The Siegel norm of algebraic numbers

by

FLORIN STAN and ALEXANDRU ZAHARESCU*

Abstract

In this paper we investigate connections between the Siegel norm and the spectral norm on the algebraic closure \(\overline{\mathbb{Q}} \) of \(\mathbb{Q} \), and their extensions to the spectral completion \(\tilde{\mathbb{Q}} \) of \(\mathbb{Q} \).

Key Words: Galois groups, normed fields.

2010 Mathematics Subject Classification: Primary 11R80; Secondary 11R04.

1 Introduction

Let \(\overline{\mathbb{Q}} \) be the algebraic closure of \(\mathbb{Q} \) in \(\mathbb{C} \), and denote by \(\| \cdot \| \) the spectral norm on \(\overline{\mathbb{Q}} \), defined by

\[
\| \alpha \| = \max_{\sigma \in \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})} |\sigma(\alpha)|,
\]

for any algebraic number \(\alpha \). We consider the map \(A: \overline{\mathbb{Q}} \to [0, \infty) \) given by

\[
A(\alpha) = \frac{1}{[K: \mathbb{Q}]} \sum_{\sigma} |\sigma(\alpha)|^2,
\]

where \(\sigma \) runs over all the embeddings of \(K \) into \(\mathbb{C} \). Here \(A(\alpha) \) depends only on \(\alpha \) and not on the field \(K \) containing \(\alpha \). Note that if \(\alpha = \beta^2 \), where \(\alpha \) is totally real and positive, then \(\beta \) is totally real and

\[
A(\beta) = \frac{\text{Tr}_\alpha}{\deg \alpha}.
\]

For a totally real and positive algebraic integer \(\alpha \in O_{\overline{\mathbb{Q}}} \), let \(n = \deg \alpha \) be the degree of \(\alpha \) over \(\mathbb{Q} \), and let \(\alpha_1 = \alpha, \alpha_2, \cdots, \alpha_n \) be the conjugates of \(\alpha \) over \(\mathbb{Q} \). Then

\[
\frac{\text{Tr}_\alpha}{\deg \alpha} = \frac{\alpha_1 + \cdots + \alpha_n}{n} \geq \sqrt[n]{\alpha_1 \cdots \alpha_n} \geq 1.
\]

*Research of the second author is supported by the NSF grant DMS-0901621
The well known trace problem of Siegel asks for the best possible constant \(\lambda_0 \) for which given \(\lambda < \lambda_0 \), the trace of a totally real and positive algebraic integer \(\gamma \) is at least \(\lambda \) times its degree, except for finitely many \(\gamma \)'s.

The best result to date is \(\lambda_0 \geq 1.78702 \). On the other hand, as Siegel pointed out, for every odd prime \(p \), the number \(4 \cos^2 \frac{\pi}{p} \) is a totally real and positive algebraic integer of degree \(\frac{p-1}{2} \) and its trace is \(p-2 \). So the best possible constant \(\lambda_0 \) is at most 2.

In [3], and more recently in [9], the restriction of the map \(A(\cdot) \) to the ring of cyclotomic integers \(\mathcal{O}_{\mathbb{Q}^{ab}} \) is studied. It is shown in [9] that the set \(T = \{ A(\alpha) : \alpha \in \mathcal{O}_{\mathbb{Q}^{ab}} \} \) is closed under addition, that \(T \) is topologically closed in \(\mathbb{R} \), and that for any \(0 \leq r < 1, r \in \mathbb{Q} \), there is a \(t_r \in \mathbb{Q} \) such that

\[
T \cap (r + \mathbb{Z}) = \{ t_r, t_r + 1, t_r + 2, \cdots \}.
\]

We also mention that from Siegel’s work [8] it follows that the intersection \(T \cap [0, \frac{3}{2}) \) consists of only two elements: 0 and 1, and they are attained when \(\alpha = 0 \), respectively when \(\alpha \) is a root of unity. A striking application of this result is provided in an unpublished theorem of Thompson. Recall that the values of a linear character of a finite group are roots of unity. A classical theorem of Burnside [1] says that a non-linear irreducible character of a finite group has at least one zero. Thompson’s theorem, whose proof also implies Burnside’s result, states that an irreducible character of a finite group is zero or a root of unity at more than a third of the group elements.

