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Abstract

In this paper we investigate connections between the Siegel norm and
the spectral norm on the algebraic closure QQ of Q, and their extensions to

the spectral completion Q of Q.
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1 Introduction

Let Q be the algebraic closure of Q in C, and denote by || - || the spectral norm
on Q, defined by
el = max fo(a)]
0€Gal(Q/Q)

for any algebraic number a. We consider the map A : Q — [0, 00) given by

A@ = g 2l @

where o runs over all the embeddings of K into C. Here A (a) depends only on
a and not on the field K containing a. Note that if & = 32, where « is totally
real and positive, then § is totally real and

Tra
A(B) = .
(B) dogo
For a totally real and positive algebraic integer o € O@, let n = deg a be the
degree of a over Q, and let a; = o, s, -+, a, be the conjugates of o over Q.
Then

Tra ar+ -+ ay

= Z"/al...anzl'

deg o n
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The well known trace problem of Siegel asks for the best possible constant \g
for which given A < Ag, the trace of a totally real and positive algebraic integer
v is at least A\ times its degree, except for finitely many +’s.

The best result to date is \g > 1.78702. On the other hand, as Siegel pointed
out, for every odd prime p, the number 40052% is a totally real and positive
algebraic integer of degree % and its trace is p—2. So the best possible constant
Ao is at most 2.

In [3], and more recently in [9], the restriction of the map A(-) to the ring of
cyclotomic integers Ogas is studied. It is shown in [9] that the set T = {A(«) :
a € Ogav } is closed under addition, that 7" is topologically closed in R, and that

forany 0 <r <1, r € Q, there is a t,, € Q such that
TN(r+2Z)={tmt,+1,t-+2,---}.

We also mention that from Siegel’s work [8] it follows that the intersection
T N1[0,2) consists of only two elements: 0 and 1, and they are attained when
a = 0, respectively when « is a root of unity. A striking application of this result
is provided in an unpublished theorem of Thompson. Recall that the values of
a linear character of a finite group are roots of unity. A classical theorem of
Burnside [1] says that a non-linear irreducible character of a finite group has at
least one zero. Thompson’s theorem, whose proof also implies Burnside’s result,
states that an irreducible character of a finite group is zero or a root of unity at
more than a third of the group elements.

In the present paper we extend A(a) to a larger set. The completion Q of Q
with respect to the spectral norm (see [4] and [5]), provides a natural setting for
such an extension. The map A(-) : Q — [0,00) is continuous with respect to
the spectral norm, and it naturally extends to a map, which we will still denote
by A(-), from Q to [0,00). For any algebraic number «, we define its Siegel norm
llallg; by [|e]lg; = v/A(a). In this paper we investigate connections between the
Siegel norm and the spectral norm on Q, and their extensions to the spectral
completion Q of Q. In the last section we show how one can explicitly compute

the Siegel norm for some classes of elements of Q.

2 Construction of the Siegel norm

Let us first remark that the function || - ||s; : @ — [0,00) has the following
properties.

L |la+ Bllsi < [lellsi + 18]l i, for any o, B € Q.

2. [lcallsi = |c|llel|g;, for any ¢ € Q, a € Q.

Indeed, let «, 5 € Q. Let K be a number field such that a, 5 € K. Then

Y olo@+aB)F <Y lo(@)f + Y loBF +1)_o(@)aB) +)_ ala)a(B).
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Employing Cauchy’s inequality, we derive that

2

1> o(@)a(B)l =) _o(a)o(B)] < (Z IO(a)2> (Z |0(6)|2>

Hence A(a+ ) < A(a)+ A(B) +2v/A(a)\/A(B), so \/A(a + B) < \/A(a) +
A(p), and the first remark follows.
The second part follows easily from the definition of the map A.
The above properties show that || - ||s; is a vector space norm on Q. Note that
A(a) < ||o])?, hence llallg; < ], for any o € Q.

For z € Q and & > 0, consider the open ball B(z,d) = {y € @ Ny — x| <8},
and let n(z,0) = min{dega : a« € B(x,0)}. We can now state the following
theorem.

Theorem 1. i) The map A : Q — [0,00) is continuous with respect to the
spectral norm and it extends canonically to a map, which we will still denote by

A, from Q to [0, 0).
i) Let v € Q,z # 0. Then ||z|lg;, > _ =l
4

n(z,15)
i) || - ||si is a vector space norm on Q.
Proof: i) Let (z,,),>0 be a convergent sequence in Q. Then (zy,),, is Cauchy and

let M > 0 be such that |z,| < M, for any n > 0. From the proof of the remarks
at the beginning of this section it follows that for all m,n > 0 we have

‘\/A(wn) - \/A(*Tm” < \/A(xn - Tp). (1)

