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Abstract

We prove some criteria for splitting of rank-two vector bundles on Hirze-

bruch surfaces. As a main tool we use Beilinson’s type spectral sequences.
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1 Introduction

The problem of the splitting of a vector bundle is not new and is far away from
being completed. In the case of the projective space, there are known the results of
Evans and Griffith or Horrocks, which give us necessary and sufficient conditions
for an arbitrary vector bundle on P

n to be split. For example, Horrocks states in
[13] that a vector bundle on a projective space decomposes into a direct sum of line
bundles if, and only if, all of its twists have no intermediate cohomology. Related
to the same topic, Ottaviani proved in [15] and [16] that a vector bundle on the
hyperquadric Qn ⊂ P

n+1 (or on the Grassmannian Gr(k, n)) is a direct sum of line
bundles if it has no intermediate cohomology and satisfies other cohomological
conditions involving Spinor bundles (or the tautological k-dimensional bundle
respectively). Costa and Miró-Roig showed in [10] that Horrocks’ criterion can be
extended to vector bundles on multi-projective spaces and on smooth projective
varieties with extra properties.

One idea that has gained momentum over the years in the field is to use
Beilinson type spectral sequences. Originally developed on projective spaces (see
[14]), it has since been generalized first to Hirzebruch surfaces ([9]), and then to
arbitrary scrolls ([3]). The idea has also proved useful to the study of various
moduli space problems (see [14] or [11]).

In this note, we use Buchdal’s Beilinson type spectral sequence ([9]) to prove
that a vector bundle on a Hirzebruch surface splits if, and only if, it fulfills some
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cohomological conditions. In section 2, we briefly review its construction following
[9] (see also [3]).

We mention that general results on vector bundles can be found in [7] or [12].
We also notice that vector bundles on Hirzebruch surfaces, and more generally
on ruled surfaces, have been the subject of intensive studies (see, for example,
[1], [2], [5], [6], [8]).

Let X = Σe
π
→ P

1 be a Hirzebruch surface, e ≥ 0. Denote generators of the
Picard group of X by C0 = OX(1) for the negative section (C2

0 = −e), and by
F = π∗OP1(1) for a fiber of the ruling. The main result, proved in section 3, can
be stated as follows:

Theorem. Let X = Σe be a Hirzebruch surface and M a rank-two vector bundle
on X. Then

(i) M ∼= OX ⊕OX if, and only if, c1(M) = 0, c2(M) = 0 and h0(M(−C0)) =
h0(M(−F )) = h1(M) = 0.

(ii) M ∼= OX(−F ) ⊕ OX(−C0 − eF ) if, and only if, c1(M) = −C0 − (e +
1)F, c2(M) = 1 and h0(M) = 0.

(iii) M ∼= OX ⊕OX(−F ) if, and only if, c1(M) = −F, c2(M) = 0 and
h0(M(−C0)) = h0(M(−F )) = h1(M) = 0.

(iv) M ∼= OX(−F )⊕OX(−C0 − (e + 1)F ) if, and only if, c1(M) = −C0 − (e +
2)F, c2(M) = 1 and h0(M) = h1(M(−C0 − F )) = h2(M(−F )) = 0.

(v) M ∼= OX ⊕ OX(−C0 − (e + 1)F ) if, and only if, c1(M) = −C0 − (e +
1)F, c2(M) = 0 and h0(M(−C0)) = h0(M(−F )) = h1(M) = 0.

We mention that the cases above are the only ones that can be obtained by
analyzing the first page of the Beilinson spectral sequence. In order to prove other
splitting criteria, one needs a finer analysis involving differentials of the spectral
sequence.

Acknowledgments. The authors thank Marian Aprodu and Vasile Brînzănescu
for their support and advice on this problem.