In the present paper we extend \(A(\alpha) \) to a larger set. The completion \(\overline{\mathbb{Q}} \) of \(\mathbb{Q} \) with respect to the spectral norm (see [4] and [5]), provides a natural setting for such an extension. The map \(A(\cdot) : \overline{\mathbb{Q}} \rightarrow [0, \infty) \) is continuous with respect to the spectral norm, and it naturally extends to a map, which we will still denote by \(A(\cdot) \), from \(\overline{\mathbb{Q}} \) to \([0, \infty) \). For any algebraic number \(\alpha \), we define its Siegel norm \(\| \alpha \|_{S_i} \) by \(\| \alpha \|_{S_i} = \sqrt{A(\alpha)} \). In this paper we investigate connections between the Siegel norm and the spectral norm on \(\overline{\mathbb{Q}} \), and their extensions to the spectral completion \(\overline{\mathbb{Q}} \) of \(\mathbb{Q} \). In the last section we show how one can explicitly compute the Siegel norm for some classes of elements of \(\overline{\mathbb{Q}} \).

2 Construction of the Siegel norm

Let us first remark that the function \(\| \cdot \|_{S_i} : \overline{\mathbb{Q}} \rightarrow [0, \infty) \) has the following properties.

1. \(\| \alpha + \beta \|_{S_i} \leq \| \alpha \|_{S_i} + \| \beta \|_{S_i} \), for any \(\alpha, \beta \in \overline{\mathbb{Q}} \).
2. \(\| c \alpha \|_{S_i} = |c| \| \alpha \|_{S_i} \), for any \(c \in \mathbb{Q}, \alpha \in \overline{\mathbb{Q}} \).

Indeed, let \(\alpha, \beta \in \overline{\mathbb{Q}} \). Let \(K \) be a number field such that \(\alpha, \beta \in K \). Then

\[
\sum_{\sigma} |\sigma(\alpha) + \overline{\sigma(\beta)}|^2 \leq \sum_{\sigma} |\sigma(\alpha)|^2 + \sum_{\sigma} |\sigma(\beta)|^2 + | \sum_{\sigma} \sigma(\alpha) \overline{\sigma(\beta)} | + | \sum_{\sigma} \overline{\sigma(\alpha)} \sigma(\beta) |.
\]
Employing Cauchy’s inequality, we derive that

\[|\sum_{\sigma} \sigma(\alpha)\overline{\sigma(\beta)}| = |\sum_{\sigma} \overline{\sigma(\alpha)}\sigma(\beta)| \leq \left(\sum_{\sigma} |\sigma(\alpha)|^2 \right)^{1/2} \left(\sum_{\sigma} |\sigma(\beta)|^2 \right)^{1/2}. \]

Hence \(A(\alpha + \beta) \leq A(\alpha) + A(\beta) + 2\sqrt{A(\alpha)A(\beta)}, \) so \(\sqrt{A(\alpha + \beta)} \leq \sqrt{A(\alpha)} + \sqrt{A(\beta)}, \) and the first remark follows.

The second part follows easily from the definition of the map \(A. \)

The above properties show that \(\|\cdot\|_{S_i} \) is a vector space norm on \(\overline{\mathbb{Q}} \). Note that \(A(\alpha) \leq \|\alpha\|_2, \) hence \(\|\alpha\|_{S_i} \leq \|\alpha\|, \) for any \(\alpha \in \overline{\mathbb{Q}}. \)

For \(x \in \tilde{\mathbb{Q}} \) and \(\delta > 0, \) consider the open ball \(B(x, \delta) = \{ y \in \overline{\mathbb{Q}} : \|y - x\| < \delta \}, \) and let \(n(x, \delta) = \min\{\deg \alpha : \alpha \in B(x, \delta)\}. \) We can now state the following theorem.

