · · 0 a1︸ ︷︷ ︸
ni








ni if ni = nj (7)

Bij =




0 · · · · · · 0
...

...
...

...
0 · · · · · · 0

a1 a2 · · · ani

0 a1
. . .

...
...

. . .
. . . a2

0 · · · 0 a1︸ ︷︷ ︸
nj








ni if ni < nj (8)

Bij =




a1 a2 · · · anj

0 a1
. . .

...
...

. . .
. . . a2

0 · · · 0 a1

0 · · · · · · · · · 0
...

...
...

...
0 · · · · · · · · · 0

︸ ︷︷ ︸
nj








ni if nj < ni (9)

Where a1, a2, a3, ... are arbitrary parameters and the elements of any direction
parallel to the principal diagonal are equal.

Definition 3.1. We say that a matrix B ∈ Mn(C) is A−similar to a matrix
A ∈ Mn(C) if there exists an invertible U in Mn(C) such that:

B = UB̃U−1, A = UÃU−1
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where Ã is the canonical Jordan form of A.

So we get the following proposition:

Proposition 3.1. (Frobenius Problem) Any matrix B ∈ Mn(C) which commutes
with a given matrix A ∈ Mn(C) characterized by its elementary divisors (λ −
λ1)

n1 , (λ − λ2)
n2 , ..., (λ − λµ)nµ , is A−similar to a matrix decomposed into µ2

blocks of type (7), (8), (9) or zero blocks.

(See Example 1, Section 6)

3.2 Case where A is of finite rank in a Hilbert space

Let E be infinite complex Hilbert space, and L(E) the set of bounded linear
operators on E. We define:

L′(E) = {A ∈ L(E) : A of finite rank } .

For any operator A of L(E) we denote by R(A) = A(E) the range of A.
An operator A is of finite rank (of rank n) if dimension of R(A) is finite (n
dimensional).

A finite rank operator A can be written (See [22] Theorem 6.1 p 129):

Ax =

n∑

i=1

αi 〈ui, x〉 vi for all x ∈ E,

where {ui} and {vi} are finite orthonormal families. The previous decompo-
sition is called the canonical form of finite rank operators. Moreover, the rank of
an operator A is n if and only if its adjoint operator A⋆ is also of finite rank
n. Indeed we have:

A⋆x =

n∑

i=1

αi 〈vi, x〉ui for all x ∈ E.

We will say that an endomorphism A of E is similar to an endomorphism Ã
if there exists an automorphism U of E such that A = UÃU−1. In this case, we
say that an endomorphism B is A−similar to B̃ if for the same automorphism U
we have B = UB̃U−1.

Proposition 3.2. Let A ∈ L′(E) and denote by E1 the Hilbert subspace generated

by R(A) and R(A⋆). Then A is similar to the quasi-diagonal forms

(
A1 0
0 0

)
,

where A1 is an endomorphism of E1. In particular, there exists a basis {e1, e2, .., en}
of E1 so that the matrix of A1 has a Jordan normal form associated to the ele-
mentary divisor of A1 (See Section 3.1).
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Proof: Using the previous canonical forms for A and A⋆, we see that E1 =
R(A)+R(A⋆) is generated by {ui} and {vi}. So E1 is well defined and is invariant
by A (AE1 ⊂ E1).

Then E = E1 ⊕ E2, where E2 = E⊥
1 is in fact the intersection of kernel of A

and A⋆.
Where A|E1

is characterized by its elementary divisors (λ − λ1)
m1 , ...., (λ −

λµ)mµ , m1 + m2 + ... + mµ = n, according to Section 3.1, we have a basis
{e1, e2, .., en} of E1 so the matrix A1 in this basis has a Jordan normal form
associated to the elementary divisors of A1. So, there exists an invertible matrix
V , such that V A|E1

V −1 is the Jordan normal form of A|E1
.

Denote by U the automorphism of E defined by U|E1
= V and U|E2

= IdE2

then, A is similar to the quasi-diagonal form:

(
A1 0
0 0

)
.

Theorem 2. Let A be an operator of L′(E) and E1 = R(A) + R(A⋆), the
invariant subspace associated to A. Then, the set of all B ∈ L(E) which leaves

E1 invariant and such that [A,B] = 0, is A−similar to

(
B1 0
0 B2

)
where B1

is an endomorphism of E1 which commutes with A1 and B2 is an endomorphism
of E2. In particular, there exists a basis {e1, e2, .., en} of E1 so that the matrix A1

has a Jordan normal form associated to the elementary divisors of A1, and the
matrix of B1 is decomposed into µ2 blocks of type (7), (8), (9) or zero blocks (See
Proposition 3.1).

