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Abstract

In this paper, we consider some generalized Fibonomial sums formulae
and then prove them by using the Cauchy binomial theorem and q−Zeilberger
algorithm in Mathematica session.
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1 Introduction

For all real n and integer k with k ≥ 0, the Gaussian q–binomial coefficients

[
n

k

]
q

is defined by [
n

k

]
q

:=
(q; q)n

(q; q)k(q; q)n−k

and as zero otherwise, where

(x; q)n := (1− x)(1− xq) . . . (1− xqn−1).

Thus far, the q−identities have taken the interest of many authors. For a
detailed information about the q−identities, we may refer to [1, 6, 7] and its to
the list of references.

We recall some well known identities related to the q−identities: firstly Gauss’
identity is as follows :

2n∑
k=0

(−1)k
[
2n

k

]
q

=
n∏

k=1

(1− q2k−1)
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and the Cauchy binomial theorem is given by

n∑
k=0

ykqk(k+1)/2

[
n

k

]
q

=
n∏

k=1

(
1 + yqk

)
. (1.1)

Define the non-degenerate second order linear sequences {Un} and {Vn} by,
for n > 1

Un = pUn−1 + Un−2 , U0 = 0 , U1 = 1,

Vn = pVn−1 + Vn−2 , V0 = 2 , V1 = p.

The Binet formulas of {Un} and {Vn} are

Un =
αn − βn

α− β
and Vn = αn + βn ,

where α, β =
(
p±

√
p2 + 4

)
/2.

For n ≥ k ≥ 1 and any positive integer m, define the generalized Fibonomial
coefficient by{

n

k

}
U ;m

:=
UmU2m . . . Unm

(UmU2m . . . Ukm)
(
UmU2m . . . Um(n−k)

) =
k∏

i=1

Um(n−i+1)

Umi

with
{
n
0

}
U ;m

=
{
n
n

}
U ;m

= 1.

When m = 1, we obtain the usual Fibonomial coefficient, denoted by
{
n
k

}
U

.
For more details about the Fibonomial and generalized Fibonomial coefficients,
see [2, 3, 4, 9].

The link between the generalized Fibonomial and Gaussian q–binomial coef-
ficients is {

n

k

}
U ;m

= αmk(n−k)

[
n

k

]
qm

with q = −α−2.

By taking q = β/α, the Binet formulae are reduced to the following forms:

Un = αn−1 1− qn

1− q
and Vn = αn(1 + qn),

where i =
√
−1 = α

√
q. All the identities we will derive hold for general q, and

results about generalized Fibonacci and Lucas numbers come out as corollaries
for the special choice of q.

In the present study, we shall consider new generalized Fibonomial sums for-
mulae and prove them by using the Cauchy binomial theorem and the q−Zeilberger
algorithm (for such computer algorithms, we may refer to [5]).



Some Generalized Fibonomial Sums Formulas 53

2 Some Fibonomial Sums

In this section, we consider some generalized Fibonomial sums and compute them
by means of Gaussian q-binomial sums formulae.

Lemma 1. For n ≥ 0,

(i)
2n+1∑
k=0

i−k2

a(k) =
1− i

2

2n+1∑
k=0

a(k),

(ii)
2n∑
k=0

imk2±kb(k) = imn2
2n∑
k=0

i±kb(k),

(iii)
2n+1∑
k=0

ik(2n+1−k)±ka(k) =
1± (−1)ni

2

2n+1∑
k=0

a(k),

where the sequences a (k) and b (k) satisfy a(k) = a(2n + 1 − k) and b(k) =
b(2n− k), respectively.

Proof: Consider

(i)
2n+1∑
k=0

i−k2

a(k) =
1

2

2n+1∑
k=0

(i−k2

+ i−(2n+1−k)2)a(k) =
1− i

2

2n+1∑
k=0

a(k).

(ii) Let Cn;m(k) := imn2±k−imk2±k. Then we have Cn;m(k)+Cn;m(2n−k) = 0.

