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On the Annihilation of local homology modules
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Abstract

Let a ⊆ b be two ideals of commutative Noetherian ring R and A an

Artinian R-module. For a non-negative integer n, we show that

up+q=n Ann(TorRp (R/b, Ha
q (A))) ⊆ Ann(TorRn (R/b, A)).

As an immediate consequence, if Ha
i (A) is Artinian for all i < n then a ⊆

Rad(Ann(Hb
i (A))) for all i < n. Moreover, we prove that if a = (x1, . . . , xn)

and c = ∩t≥1∩n
i=0Ann(TorRi (R/at, A)), then ck ⊆ ∩n−1

i=0 Ann(Ha
i (A)) where

k = (n[n
2
]).
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1 Introduction

Throughout this paper, we assume that R is a commutative Noetherian ring with

non-zero identity, a and b are two ideals of R, and A is an Artinian R-module.

In [2], Cuong and Nam defined the i-th local homology module of A with respect

to a by

Ha
i (A) = lim←−

t

TorRi (R/at, A).

This definition is in some sense dual to Grothendieck’s definition of local coho-

mology modules. It is well known that the 0-th local homology module of A with
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respect to a, Ha
0 (A), is always Artinian, simply because there exists an integer t

such that Ha
0 (A) ∼= A/atA. But what about the following question: what is the

largest integer n such that all the modules Ha
i (A) are Artinian for all i < n? This

question is dual to the question of which ideals annihilate the local cohomology

modules, and the classical theorem on local cohomology modules is Faltings’ An-

nihilator Theorem [4]. There are not many results concerning the finiteness of

local homology modules. In this regard, see [3], [6] and [7].

In this paper, for each ideals a and b of R with a ⊆ b, we show a relationship

between the annihilators of the modules TorRi (R/b, A) and TorRi (R/b, Ha
j (A)).

This provides a new characterization of the concept of A-coregular sequence of an

arbitrary ideal of R. Also, we prove that if n is a non-negative integer such that

Ha
i (A) is Artinian for all i < n, then a ⊆ Rad(Ann(Hb

i (A))) for all i < n. More-

over, we show that if a = (x1, . . . , xn) and c = ∩t≥1 ∩ni=0 Ann(TorRi (R/at, A)),

then ck ⊆ ∩n−1i=0 Ann(Ha
i (A)) where k = (n[n2 ]).

2 The results

The following theorem is dual of [5, Theorem 2.2].

Theorem 2.1. Let a ⊆ b be two ideals of R, and n a non-negative integer. Then

up+q=n Ann(TorRp (R/b, Ha
q (A))) ⊆ Ann(TorRn (R/b, A)).

Proof: Let us consider functors F (−) = R/b ⊗R − and G(−) = Ha
0 (−). The

functor F is obviously right exact and a projective module P implies Ha
0 (P ) is

flat by [1, 1.4.7] or [11, 2.4]. Combining [9, Theorem 11.39] with [11, Theorem

1.1] yields a Grothendieck spectral sequence

E2
p,q := TorRp (R/b, Ha

q (A)) =⇒
p

TorRp+q(R/b, A).

Thus, for each n ≥ 0, there is a finite filtration of the module Hn = TorRn (R/a, A)

0 = φ−1Hn ⊆ φ0Hn ⊆ . . . ⊆ φn−1Hn ⊆ φnHn = Hn

such that E∞i,n−i
∼= φiHn/φi−1Hn for all 0 ≤ i ≤ n (see [9, §11]). Since E∞i,n−i

is a subquotient of E2
i,n−i for all 0 ≤ i ≤ n, it implies that φiHn/φi−1Hn is

annihilated by Ann(TorRi (R/b, Ha
n−i(A))) for all 0 ≤ i ≤ n. Thus, we get that

up+q=n Ann(Torqp(R/b, Ha
q (A)) annihilates the homology module TorRn (R/b, A).

This completes the proof.
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A sequence of elements x1, . . . , xn in R is said to be an A-coregular sequence

(see [8, Definition 3.1]) if 0 :A (x1, . . . , xn) 6= 0 and

0 :A (x1, . . . , xi−1)
xi−→ 0 :A (x1, . . . , xi−1) is surjective for i = 1, 2, . . . , n. We

denote by width(a, A) the supremum of the lengths of all maximal A-coregular

sequences in the ideal a.

Corollary 2.2. Let a be an ideal of R such that 0 :A a 6= 0. Then width(a, A) =

inf{n : TorRi (R/a, Ha
j (A)) 6= 0 for some non-negative integers i, j with i+j = n}.

Proof: We denote by B the set in the above equality. In view of [3, Theorem

4.11] it follows that width(a, A) ≤ inf B. On the other hand, by Theorem 2.1 and

[8, Theorem 3.9] we have inf B ≤ width(a, A). This finishes the proof.

Corollary 2.3. Let a ⊆ b be two ideals of R. Then, for each non-negative integer

n, uni=0 Ann(Ha
i (A)) ⊆ ∩t≥1 ∩ni=0 Ann(TorRi (R/bt, A)).