Theorem 1.

i) The map \(A : \overline{\mathbb{Q}} \to [0, \infty) \) is continuous with respect to the spectral norm and it extends canonically to a map, which we will still denote by \(A, \) from \(\tilde{\mathbb{Q}} \) to \([0, \infty)\).

ii) Let \(x \in \tilde{\mathbb{Q}}, x \neq 0. \) Then \(\|x\|_{S_i} \geq \frac{\|x\|}{4\sqrt{n(x, \frac{\|x\|}{2})}}. \)

iii) \(\|\cdot\|_{S_i} \) is a vector space norm on \(\tilde{\mathbb{Q}}. \)

Proof:

i) Let \((x_n)_{n \geq 0} \) be a convergent sequence in \(\overline{\mathbb{Q}}. \) Then \((x_n) \) is Cauchy and let \(M > 0 \) be such that \(|x_n| \leq M, \) for any \(n \geq 0. \) From the proof of the remarks at the beginning of this section it follows that for all \(m, n \geq 0 \) we have

\[|\sqrt{A(x_n)} - \sqrt{A(x_m)}| \leq \sqrt{A(x_n - x_m)}. \quad (1) \]

On the other hand, since \(\sqrt{A(\alpha)} \leq \|\alpha\|, \) for any algebraic number \(\alpha, \) we derive that

\[\sqrt{A(x_n - x_m)} \leq \|x_n - x_m\|. \quad (2) \]

Combining relations (1) and (2), we obtain

\[|\sqrt{A(x_n)} - \sqrt{A(x_m)}| \leq \|x_n - x_m\|. \quad (3) \]

We have

\[|A(x_n) - A(x_m)| = |\sqrt{A(x_n)} - \sqrt{A(x_m)}| \sqrt{A(x_n)} + \sqrt{A(x_m)}| \leq \sqrt{2M|\sqrt{A(x_n)} - \sqrt{A(x_m)}|} \leq 2M\|x_n - x_m\|, \]

and hence

\[|A(x_n) - A(x_m)| \leq 2M\|x_n - x_m\|. \quad (4) \]
Since \((x_n)_n\) is Cauchy with respect to the spectral norm, it follows from inequality (4) that the sequence \((A(x_n))_n\) is Cauchy in \([0, \infty)\), hence it is convergent. Another consequence of relation (4) is that the map \(A\) can be extended to \(\overline{Q}\) as follows. Let \(\alpha \in \overline{Q}\). Then \(\alpha = \lim_{n \to \infty} \alpha_n\), with \(\alpha_n \in Q\), and \(A(\alpha) := \lim_{n \to \infty} A(\alpha_n) \in [0, \infty)\).

ii) Let \(x \in \overline{Q}, x \neq 0\), and let \(0 < \delta = \frac{\|x\|}{4}\). Also let \(\alpha, \alpha_0 \in \overline{Q} \cap B(x, \delta)\) and denote \(n = \deg \alpha, \alpha_0 = \deg \alpha_0\). Let \(K\) be a finite field extension of \(Q\) such that \(\alpha, \alpha_0 \in K\). Denote by \(m\) the degree of \(K\) over \(Q(\alpha_0)\). From the above choice of \(\alpha\) we have \(\|\alpha_0 - x\| < \frac{\|x\|}{4}\). It follows that

\[
\|\alpha_0\| \geq \|x\| - \|x - \alpha_0\| > \|x\| - \frac{\|x\|}{4} = \frac{3}{4}\|x\|.
\]

(5)

Let \(\sigma_1, \ldots, \sigma_{mn}\) be the embeddings of \(K\) in \(\mathbb{C}\). From relation (5) we deduce that

\[
\max_{1 \leq j \leq mn} |\sigma_j(\alpha_0)| = \|\alpha_0\| > \frac{3}{4}\|x\|.
\]

There exist \(j_1, \ldots, j_m\) such that \(|\sigma_{j_1}(\alpha_0)| = |\sigma_{j_1}(0)| = \cdots = |\sigma_{j_m}(\alpha_0)| > \frac{3}{4}\|x\|\).

We have \(\|\alpha_0 - \alpha\| \leq \|\alpha_0 - x\| + \|x - \alpha\| < \frac{3}{4}\|x\| + \frac{3}{4}\|x\| = \frac{3}{2}\|x\|\).