Therefore,

2n∑
k=0

Cn;m(k)b(k) =
1

2

2n∑
k=0

(Cn;m(k) + Cn;m(2n− k)) b(k) = 0.

This result together with some manipulations proves (ii).

(iii)
2n+1∑
k=0

ik(2n+1−k)+ka(k)

=
1

2

2n+1∑
k=0

(
(−1)k(n+1)i−k2

+ (−1)(2n+1−k)(n+1)i−(2n+1−k)2
)
a(k)

=
1 + (−1)ni

2

2n+1∑
k=0

a(k).

By a similar think, it is seen that
2n+1∑
k=0

ik(2n+1−k)−ka(k) =
1− (−1)ni

2

2n+1∑
k=0

a(k), which completes the proof.
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Lemma 2. For positive integers n and m,

n∑
k=0

(−1)
mk(2n+1−k)

2 q
mk(k−2n−1)

2

[
2n+ 1

k

]
qm

=

{
(−1)(

n+1
2 )q−m(n+1

2 )(−q2m; q2m)n if m is odd,

q−m(n+1
2 )(−qm; qm)2n if m is even.

Proof: If m is odd,

2

n∑
k=0

(−q)
mk(k−2n−1)

2

[
2n+ 1

k

]
qm

=

2n+1∑
k=0

(−qm)
k(k−2n−1)

2

[
2n+ 1

k

]
qm

=

2n+1∑
k=0

ik
2

qm
(
k+1
2

)
(i−(2n+1)q−m(n+1))k

[
2n+ 1

k

]
qm

which, by (i) in Lemma 1, gives us

=
2

1− i

2n+1∑
k=0

qm
(
k+1
2

)
(i−(2n+1)q−m(n+1))k

[
2n+ 1

k

]
qm

= (1 + i)
2n+1∏
k=1

(1 + i−(2n+1)qm(k−n−1))

= (1 + i)(1 + i−(2n+1))
n∏

j=1

(1 + i−(2n+1)qmj)(1 + i−(2n+1)q−mj)

= 2in
2

n∏
j=1

i−(2n+1)(qmj + q−mj)

= 2(−q−m)

(
n+1
2

)
(−q2m; q2m)n.

Thus the proof is complete for the case m is odd.
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If m is even,

2
n∑

k=0

(−q)
mk(k−2n−1)

2

[
2n+ 1

k

]
qm

=
2n+1∑
k=0

q
mk(k−2n−1)

2

[
2n+ 1

k

]
qm

=
2n+1∑
k=0

qm
(
k+1
2

)
q−mk(n+1)

[
2n+ 1

k

]
qm

=
2n+1∏
k=1

(1 + qm(k−n−1)) = 2
n∏

j=1

(1 + qmj)(1 + q−mj)

= 2
n∏

j=1

(2 + qmj + q−mj) = 2
n∏

j=1

q−mj(1 + qmj)2

= 2q−m
(
n+1
2

)
(−qm; qm)2n.

So we have the conclusion.

Theorem 1. For positive integers n and m,

n∑
k=0

{
2n+ 1

k

}
U ;m

=


n∏

k=1

V2mk if m is odd,

n∏
k=1

V 2
mk if m is even.

Proof: The proof could be obtained from Lemma 2 by taking q = β/α.

Lemma 3. For even m and any integer t,

2n∑
k=0

(−1)(
m
2 +t)kq

mk(k−2n)
2

[
2n

k

]
qm

=
n∏

k=1

(
(−1)

m
2 +tq−

m(2k−1)
2 (1 + qm(2k−1)) + 2

)
.
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Proof: Consider the RHS of the claimed identity, we write

2n∑
k=0

(−1)(
m
2 +t)kq

mk(k−2n)
2

[
2n

k

]
qm

=
2n∑
k=0

qm
(
k+1
2

)
((−1)

m
2 +tq−

m(2n+1)
2 )k

[
2n

k

]
qm

=
2n∏
k=1

(1 + (−1)
m
2 +tq

m(2k−2n−1)
2 )

=

n∏
j=1

(1 + (−1)
m
2 +tq

m(2j−1)
2 )(1 + (−1)

m
2 +tq−

m(2j−1)
2 )

=

n∏
j=1

((−1)
m
2 +tq−

m(2j−1)
2 (qm(2j−1) + 1) + 2).