Proof: Let be A ∈ L′(E), according to Proposition 3.2, there exists an automor-
phism U such that:

A = U

(
A1 0
0 0

)
U−1.

We consider the set of all endomorphisms B1 of E1 which commute with A1.
According to Section 3.1, there exists a basis {e1, e2, .., en} of E1 so that the
matrix A1 has a Jordan normal form and the matrix of B1 is decomposed into
µ2 blocks of type (7), (8), (9) or zero blocks.

For any endomorphism B2 of E2, let be B defined by the quasi-diagonal form:

B = U

(
B1 0
0 B2

)
U−1,

where U is the automorphism previously associated to A.
It is clear that:
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[A,B] = 0.

Remark 3.1. In the previous Theorem then B ∈ L′(E) if and only if B2 is a
finite rank.

4 Case where A is a compact operator in Banach space

In this section we will look for the operators which commute with a given com-
pact operator on an infinite dimensional Banach space which has countably
many non-zero eigenvalues. We will apply the Riesz functional calculus to
disjoint circles surrounding the nonzero isolated eigenvalues of this operator to
obtain projections. Then the space is the direct sum of the ranges of these pro-
jections together with the space on which the operator is quasinilpotent
(i.e. complement of the direct sum of the nonzero eigenspaces). For each di-
rect sum corresponding to nonzero eigenvalues the operator has a Jordan ma-
trix representation. If the quasinilpotent part of the operator is positive, then
the corresponding subspace is decomposed into maximal chains of bands which
are invariant subspaces, hence the Jordan matrix representation. Such that each
quasinilpotent operator is the norm limit of nilpotent ones.

More precisely, according to standard book [5] and [14] we recall in this con-
text:

Let E be a Banach space, A a compact operator on E (i.e. the image of
a subset of E by A is a relatively compact subset), and σ(A) the spectrum of
A. The spectral properties of A are:

• Every nonzero λ ∈ σ(A) is an eigenvalue of A.

• For all nonzero λ ∈ σ(A), there exists m such that:

Ker(λI − A)m = Ker(λI − A)m+1.

• The eigenvalues can only accumulate at 0. If the dimension of E is not finite,
then σ(A) must contain 0.

• σ(A) is countable.

• Every nonzero λ ∈ σ(A) is a pole of the resolvent function:

ζ → (ζI − A)−1.
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4.1 Invariant subspaces of nonzero eigenvalues

As in finite matrix case, the above spectral properties lead to a decomposition of
E into invariant subspaces of a compact operator A. Let λ 6= 0 be an eigenvalue of
A, so λ is an isolated point of σ(A). Using the holomorphic functional calculus,
define the Riesz projection P (λ) by:

P (λ) =
1

2πi

∫

γ

(ζI − A)−1dζ,

where γ is the Jordan contour containing the single point λ of σ(A), and
P (λ) satisfy P (λ)2 = P (λ), so they are spectral projections, by definition
they commute with A. Moreover, P (λ)P (µ) = 0 if λ 6= µ.

Let E(λ) be the subspace E(λ) = P (λ)E, the restriction of A to E(λ) is a
compact invertible operator with spectrum {λ}.

And let be m an integer such that:

Ker(λI − A)m = Ker(λI − A)m+1,

the Laurent series of the resolvent mapping centered at λ shows that

P (λ)(λI − A)m = (λI − A)mP (λ) = 0,

by inspecting the Jordan form, there exists n that (λI − A)n = 0 while (λI −
A)n−1 6= 0, where

E(λ) = Ker(λI − A)m.

Then E(λ) is a finite-dimensional invariant subspace. Hence the restric-
tion of A to E(λ) admits a Jordan matrix representation with one eigenvalue
λ.

If we set E(0) the intersection of the kernels of P (λ), then E(0) is a closed sub-
space invariant under A and the restriction of A to E(0) is a compact operator
with spectrum {0}.

So we get the following proposition:

Proposition 4.1. Let A be a compact operator on Banach space E, and σ(A)
the spectrum of A.Then E is a direct sum of the ranges of the invariant subspaces
projections together E(λi) (λi 6= 0) with E(0) where

E = ⊕
i
E(λi) ⊕ E(0).