Proof: Let t be a positive integer. Then at ⊆ bt. Hence, for each non-negative

integer m, it follows from Theorem 2.1 and [2, Remark 2.1(ii)] that

ui+j=m Ann TorRi (R/bt, Ha
j (A)) ⊆ Ann(TorRm(R/bt, A)). Since the Tor functors

are linear, the result now follows.

Theorem 2.4. Let a ⊆ b be two ideals of R, and n a non-negative integer such

that Ha
i (A) is Artinian for all i < n. Then a ⊆ Rad(Ann(Hb

i (A))) for all i < n.

Proof: By [2, Proposition 4.7], there exists a positive integer m such that

amHa
i (A) = 0 for all i < n. Put l := mn. Then al ⊆ un−1i=0 Ann(Ha

i (A)).

Thus, by Corollary 2.3 al ⊆ ∩n−1i=0 Ann(TorRi (R/bt, A)) for all t ∈ N. Therefore

alHb
i (A) = 0 for all i < n and so a ⊆ Rad(Ann(Hb

i (A))) for all i < n, as required.

We prove the following theorem by similar techniques that used in [10, The-

orem 3].

Theorem 2.5. Let n be a non-negative integer such that a = (x1, . . . , xn). If

c = ∩t≥1∩ni=0 Ann(TorRi (R/at, A)), then ck ⊆ ∩n−1i=0 Ann(Ha
i (A)) where k = (n[n2 ]).
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Proof: First we show, for k ≤ n, that (c)(
k
i )Hi(x

t
1, . . . , x

t
k;A) = 0, for 0 ≤ i < k

and t ≥ 1. To this end we make an induction on k. If k = 1 and i = 0, then

H0(xt1;A) ∼= A/xt1A is annihilated by c. Assume k ≥ 2. We show the statement

by induction on i. For i = 0 we have the exact sequence

A/xt1A −→ H0(xt1, . . . , x
t
k;A) −→ 0

and the assertion is true. For i ≥ 1 there is a short exact sequence

0 −→ Hi(x
t
1, . . . , x

t
k−1;A)/xtkHi(x

t
1, . . . , x

t
k−1;A) −→ Hi(x1, . . . , x

t
k;A)

−→ (0 :Hi−1(xt
1,...,x

t
k−1;A) x

t
k) −→ 0,

t ≥ 1. If i < k− 1, the induction hypothesis yields the statement. In the case

i = k − 1 we get

Hi(x
t
1, . . . , x

t
k−1;A)/xtkHi(x

t
1, . . . , x

t
k−1;A) ∼= R/(xt1, . . . , x

t
k)⊗(0 :A (xt1, . . . , x

t
k−1)).

Hence the short exact sequence proves the statement on the annihilation.

In particular, we have (c)(
k
i )Hi(x

t
1, . . . , x

t
k;A) = 0 (0 ≤ i < n, t ≥ 1).

By [2, Theorem 3.6], we have Ha
i (A) = lim←−

t

Hi(x
t
1, . . . , x

t
n;A). Note that

(c)(
n
i )lim←−

t

Hi(x
t
1, . . . , x

t
n;A) ⊆ lim←−

t

(c)(
n
i )Hi(x

t
1, . . . , x

t
n;A) = 0. Therefore it fol-

lows (c)(
n
i )Ha

i (A) = 0, which proves the statement.
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Thesis, Utrecht, (1985).

[2] N.T. Cuong and T. T. Nam, The I-adic completion and local homology

for Artinian modules, Math. Proc. Camb. Phil. Soc., 131(2001), 61-72.

[3] N.T. Cuong and T.T. Nam, A local homology theory for lineary compact

modules, J. Algebra, 319 (2008), 4712-4737.



On the Annihilation of local homology modules 67

[4] G. Faltings, Uber die annulatoren lokaler kohomologiegruppen, Arch.

Math., 30(5)(1978), 473-476.

[5] K. Khashyarmanesh, On the annihilators of local cohomology modules,

Comm. Algebra, 37(2009), 1787-1792.

[6] A. Mafi and H. Saremi, Coassociated primes of local homology and local

cohomology modules, Rocky Mountain J. Math., 41(5)(2011), 1631-1638.

[7] A. Mafi and H. Saremi, On the finiteness of local homology modules,

Rend. Semin. Mat. Univ. Politec. Torino, 67(2009), 115-122.

[8] A. Ooishi, Matlis duality and the width of a module, Hiroshima Math. J.,

6 (1976), 573-587.

[9] J. Rotman, Introduction to homological algebra, (Academic Press, 1979).

[10] P. Schenzel, Cohomological annihilators, Math. Proc. Camb. Phil. Soc.,

91(1982), 345-350.

[11] A. M. Simon, Some homological properties of complete modules, Math.

Proc. Camb. Phil. Soc., 108(1990), 231-246.

Received: 25.05.2010,

Revised: 28.12.2010,

Accepted: 10.12.2011.

Department of Mathematics,

University of Kurdistan,

Pasdaran St., P.O. Box: 416,

Sanandaj, Iran

and

School of Mathematics,

Institute for Research

in Fundamental Science (IPM),

P.O. Box 19395-5746,

Tehran, Iran.

E-mail: a mafi@ipm.ir