It follows that \(\|\sigma_j(\alpha_0) - \sigma_j(\alpha)\| < \frac{3}{4}\|x\|\), for any \(j \in \{1, 2, \ldots, mn\}\). In particular, \(\|\sigma_j(\alpha_0) - \sigma_j(\alpha)\| < \frac{3}{4}\|x\|\). Since \(\|\sigma_j(\alpha_0)\| > \frac{3}{4}\|x\|\), we obtain

\[
|\sigma_{j_1}(\alpha)| \geq |\sigma_{j_1}(\alpha_0)| - |\sigma_{j_1}(\alpha_0) - \sigma_{j_1}(\alpha)| > \frac{3}{4}\|x\| - \frac{1}{2}\|x\| = \frac{1}{4}\|x\|.
\]

We derive that

\[
A(\alpha) = \frac{1}{mn} \sum_{1 \leq j \leq mn} |\sigma_j(\alpha)|^2 \geq \frac{1}{mn} \left(|\sigma_{j_1}(\alpha)|^2 + \cdots + |\sigma_{j_m}(\alpha)|^2 \right) \geq \frac{1}{mn} \cdot \frac{\|x\|^2}{16} = \frac{\|x\|^2}{16mn}.
\]

Hence

\[
\|\alpha\|_{S_1} \geq \frac{\|x\|}{4\sqrt{mn}}, \text{ for any } \alpha \in B\left(x, \frac{\|x\|}{4}\right).
\]

iii) From the two remarks at the beginning of this section, by continuity it follows that \(\|\alpha + \beta\|_{S_1} \leq \|\alpha\|_{S_1} + \|\beta\|_{S_1}\), for any \(\alpha, \beta \in \overline{Q}\) and also that \(\|c\alpha\|_{S_1} = |c|\|\alpha\|_{S_1}\), for any \(c \in Q, \alpha \in \overline{Q}\). Moreover, part ii) shows that for \(x \in \overline{Q}\), \(\|x\|_{S_1} = 0\) if and only if \(x = 0\), which completes the proof of the theorem. \(\Box\)
Recall ([2]) that a Pisot-Vijayaraghavan number (or simply a Pisot number or a PV number) is a real algebraic integer \(\alpha > 1 \) such that all its conjugates are of absolute value < 1.

We remark that, apart from the constant \(1/4\) on its right hand side, the inequality from Theorem 1 part ii) is best possible. Indeed let us choose a PV number, \(\beta \) say, a positive integer \(m \), and put \(x = \beta^m \). Let \(d \) denote the degree of \(\beta \) over \(\mathbb{Q} \). Since all the conjugates \(\sigma(\beta) \) are in absolute value < 1, it is easy to see (using the fact that a natural power of a PV number \(\beta \) of degree \(d \) over \(\mathbb{Q} \) also has degree \(d \) over \(\mathbb{Q} \) that if we keep \(\beta \) fixed and let \(m \) tend to infinity, the ratio \(|x|_{S_i}/|x|\) will approach \(1/\sqrt{d} \). On the other hand \(n(x,||x||/4) \leq d \). Therefore, for any fixed \(\epsilon > 0 \), if \(m \) is large enough then \(|x|_{S_i} < (1+\epsilon)\sqrt{n(x,||x||/4)} \).

3 Explicit computations

In this section we obtain a formula that gives the value of the map \(A(\cdot) \) on a large class of elements of \(\overline{\mathbb{Q}} \). To proceed, we introduce a few notations and recall some of the results from [6].

Let \(G_\mathbb{Q} = \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \) be the absolute Galois group of \(\mathbb{Q} \), endowed with the Krull topology, and let \(C(G_\mathbb{Q}) \) be the \(\mathbb{C} \)-Banach algebra of all continuous functions defined on \(G_\mathbb{Q} \) with values in \(\mathbb{C} \) (\(||f|| = \sup \{|f(\sigma)|, \sigma \in G_\mathbb{Q} \} \) for any \(f \in C(G_\mathbb{Q}) \)). Denote by \(\mu \) the Haar measure on \(G_\mathbb{Q} \), normalized such that \(\mu(G_\mathbb{Q}) = 1 \), and let \(\int_{G_\mathbb{Q}} f(\sigma)d\sigma \) be the corresponding Haar integral of any continuous function \(f : G_\mathbb{Q} \rightarrow \mathbb{C} \).