Optimal Control Problem 117

4.2 The set of operators commuting with a compact operator with
a nonzero eigenvalues

Theorem 3. Let E be a complex Banach space, Ac a compact operator in E
with a nonzero eigenvalues. Any compact operators Bc which have the same in-
variant subspaces as Ac (i.e E = ⊕

i
E(λi) ⊕ (⊕

i
E(λi))

⊥) and commutes with Ac

is Ac−similar to the following quasi-diagonal form:




Bλ1

. . .

Bλn

. . .

B0




where Bλi
E(λi) ⊂ E(λi) and B0 = Bc|(⊕

i
E(λi))⊥ is the zero operator.

Proof: If λi is an eigenvalue such that λi 6= 0, hence the restriction Ac|E(λi) =
Aλi

admits a Jordan matrix representation of one eigenvalue λi (See Proposi-
tion 4.1) and Ac|(⊕

i
E(λi))⊥ = A0 is the zero operator. In the sequence, for simplic-

ity, any operator on quasi-diagonal form

(
A1 0
0 A2

)
will be written A1 ⊕A2.

Then we can construct a chain of operators as follows:
A1 = Aλ1

⊕ A0

A2 = Aλ1
⊕ Aλ2

⊕ A0

A3 = Aλ1
⊕ Aλ2

⊕ Aλ3
⊕ A0

...
An = Aλ1

⊕ Aλ2
⊕ Aλ3

⊕ · · · ⊕ Aλn
⊕ A0

Ai : E −→ E is a finite rank operators where its limit is the compact operator
Ac : E −→ E, that lim

n→∞
‖Ac − An‖ = 0 and Ac = ⊕

i∈N

(Ac|E(λi)) ⊕ A0.

To define all operators commuting with Ac, let be B0 = Bc|(⊕
i
E(λi))⊥ the null

endomorphism of (⊕
i
E(λi))

⊥ and we apply the Proposition 3.1 to define the set of

all endomorphisms Bλi
of E(λi) and that satisfy [Aλi

, Bλi
] = 0 then we construct

a chain of operators Bi as follows:
B1 = Bλ1

⊕ B0

B2 = Bλ1
⊕ Bλ2

⊕ B0

B3 = Bλ1
⊕ Bλ2

⊕ Bλ3
⊕ B0

...
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Bn = Bλ1
⊕ Bλ2

⊕ Bλ3
⊕ · · · ⊕ Bλn

⊕ B0

For i := 1, ..., n Bi : E −→ E and satisfy: [Ai, Bi] = 0.

The operator Bn is of finite rank where its limit is the compact operator
Bc : E −→ E, that lim

n→∞
‖Bc − Bn‖ = 0.

To complete the proof we will show that: [Ac, Bc] = 0.

First we prove that:

[Ac, Bc] = lim
n→∞

[An, Bn] ,

that is equivalent to:

AcBc − BcAc = lim
n→∞

(AnBn − BnAn),

we have:

lim
n→∞

‖AnBn − AcBc‖ = lim
n→∞

‖AnBn − AcBn + AcBn − AcBc‖

= lim
n→∞

‖(An − Ac)Bn + Ac(Bn − Bc)‖

≤ lim
n→∞

‖An − Ac‖ ‖Bn‖ + ‖Ac‖ ‖Bn − Bc‖ = 0,

with the same method we prove:

lim
n→∞

‖BnAn − BcAc‖ = lim
n→∞

‖BnAn − BcAn + BcAn − BcAc‖

= lim
n→∞

‖(Bn − Bc)An + Bc(An − Ac)‖

≤ lim
n→∞

‖Bn − B‖ ‖An‖ + ‖B‖ ‖An − A‖ = 0,

since An and Bn are bounded then:

lim
n→∞

[An, Bn] = lim
n→∞

(AnBn − BnAn)

= lim
n→∞

AnBn − lim
n→∞

BnAn

= AcBc − BcAc = [Ac, Bc] .

Finally, since [An, Bn] = 0 for each n ∈ N∗ then

[Ac, Bc] = 0.

5 The spectral decomposition of a positive compact quasinilpotent
operator

For this part we refer the reader to ([1], [2] , [3] , [8] , [13], [20]). We also, need to
recall the following definitions:
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• A continuous operator A in Banach space is said to be quasinilpotent if
its spectral radius is zero. It is well known that A is quasinilpotent if and
only if for each x ∈ E:

lim
n→∞

∥∥∥A
n

x
∥∥∥

1

n

= 0.