2 Preliminaries

Throughout, X = Σe denotes the Hirzebruch surface PP1(E), where E is the rank
two vector bundle OP1 ⊕OP1(−e). The canonical divisor is

K =def KX = −2C0 − (e + 2)F,

where C0 is the class of the negative section satisfying C2
0 = −e, and where F is

the class of a fiber of π. The classes C0 and F span freely Pic(X) and we also
have the intersection relations F 2 = 0 and C0 · F = 1.
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Let ∆ ⊂ X×X be the diagonal. As we see in [9], ∆ can be described scheme-
theoretically as the zero locus of a global section in a rank-two vector bundle
over X × X. Such X is said to satisfy the diagonal property (see [17]). As the
foundation of the Beilinson spectral sequence, this description can be achieved
in two steps. We denote by p1, p2 : X × X → X the two projections and let
Y = X ×P1 X ⊂ X × X. The first step is to consider the embedding ∆ ⊂ Y and
observe (see [9], also [3]) that

OY (∆) =
(

p∗1TX|P1(−C0) ⊗ p∗2OX(C0)
)

|Y .

Recall that TX|P1(−C0) = OX(C0 + eF ) and p∗1OX(F )|Y ∼= p∗2OX(F )|Y . For the
second step, we use an extension lemma and proceed from the fibered product
to the usual product. To be more precise, there exists a rank-two bundle G on
X × X, given by a non-trivial extension

0 → p∗1TX|P1(−C0) ⊗ p∗2OX(C0) → G → OX×X(Y ) → 0 (1)

and a global section of G whose zero-scheme coincides with ∆ ⊂ X ×X (see, for
example, [3]). In particular, we get a truncated Koszul complex

0 → ∧2G∗ → G∗ → OX×X . (2)

If M is a vector bundle of arbitrary rank on X, then we can twist the complex
(2) by p∗2(M) and take the hypercohomology. We obtain a spectral sequence
abutting to M (see [9]):

E
p,q
1 = Rqp1∗(∧

−pG∗ ⊗ p∗2(M)) ⇒

{

M if p + q = 0
0 otherwise.

We note that E
p,q
1 = 0 if p 6∈ {−2,−1, 0} or if q 6∈ {0, 1, 2} and the remaining

terms of the spectral sequence are computed by twisting the dual of the extension
(1) by p∗2(M) and applying p1∗ (see [9], also [3]). For any q we have:

E
0, q
1

∼= Hq(X,M)⊗OX , E
−2, q
1

∼= Hq(X,M(−C0−F ))⊗OX(−C0− (e+1)F )),
(3)

and E
−1,q
1 can be determined from the exact sequence

Hq(X,M(−F ))⊗OX(−F ) → E
−1,q
1 → Hq(X,M(−C0))⊗OX(−C0 − eF ). (4)

Morally, if we use the Beilinson spectral sequence, we should completely deter-
mine a vector bundle when we know the cohomology of suitable twists and vector
bundle morphisms (the differentials of the spectral sequence). To illustrate this
principle we’ll see in the next section that in the rank-two case, with appropriate
conditions, we can find the shape of the first sheet of the spectral sequence, and
consequently, the vector bundle itself.
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3 Splitting criteria

In this section we find some splitting criteria for a rank-two vector bundle M
on a Hirzebruch surface X. We use the Beilinson spectral sequences and get
equivalent conditions for M to be split in five different cases. We mention that
one of this situations was treated in another context in [4]. We start with a useful
lemma:

Lemma 1. Let X a Hirzebruch surface and a, b ∈ Z. Then

H1(OX(aC0 + bF )) ∼=







H0(P1,
⊕−a−1

k=1
OP1(ke + b)), if a ≤ −2

0, if a = −1
H0(P1,

⊕a

k=0
OP1(ke − b − 2)), if a ≥ 0

.

Remark 1. The expression of h1(X,F) for some vector bundle F might be
involved in problems such as the splitting of an extension or the computation of
some particular variety dimension (see, for example, [5], [6]).

Proof: Consider the Leray spectral sequence for π and F = OX(aC0 + bF ):

E
p, q
2 = Hp(P1, Rqπ∗F) ⇒ Hp+q(X,F).

Hence, we have

E
p, q
2 = Ep, q

∞ , for p + q = 1,

E0, 1
∞ = Gr1(H1(X,F)) = H0(P1, R1π∗F),

E1, 0
∞ = Gr0(H1(X,F)) = H1(P1, π∗F).