Let \(x \) be an element of \(\overline{\mathbb{Q}} \) and let \(\{x_n\}_n \) a Cauchy sequence in \(\overline{\mathbb{Q}} \) (relative to the spectral norm \(|\cdot||\) in the class of \(x \), i.e. \(\lim_{n \to \infty} x_n \square x \). Since \(|\sigma(x_{n+p}) - \sigma(x_n)| \leq ||x_{n+p} - x_n|| \), for all \(\sigma \in G_\mathbb{Q}, \{\sigma(x_n)\}_n \) is also a Cauchy sequence in \(\mathbb{C} \). Let \(x(\sigma) \) be the limit of \(\{\sigma(x_n)\}_n \) in \(\mathbb{C} \). It can be shown that \(||x|| = \sup \{|x(\sigma)|, \sigma \in G_\mathbb{Q} \} \) and that \(||x|| = ||\varphi_x|| = \sup \{|\varphi_x(\sigma)|, \sigma \in G_K \} \), where \(\varphi_x : G_\mathbb{Q} \rightarrow \mathbb{C}, \varphi_x(\sigma) = x(\sigma) \). In [6] it is shown that for any \(x \in \overline{\mathbb{Q}} \) the function \(\varphi_x \) is continuous and that the mapping

\[
\Phi : \overline{\mathbb{Q}} \rightarrow C(G_\mathbb{Q}), \quad \Phi(x) = \varphi_x
\]

(6)

is an isomorphism between the \(\mathbb{C} \)-Banach algebras \(\overline{\mathbb{Q}} \) and \(C(G_\mathbb{Q}) \).

Following [6], we introduce a continuous function \(H : G_\mathbb{Q} \rightarrow [0,1] \) with a special property: it is a measure preserving function, in the sense that it takes a Haar measurable subset of \(G_\mathbb{Q} \) to a Lebesgue measurable subset of \([0,1]\).

We begin by fixing a tower of subgroups of finite index \(G_\mathbb{Q} \supset G_1 \supset \cdots \supset G_n \supset \cdots \supset \{e\} \) for \(G_\mathbb{Q} \), where \(\bigcap_{i=0}^{\infty} G_i = \{e\} \) and \(e \) is the identity of \(G_\mathbb{Q} \), and for this tower we consider a complete set of left cosets \(\{\Delta G_i\}_{i \geq 1} \) of \(G_\mathbb{Q} \) relative to the subgroup \(G_i \), of the form \(\Delta G_i = \{G_i, \sigma_2^{(i)}G_i, \ldots, \sigma_k^{(i)}G_i\} \) (where \(k_i = [G_\mathbb{Q} : G_i] \),
Proposition 1. Let $H : G_{\mathbb{Q}} \to [0,1]$ be the above defined map, and let $f : [0,1] \to \mathbb{C}$ be a continuous function. Let $x_f \in \widetilde{G}$ be the element corresponding to the function $f \circ H$ under the isomorphism (6). Then

$$A(x_f) = \int_0^1 |f(t)|^2 dt.$$

Proof: Let $x_f \in \widetilde{G}$ be such an element. Let $(\alpha_j)_j$ be a sequence of algebraic numbers that converges in the spectral norm to x_f. Let $M_j = \{ \sigma \in G_{\mathbb{Q}} : \sigma(\alpha_j) = \alpha_j \}$, and let $n_j = [G_{\mathbb{Q}} : M_j] = \deg_{\mathbb{Q}}(\alpha_j)$.

Consider a coset decomposition of $G_{\mathbb{Q}}$ with respect to M_j:

$$G_{\mathbb{Q}} = \bigcup_{s=1}^{n_j} \sigma_s M_j,$$

and let $\alpha_{1j}, \alpha_{2j}, \cdots, \alpha_{nj}$ be the conjugates of α_j over \mathbb{Q}, where $\sigma_s(\alpha_j) = \alpha_{sj}$.

For $\sigma \in \sigma_s M_j$, we have $\sigma = \sigma_s m_j$, with $m_j \in M_j$, and deduce that

$$\varphi_{\alpha_j}(\sigma) = \varphi_{\alpha_j}(\sigma_s m_j) = (\sigma_s m_j)(\alpha_j) = \sigma_s(\alpha_j) = \alpha_{sj}.$$

Hence

$$A(\alpha_j) = \frac{1}{n_j} |\alpha_{1j}|^2 + \frac{1}{n_j} |\alpha_{2j}|^2 + \cdots + \frac{1}{n_j} |\alpha_{nj}|^2 =$$

$$= \sum_{s=1}^{n_j} \int_{\sigma_s M_j} |\varphi_{\alpha_j}(\sigma)|^2 d\sigma = \int_{G_{\mathbb{Q}}} |\varphi_{\alpha_j}(\sigma)|^2 d\sigma.$$
Let $M > 0$ be such that $|\varphi_{\alpha_j}(\sigma)|, |\varphi_{x_f}(\sigma)| \leq M$ for any $\sigma \in G_\mathbb{Q}$. For $\sigma \in G_\mathbb{Q}$ one has:

$$\left| |\varphi_{\alpha_j}(\sigma)|^2 - |\varphi_{x_f}(\sigma)|^2 \right| = \left| |\varphi_{\alpha_j}(\sigma)| + |\varphi_{x_f}(\sigma)| \right| \cdot \left| |\varphi_{\alpha_j}(\sigma)| - |\varphi_{x_f}(\sigma)| \right|$$

$$\leq 2M \left| \varphi_{\alpha_j}(\sigma) - \varphi_{x_f}(\sigma) \right| \leq 2M \left\| \varphi_{\alpha_j} - \varphi_{x_f} \right\| = 2M \left\| \alpha_j - x_f \right\|.$$

This shows that the sequence $\left(|\varphi_{\alpha_j}(\cdot)|^2 \right)_j$ converges uniformly to $|\varphi_{\alpha_j}(\cdot)|^2$, and hence

$$\int_{G_\mathbb{Q}} |\varphi_{\alpha_j}(\sigma)|^2 d\sigma \rightarrow \int_{G_\mathbb{Q}} |\varphi_{x_f}(\sigma)|^2 d\sigma.$$

Since $A(x_f) = \lim_{j \to \infty} A(\alpha_j)$, and $\varphi_{x_f} = f \circ H$ we obtain that

$$A(x_f) = \int_{G_\mathbb{Q}} |(f \circ H)(\sigma)|^2 d\sigma. \quad (7)$$

In [6] it is proven that for any continuous function $g : [0,1] \to \mathbb{C}$ one has

$$\int_0^1 g(t) dt = \int_{G_\mathbb{Q}} (g \circ H)(\sigma) d\sigma.$$

Choosing $g(t) = |f(t)|^2$, we obtain

$$\int_0^1 |f(t)|^2 dt = \int_{G_\mathbb{Q}} |(f \circ H)(\sigma)|^2 d\sigma \quad (8)$$

Combining relations (7) and (8) we conclude that

$$A(x_f) = \int_0^1 |f(t)|^2 dt, \quad (9)$$

which completes the proof of the proposition.

We end this paper with a couple of examples.

Example 1. Let $f : [0,1] \to \mathbb{C}$,

$$f(t) = \exp(-2\pi int) + \exp(2\pi int),$$

and let $x_f := \Phi^{-1}(f \circ H) \in \tilde{\mathbb{Q}}$. Then

$$A(x_f) = \int_0^1 |2\cos(2\pi nt)|^2 dt = 2.$$

Note that this example may be interpreted in some sense as a limiting case in $\tilde{\mathbb{Q}}$ of the sequence of examples in \mathbb{Q} provided by Siegel, mentioned above in the
introduction, which showed that the best possible constant λ_0 in Siegel’s trace problem is at most 2.

Example 2. Let $f : [0, 1] \to \mathbb{C}$, $f(t) = 2t$ and let $x_f := \Phi^{-1}(f \circ H) \in \tilde{\mathbb{Q}}$. Then

$$A(x_f) = \int_0^1 4t^2 dt = \frac{4}{3}.$$

As an element of $\tilde{\mathbb{Q}}$, we know that x_f is a limit of a Cauchy sequence $\{x_n\}_n$ in \mathbb{Q}, which must then satisfy $\lim_{n \to \infty} x_n = \frac{4}{3}$. Let us remark that x_f cannot be a limit of algebraic integers, since by Siegel’s result, for any algebraic integer x_n we must have $A(x_n) \in \{0, 1\}$ or $A(x_n) \geq \frac{3}{2}$.

References

Received: 29.10.2011,
Accepted: 06.01.2012.

Simion Stoilow
Institute of Mathematics of the Romanian Academy,
Research unit 5, P. O. Box 1-764,
RO-014700 Bucharest, Romania
E-mail: sfloringabriel@yahoo.com

Simion Stoilow
Institute of Mathematics of the Romanian Academy,
Research unit 5, P. O. Box 1-764,
RO-014700 Bucharest, Romania
and
Department of Mathematics,
University of Illinois at Urbana-Champaign
Altgeld Hall, 1409 W. Green Street,
Urbana, IL, 61801, USA
E-mail: zaharesc@math.uiuc.edu