• A real vector space E which is ordered by some order relation ≤ is called
a vector lattice if any two elements x, y ∈ E have a least upper bound
denoted by x∨y = sup(x, y) and a greatest lower bound denoted by x∧y =
inf(x, y) and the following properties are satisfied:

1) x ≤ y implies x + z ≤ y + z for all x, y, z ∈ E,

2) 0 ≤ x implies 0 ≤ tx for all x ∈ E and t ∈ R+.

• A norm on vector lattice E is called a lattice norm if:

|x| ≤ |y| =⇒ ‖x‖ ≤ ‖y‖ for x, y ∈ E

where |x| be the absolute value of x: |x| := x ∨ (−x).

• A Banach lattice is a real Banach space E endowed with an ordering ≤
such that (E,≤) is a vector lattice and the norm on E is a lattice norm.

• A linear operator A is said to be positive operator (in symbol A ≥ 0) if
Ax ≥ 0 for each x ≥ 0.

• A chain of bands is a family of subspaces that are ordered by inclusion.

• Let be L the lattice of all closed chains of subspaces in Banach lattice E,
we said that a chain C is maximal in L, if C included in an other chain
C ′ of L, then C = C ′.

• Afterwards we set E′ = E(0) and A′ the restriction of A to E(0).

5.1 Maximal chains of bands

Let L be the lattice of all closed chains of closed subspaces of E′.Recall that
a chain C in L is said to be simple whenever it satisfies the following three
conditions:

1) {0} ∈ C, E′ ∈ C.

2) If C0 is subfamily of C, then the closed subspaces: ∧C0 = ∩{c : c ∈ C0},
∨C0 = ∪{c : c ∈ C0} are in C.

3) For each M in C, the quotient space M/M− where M− = ∨{c ∈ C : c $ M}
is at most one-dimensional.
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By condition (2) M− ∈ C for all M ∈ C.

Result 1: A chain C is maximal if and only if it is simple.
Result 2: If (E′, ‖ ‖) is a Banach lattice (dim E′ ≥ 2), and if A′ is a positive

compact quasinilpotent operator in E′, then there exists a non trivial A′-invariant
closed ideal in E′.

Proposition 5.1. Every positive compact quasinilpotent operator A′ in E′ pos-
sesses a maximal chain of bands which are A′−invariant (invariant subspaces),
is called a A′−invariant maximal chain of bands.

Proof: By Result 2, every operator such A′ has a non-trivial A′-invariant band. An
application of Zorn’s lemma guarantees the existence of maximal chain C of A′-
invariant bands.

If we denote by B the lattice of closed ideals bands, then C is a maximal
chain in B. Where dim B/B− ≤ 1 for all B ∈ C.

Let (P ) be a partition of E′ depending on the maximal chain C then

(P ) {0} = E′
0 ⊂ E′

1 ⊂ .......E′
n ⊂ ...E′ (E′

i ∈ C),

where dim E′
i/E′

i−1 ≤ 1.
And A′

i is the restriction of A′ to E′
i then:

A′
i = A′

|E′

i
E′

i −→ E′
i

It is evident that A′
n = A′

|E′
n

is nilpotent of rank at most n, and if E′
1 is

generated by the nonzero vector {v}, then for every n ∈ N⋆ we have:

E′
1 = span {v}

E′
2 = span {v,A′v}

E′
3 = span

{
v,A′v,A′2v

}

...
E′

n = span
{
v,A′v, ........, A′n−1v

}
.

If we denote by Un =
{
v,A′v, ........, A′n−1v

}
then A′

n admits a Jordan ma-
trix representation of one eigenvalue equal to zero as the form:

A′
n = Un




0 1 0 · · · 0

0 0 1
. . .

...
... 0

. . . 0
...

. . . 1
0 · · · · · · 0 0




U−1
n
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where
(A′

n)n = 0.

By recurrence we prove for n + 1 :

A′
n+1=Un+1




A′
n

0
...
...
0
1

0 · · · · · · 0 0 0




U−1
n+1 =

Un+1




0 1 0 · · · 0

0 0 1
. . .

...
...

. . .
. . .

. . . 0
...