On the other hand, since \/A(a) < |||, for any algebraic number «, we

derive that
VA@n — 2m) < [|2n — T (2)

Combining relations (1) and (2), we obtain

VAR = VA@n)| < llen — - (3)
We have

[A(zn) = Alwm)| = VA(@n) = VA(2m)|[VA@n) + VA(@m)| <

S 2M|\/A(xn) - \/A(xm)| S 2M||xn - x?n||7

and hence
|A(7y) — A(2y)| < 2M |27 — 2 |- (4)
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Since (x)n is Cauchy with respect to the spectral norm, it follows from
inequality (4) that the sequence (A(xy))n is Cauchy in [0,00), hence it is con-
vergent. Another consequence of relation (4) is that the map A can be ex-
tended to Q as follows. Let & € Q. Then o = limy_,00 Oy, With o, € Q, and
A(a) :=limy, o0 A(ay,) € [0, 00).

ii) Let 2 € Q,x # 0, and let 0 < § = H%”. Also let o, 9 € QN B(x,5) and
denote n = deg a, ng = degay. Let K be a finite field extension of Q such that
a, a9 € K. Denote by m the degree of K over Q(agp). From the above choice of
a we have || — z|| < @. It follows that

x 3
B 3, 6

Let 01, ..., 0mn, be the embeddings of K in C. From relation (5) we deduce that

lewoll = Izl = [l — aoll > [l]| —

3
max10;(a0)] = llaoll > Fle].
, There exist ji,...,Jm such that |o;, ()| = |oj, ()| = -+ = |0y, (a0)] >
llll- ) ) )
We have [ag — ol < [lag — z[| + [l — af| < gllz] + zllz] = 3=

It follows that |o;(c) — oj(@)| < 3|z, for any j € {1,2,...,nom}. In
particular, |0, (ag) — 0, (a)| < 3|z[|. Since |o;, ()| > 2|z, we obtain

3 1 1
loj, (@)| > |oj, (a0)| = |oj, (o) — 5, ()| > ZHQJH - §||$H = ZH93||~

We derive that

1 ) i
Al) = = 3" oy(@) 2 — (logy (@) + - + [o, (a) )
0 1<j<nom 0
S S 4 oy
~ nom 16 16mg
Hence
ledlsi = 4|\|j7T0’ for any o € B(m, @)

iii) From the two remarks at the beginning of this section, by continuity
it follows that ||a + Bllsi < |l@llsi + ||Blsi, for any o, € Q and also that

lcallsi = |cll|al|g;, for any ¢ € Q, @ € Q. Moreover, part ii) shows that for z € Q,
lz]|g; = 0if and only if x = 0, which completes the proof of the theorem. O
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Recall ([2]) that a Pisot-Vijayaraghavan number (or simply a Pisot number
or a PV number) is a real algebraic integer o > 1 such that all its conjugates are
in absolute value < 1.

We remark that, apart from the constant 1/4 on its right hand side, the
inequality from Theorem 1 part ii) is best possible. Indeed let us choose a PV
number, [ say, a positive integer m, and put x = ™. Let d denote the degree of
B over Q. Since all the conjugates o(3) are in absolute value < 1, it is easy to see
(using the fact that a natural power of a PV number g of degree d over Q also
has degree d over Q) that if we keep g fixed and let m tend to infinity, the ratio
||| s:/||x|| will approach 1/+/d. On the other hand n(z,||z||/4) < d. Therefore,

for any fixed € > 0, if m is large enough then ||z||g; < (14 €)——L2l__

Vrn(zlxl]/4)

3 Explicit computations

In this section we obtain a formula that gives the value of the map A(-) on a large

class of elements of Q. To proceed, we introduce a few notations and recall some
of the results from [6].

Let Go = Gal(Q/Q) be the absolute Galois group of Q, endowed with the
Krull topology, and let C'(Gg) be the C-Banach algebra of all continuous functions
defined on Gg with values in C (|| f|| = sup{|f(0)|,0 € Gg} for any f € C(Gg)).
Denote by w the Haar measure on Gg, normalized such that u(Gg) = 1, and
let fG o)do be the corresponding Haar integral of any continuous functlon
f GQ — (C

Let 2 be an element of Q and let {z,,},, a Cauchy sequence in Q (relative to the

spectral norm || -||) in the class of z, i.e. lim w, L

ir x. Since |0(xp4p) — o(xn)| <
|zntp — xnl , forallo € Go, {o(zn)}n isglsoooa Cauchy sequence in C. Let z(,) be
the limit of {o(zy)}n in C. It can be shown that ||z| = sup {|z (|, € Gg} and
that ||z|| = ||| = sup {|¢(0)] 10 € Gk}, where @, : Gg = C, ¢.(0) = 2(4).
In [6] it is shown that for any = € Q the function ¢, is continuous and that the
mapping

®:Q - C(Go), D(z) = ¢, (6)

is an isomorphism between the C—Banach algebras Q and C(Gg).