Thus the proof is complete.

Theorem 2. For even m and any integer t,

2n∑
k=0

(−1)tk
{

2n

k

}
U ;m

=
n∏

k=1

(
(−1)tVm(2k−1) + 2

)
.

As a consequence of Theorem 2, we have the following Corollary:

Corollary 1. For even m,

(i)
n∑

k=0

{
2n

2k

}
U ;m

=
1

2

{
n∏

k=1

(
Vm(2k−1) + 2

)
+

n∏
k=1

(
−Vm(2k−1) + 2

)}
,

(ii)

n∑
k=1

{
2n

2k − 1

}
U ;m

=
1

2

{
n∏

k=1

(
Vm(2k−1) + 2

)
−

n∏
k=1

(
−Vm(2k−1) + 2

)}
.

Lemma 4. For any positive integers n and m,

2n∑
k=0

ik(2mn−mk±1)q
mk(k−2n)

2

[
2n

k

]
qm

= in(mn±1)q−
mn2

2 (−qm; q2m)n.

Proof: Consider the RHS of the claimed identity and by using (ii) in Lemma 1,



Some Generalized Fibonomial Sums Formulas 57

we get

2n∑
k=0

ik(2mn−mk±1)q
mk(k−2n)

2

[
2n

k

]
qm

=
2n∑
k=0

i−mk2

qm
(
k+1
2

) (
i2mn±1q−

m(2n+1)
2

)k [2n
k

]
qm

= i−mn2
2n∑
k=0

qm
(
k+1
2

) (
i2mn±1q−

m(2n+1)
2

)k [2n
k

]
qm

= i−mn2
2n∏
k=1

(
1 + i2mn±1q

m(2k−2n−1)
2

)
= i−mn2

n∏
j=1

(
1 + i2mn±1q

m(2j−1)
2

)(
1 + i2mn±1q−

m(2j−1)
2

)
= i−mn2

n∏
j=1

i2mn±1q−
m(2j−1)

2 (1 + qm(2j−1))

= imn2±nq−
mn2

2 (−qm; q2m)n.

So we have the claimed identity.

Theorem 3. For any positive integers n and m,

2n∑
k=0

i±k

{
2n

k

}
U ;m

= i±n
n∏

k=1

Vm(2k−1).

Using Theorem 3, the following corollary can be obtained:

Corollary 2. For any positive integers n and m,

(i)
n∑

k=0

(−1)k
{

2n

2k

}
U ;m

= cos
nπ

2

n∏
k=1

Vm(2k−1),

(ii)
n∑

k=0

(−1)k
{

2n

2k − 1

}
U ;m

= − sin
nπ

2

n∏
k=1

Vm(2k−1).

Lemma 5. For any positive integers n and m,

2n+1∑
k=0

ik(m(k−2n−1)±1)q
mk(k−2n−1)

2

[
2n+ 1

k

]
qm

= (1± i)i
±n

 (−1)

(
n+1
2

)
q−m

(
n+1
2

)
(−qm; qm)2n if m is odd,

q−m
(
n+1
2

)
(−q2m; q2m)n if m is even.
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Proof: If m is odd, then we write

2n+1∑
k=0

imk(2n+1−k)±kq
mk(k−2n−1)

2

[
2n+ 1

k

]
qm

=
2n+1∑
k=0

ik(2n+1−k)±kq
mk(k−2n−1)

2

[
2n+ 1

k

]
qm

which, by (iii) in Lemma 1, gives us

=
1± (−1)ni

2

2n+1∑
k=0

qm
(
k+1
2

)
q−m(n+1)k

[
2n+ 1

k

]
qm

=
1± (−1)ni

2

2n+1∏
k=1

(1 + qm(k−n−1))