. . . 0 1
0 · · · · · · 0 0

0
...
...
0
1

0 · · · · · · 0 0 0




U−1
n+1

where
(A′

n+1)
n+1 = 0,

then for every n ∈ N⋆, (A′
n)n = 0.

Where the quasinilpotent operator A′ admits a Jordan matrix represen-
tation depending on the increasing partition (P ) of E′ under the form:

A′ = U




0 1 0 0 · · ·
0 0 1 0 · · ·
...

... 0 1
. . .

...
...

... 0
. . .

. . .

. . .
. . .

. . .




U−1

5.2 The set of operators commuting with a positive compact quasinilpo-
tent operator

Theorem 4. Let E′ be a Banach lattice space, A′ a positive compact quasinilpo-
tent operator in E′, then any operator B′ which is A′−similar and satisfies
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[A′, B′] = 0, admits an infinite upper triangular matrix representation (depend-
ing on the same increasing partition (P ) of E′ previously considered for A) of the
following type:

U




a1 a2 · · · · · · an · · ·
0 a1 · · · · · · an−1 · · ·
...

. . .
. . . · · ·

...
...

. . .
. . . a2

0 · · · · · · 0 a1
. . .

...
. . .

. . .




U−1

where a1, a2, a3, .... are arbitrary parameters.

Proof: Let A′ be the quasinilpotent part of A and E(0) = E′ which is Banach
lattice that A′ = A′

|E′ is a positive compact quasinilpotent operator. From the

Proposition 5.1, A′ admits a spectral decomposition which allows us to define for
each finite submatrix A′

n a set of all commuting matrices B′
n that are defined in

the same invariant subspace as A′
n and B′

n have an upper triangular matrix rep-
resentation where the elements of all directions parallel to the principal diagonal
are equal (See Proposition 3.1).

A′
n= Un




0 1 0 · · · 0

0 0 1
. . .

...
...

. . .
. . .

. . . 0
...

. . . 0 1
0 · · · · · · 0 0




U−1
n ,

B′
n= Un




a1 a2 · · · · · · an

0 a1 · · · · · · an−1

...
. . .

. . . · · ·
...

...
. . .

. . . a2

0 · · · · · · 0 a1




U−1
n

we can prove by recurrence that ∀n ∈ N⋆

[A′
n, B′

n] = 0,

it’s clear that for an integer n ∈ N⋆ the relation [A′
n, B′

n] = 0 is satisfied, and for
n + 1 we write A′

n+1, B′
n+1 under the form:
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A′
n+1= Un+1




0 1 · · · 0
...

. . .
. . .

...

... 0 1
0 · · · 0 0

0
...

0
1

0 · · · · · · 0 0




U−1
n+1,

B′
n+1= Un+1




a1 a2 · · · an

...
. . . · · ·

...
...

. . . a2

0 · · · 0 a1

an+1

an

...

a2

0 · · · · · · 0 a1




U−1
n+1

that satisfies [
A′

n+1, B
′
n+1

]
= 0,

then we can say ∀n ∈ N⋆

[A′
n, B′

n] = 0.

If we write

B′ = lim
n→∞

B′
n = B′

∞,

then

[A′, B′] = 0.

Conclusion. From Section 4 and Section 5 we can conclude that: If A
is a compact operator with positive quasinilpotent part on complex Banach space
E then A can be writhen as the form A = ⊕

i
Ai ⊕ A′ and E = ⊕

i
Ei ⊕ E0 (See

Proposition 4.1 ) where Ai = A|Ei
and A′ = A|E0

is a quasinilpotent part of A
then we define in E all operators B where B = ⊕

i
Bi ⊕ B′ and BEi ⊂ Ei (See

Theorem 3 and Theorem 4) that satisfy [A,B] = 0.

Remark 5.1. The operator B is compact if and only if B′ is compact.

6 Examples and application on the calculation of optimal control

Example 1. Let A be a matrix characterized by its elementary divisors (λ −
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λ1)
3, (λ − λ1)

2, (λ − λ2)
3, (λ − λ2)

1, λ1 6= λ2. In this case all matrices which
commutes with A are as follows:

A = U




λ1 1 0
0 λ1 1
0 0 λ1

0 0 0

0
λ1 1
0 λ1

0 0

0 0
λ2 1 0
0 λ2 1
0 0 λ2

0 0 0 λ2




U−1

B = U




a b c
0 a b
0 0 a

f j
0 f
0 0

0 0

0 h k
0 0 h

d e
0 d

0 0

0 0
x y z
0 x y
0 0 x

p
0
0

0 0 0 0 n m




U−1

The parameters a, b, c, .... are arbitrary. Where [A,B] = 0.