Following [6], we introduce a continuous function H : Gg — [0,1] with a
special property: it is a measure preserving function, in the sense that it takes a
Haar measurable subset of Gg to a Lebesgue measurable subset of [0, 1].

We begin by fixing a tower of subgroups of finite index Gg > G1 D -+ D

Gpn D --- D {e} for Gg, where ﬂ G; = {e} and e is the identity of Gg, and for

this tower we consider a complete set of left cosets {Ag, };5, of Gg relative to the

subgroup G, of the form Ag, = {Gi,UQZ)Gi, - ,Efi)G,} (where k; = [Gg : G4,
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i.e. k; is the index of G; in Gg). We choose an ordering in every Ag, such that
if n <m, O'n)G C ng 1)Gz, and O’m G C le 1)GZ 1, then s <.
Consider the partitions Gg = G; U O’é )GZ u---u ak)G and respectively

[0,1] = {o,kii)u[k E )u u{
we define the step function H; such that H;(o) = M if and only if o € O'( )G

7 =1,2,....k;. It is easy to see that the function H = lim H, is a contlnuous
n—oo

} ,foreveryi=1,2,...Forani € {1,2,...}

function and

o1 <[J;1’kj}) 20§i)Gi :_)Hil ((];1’];:7)> for every j = 1,2, ..., k;.

The function H depends not only on the tower Gog D G; D -+- D Gy, D -+ D {e},
but also on the chosen ordering in every Ag,, i =1,2,...

Next, we find a formula for evaluating the map A at elements of Q that corre-
spond, via the isomorphism (6), to functions of the form f o H, for a continuous
f:0,1] = C.

Proposition 1. Let H : Gg — [0,1] be the above defined map, and let f :

[0,1] = C be a continuous function. Let xy € Q be the element corresponding to
the function f o H under the isomorphism (6). Then

1
A(zg) = / ()Pt

Proof: Let x; € Q be such an element. Let (a;); be a sequence of algebraic
numbers that converges in the spectral norm to x¢. Let M; = {0 € Gg : 0(¢j) =
a;}, and let nj = [Go : M;] = degg(a;).

Consider a coset decomposition of Gg with respect to Mj:

n;j
GQ = U O'SMj 5
s=1

and let agj), agj), e anj be the conjugates of ; over Q, where o4(a;) = (9 ).

For o € 0,Mj, we have 0 = o,m;, with m; € M;, and deduce that
$a,(0) = pa, (05m;) = (05m;) () = o5(a;) = a.

Hence

1 N2
Ay) = \ OF + a4+ el =
nj J

=3[ lew@Pdo= [ lpu,(o)do
s=170:M; Go
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Let M > 0 be such that |pa;(0)], [¢z,(0)] < M for any o € Gg. For 0 € Gg
one has:

[0, (@) = 62, ()] = |00y (@) + 02, (@] - [0, (@) = Iz, (@)

<2M

#ay () = Pa, (0)] < 2M |[pa, = 0y || = 2M lja; — 2]

This shows that the sequence <|<pa]()|2) ~ converges uniformly to |<Pa,-(')|27
J

and hence

| 1eas@Pde — [ o (0)Pdo
Go Gy

Since A(xy) = lim; ;o A(ay), and @, = f o H we obtain that

Aly) = /G (f o H)(o) do. (7)

In [6] it is proven that for any continuous function g : [0,1] — C one has

/0 1 g(t)dt = /G @ (g0 H) (0)do.

Choosing g(t) = |f(t)|?, we obtain

! 2
[ 1rwede= [ 170 m@)do (®)
0 Ge
Combining relations (7) and (8) we conclude that
1
Awp) = [ 1roPar )

which completes the proof of the proposition. D

We end this paper with a couple of examples.
Example 1. Let f:[0,1] — C,

f(t) = exp(—2mint) + exp(2mwint),
and let 7 := @ 1(fo H) € @ Then
1
Alzy) = / |2 cos(27nt)|2dt = 2.
0

Note that this example may be interpreted in some sense as a limiting case in

Q of the sequence of examples in Q provided by Siegel, mentioned above in the
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introduction, which showed that the best possible constant Ay in Siegel’s trace
problem is at most 2. N

Example 2. Let f :[0,1] — C, f(t) = 2t and let 2y :== ®~1(fo H) € Q.
Then

! 4
A(a:f):/o 4t2dt=§.

_As an element of Q, we know that z¢ is a limit of a Cauchy sequence {z,},
in Q, which must then satisfy lim z, = %. Let us remark that xy cannot be a
n—oo

limit of algebraic integers, since by Siegel’s result, for any algebraic integer z,, we
must have A(z,,) € {0,1} or A(z,) > 3.
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