=
1± (−1)ni

2
2

n∏
j=1

(1 + qmj)(1 + q−mj)

= (1± (−1)ni)
n∏

j=1

(2 + qmj + q−mj)

= (1± (−1)ni)
n∏

j=1

q−mj(1 + qmj)2

= (1± (−1)ni)q−m
(
n+1
2

)
(−qm; qm)2n

= (1± i)i
±n

(−q−m)

(
n+1
2

)
(−qm; qm)2n.

Thus the claim is seen for odd m.
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If m is even, then we similarly obtain by (1.1),

2n+1∑
k=0

imk(2n+1−k)±kq
mk(k−2n−1)

2

[
2n+ 1

k

]
qm

=
2n+1∑
k=0

i±kq
mk(k−2n−1)

2

[
2n+ 1

k

]
qm

=
2n+1∑
k=0

qm
(
k+1
2

) (
i±1q−m(n+1)

)k [2n+ 1

k

]
qm

=
2n+1∏
k=1

(1 + i±1qm(k−n−1)) = (1 + i±1)
n∏

j=1

(1 + i±1qmj)(1 + i±1q−mj)

= (1± i)
n∏

j=1

i±1(qmj + q−mj) = (1± i)i
±n

n∏
j=1

q−mj(1 + q2mj)

= (1± i)i
±n
q−m

(
n+1
2

)
(−q2m; q2m)n.

Theorem 4. For any positive integers n and m,

2n+1∑
k=0

i±k

{
2n+ 1

k

}
U ;m

= (1± i)i
±n


n∏

k=1

V 2
mk if m is odd,

n∏
k=1

V2mk if m is even.

Using Theorem 4, we have the following Corollary:

Corollary 3. For any positive integers n and m,

(i)

n∑
k=0

(−1)k
{

2n+ 1

2k

}
U ;m

= (−1)(
n+1
2 )


n∏

k=1

V 2
mk if m is odd,

n∏
k=1

V2mk if m is even.

(ii)
n∑

k=0

(−1)k
{

2n+ 1

2k + 1

}
U ;m

= (−1)(
n
2)


n∏

k=1

V 2
mk if m is odd,

n∏
k=1

V2mk if m is even.

Lemma 6. For positive integers n and m,

2n∑
k=0

(−1)kqmk(k−2n)

[
2n

k

]2
qm

= (−1)nq−mn2 (−q2m; q2m)n(q2m; q4m)n
(q2m; q2m)n

. (2.1)
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Proof: We will show how to evaluate and prove such sums entirely mechanically.
We used Zeilberger’s own version [8], which is a Mathematica program. After
loading the package qZeil.m in Mathematica, define

SUM[n] :=
2n∑
k=0

(−1)
k
qmk(k−2n)

[
2n

k

]2
qm
. (2.2)

If we run the RHS of (2.2) in the program, then we obtain following first order
recurrence relation:

SUM[n] = −q
m−2mn(1 + q2mn)(1− q2m(2n−1))

1− q2mn
SUM[n− 1].

Clearly the right hand side of equation (2.1) satisfies the same recurrence
relation (and the both sides of (2.1) have the same initial conditions). Also, if we
solve this recurrence relation, we obtain

SUM[n] =
(-1)

n−1
qm−mn2(−q3m; q2m)n−1(q

3m
; q2m)n−1(−q

4m
; q2m)n−1

(q
4m

; q2m)n−1

. (2.3)

Thus, the right hand side of (2.1) and (2.3) are the same; it is no more necessary
to distinguish the parity of m. Consequently, the proof is complete.

Theorem 5. For positive integers n and m,

2n∑
k=0

(−1)(m+1)k

{
2n

k

}2

U ;m

= (−1)(m+1)n
n∏

k=1

V2mkU2m(2k−1)

U2mk
.
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