Example 2. Optimal control of error associated to an observer:
We consider the observed bilinear system:

(
∑

)





.
x(t) = ∆x(t) + A(t)u(t) + B(u(t), x(t))
x(0) = x0

y(t) = Cx(t),

where u ∈ L2([0, T ] , R), E a Hilbert space and C a bounded linear operator in
E.

We assume that ∆ is a generator of strongly continuous semigroup G(t), that:

G(0) = Id and ‖G(t)‖ ≤ M.

The observer problem finds many applications in fields of robotics, mechanics,
heat transfer and bio-chemical processes (See [7] , [9] , [15] , [16]).

For our type of systems (
∑

), the classical observer, which is a generalization
of finite dimensional linear systems is the following (See [11] , [12]):
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.

x̂(t) = ∆x̂(t) + A(t)u(t) + B(u(t), x̂(t)) − K̂(Cx̂(t) − y(t))
x̂(0) = x̂0

ŷ(t) = Cx̂(t).

The objective is, by intermediate of this auxiliary system, we give an estimate
x̂(t) to the state x(t) of initial system, where the ”error”:

ε(t) = x̂(t) − x(t),

which tends to zero as t tends to infinity, the error equation is:

(I)





.
ε = ∆ε + B(u, ε) − K̂Cε

ε(0) = ε0

ŷ − y = Cε.

Let ∆′ = ∆ − K̂C, then the system (I) is written:

(II)





.
ε(t) = ∆′ε(t) + B(u(t), ε(t))
ε(0) = ε0

ŷ(t) − y(t) = Cε(t),

with these notations, C⋆C ∈ L(E) and ∆′ ∈ L(D,E) the space of bounded linear
operators from D to E, where D is the domain of ∆.

It follows from [6] and [17] that ∆′ = ∆ − C⋆C is the infinitesimal generator
of a continuous semigroup S(t) at E that:

‖S(t)‖ ≤ MeM‖C‖2t = M1.

Application.
Consider the case where:

J(u) =

∫ 1

0

‖u‖
2
ds + ‖ε(1)‖

2
,

and we suppose that B(u(t), ε(t)) = u(t)Bε(t), where B is bounded linear ope-
rator of finite rank, which defined by

B = B1 ⊕ B0 =

(
B1 0
0 B0

)

where B1 ∈ M5,5(C), and B0 is an infinite dimensional block of zero:

B1=




−2 1 0 0 0
0 −2 1 0 0
0 0 −2 0 0
0 0 0 −3 1
0 0 0 0 −3
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If ∆′ is defined as a Lie bracket [∆′, B] is zero, then according to Theorem 1,
there is a constant optimal control that minimizes the functional J . By Theorem
2, all matrices which commute with B are of the form:




a1 a2 a3 0 0
0 a1 a2 0 0
0 0 a1 0 0
0 0 0 b1 b2

0 0 0 0 b1

0

0 0




we choose ∆′ as the form :

∆′ = ∆′
1 ⊕ ∆′

0 =




0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0

0

0 0




where ∆′
0 is infinity zero block.

We determine the optimal control ū of problem (II) which is constant and
this constant is solution of the equation:

(III) 2u + εt
0[exp(∆′ + uB)]t [B + B∗] [exp(∆′ + uB)]ε0 = 0,

for ε0 = (1, 1, 1, 1, 1, 0, 0, 0, ....)t, where

exp(∆′ + uB) =



e−2 e−2 (u + 1) e−2

2 (u + 1)
2

0 0
0 e−2 e−2 (u + 1) 0 0
0 0 e−2 0 0
0 0 0 e−3 e−3 (u + 1)
0 0 0 0 e−3

0

0 I∞




and (III) is equivalent to:

u
3

+ 6u
2

+ (2e4 + 2e−2 + 15)u + 4e−2 + 14 = 0,

the solution is :
u = −0.117 48,

and
ε(t) = e(∆+uB)tε0

ε(t)=e−2t
(
1 + 0.882 52t + 0.389 42t2 ,1 + 0.882 52t ,1 ,(1 + 0.882 52t)e−t ,e−t
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,0 ,0 , . . . )
such that ε(t) tends to zero as t tends to infinity.
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