We obtain the exact sequence

0 → H0(P1, R1π∗F) → H1(X,F) → H1(P1, π∗F) → 0.

But
R1π∗F = R1π∗OX(aC0) ⊗OP1(b),

and since
R1π∗OX(aC0) = (π∗OX((−a − 2)C0))

∗ ⊗ det(E),

we find
R1π∗F = (π∗OX((−a − 2)C0))

∗ ⊗OP1(e + b),

and
π∗F = π∗OX(aC0) ⊗OP1(b).

On the other hand,

π∗OX(αC0) =

{

Sα(E), if α ≥ 0
0, if α < 0

, (5)
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where Sα(E) = Sα(OP1 ⊕OP1(−e)) =
⊕α

k=0
OP1(−ke).

Note that if a ≤ −2, then π∗F = 0, and we get

H1(X,F) ∼= H0(P1, (π∗OX((−a − 2)C0))
∗ ⊗OP1(e + b)).

For α = −a − 2 in (5) we find

π∗OX((−a − 2)C0) =

−a−2
⊕

k=0

OP1(−ke),

and then

(π∗OX((−a − 2)C0))
∗ ⊗OP1(e + b) =

−a−2
⊕

k=0

OP1((k + 1)e + b).

So, if a ≤ −2, then

H1(X,F) ∼= H0(P1,

−a−1
⊕

k=1

OP1(ke + b)).

If a ≥ 0, we get from (5) that R1π∗F = 0, and

H1(X,F) ∼= H1(P1, π∗F) ∼= H0(P1, ωP1 ⊗ (π∗F)∗).

From (5) for α = a we find that

π∗F =

a
⊕

k=0

OP1(−ke + b),

and

ωP1 ⊗ (π∗F)∗ =

a
⊕

k=0

OP1(ke − b − 2).

This completes the case a ≥ 0.
If a = −1 then, by (5), we get π∗F = 0 and R1π∗F = 0, so H1(X,F) = 0.

Before we state the main result of this paper, we mention that the cohomology
on X = Σe will be noted without specify the space X. Namely, H0(M) means
H0(X,M), otherwise the space will be specified.

Theorem 1. Let X be a Hirzebruch surface and M a rank-two vector bundle on
X. Then
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(i) M ∼= OX ⊕ OX if and only if c1(M) = 0, c2(M) = 0 and h0(M(−C0)) =
h0(M(−F )) = h1(M) = 0.

(ii) M ∼= OX(−F ) ⊕ OX(−C0 − eF ) if and only if c1(M) = −C0 − (e +
1)F, c2(M) = 1 and h0(M) = 0.

(iii) M ∼= OX ⊕OX(−F ) if and only if c1(M) = −F, c2(M) = 0 and
h0(M(−C0)) = h0(M(−F )) = h1(M) = 0.

(iv) M ∼= OX(−F ) ⊕OX(−C0 − (e + 1)F ) if and only if c1(M) = −C0 − (e +
2)F, c2(M) = 1 and h0(M) = h1(M(−C0 − F )) = h2(M(−F )) = 0.

(v) M ∼= OX ⊕ OX(−C0 − (e + 1)F ) if and only if c1(M) = −C0 − (e +
1)F, c2(M) = 0 and h0(M(−C0)) = h0(M(−F )) = h1(M) = 0.

Proof: (i) Two different solutions (one in arbitrary rank) can be found in [4].
(ii) It is clear that M ∼= OX(−F ) ⊕OX(−C0 − eF ) satisfies the vanishing con-
dition.
Conversely, we suppose that the bundle M has c1(M) = −C0−(e+1)F, c2(M) =
1 and h0(M) = 0 and we prove that M ∼= OX(−F ) ⊕ OX(−C0 − eF ). First of
all, we show that

h1(M) = h2(M) = 0,
h0(M(−C0)) = h2(M(−C0)) = 0, h1(M(−C0)) = 1,
h0(M(−F )) = h2(M(−F )) = 0, h1(M(−F )) = 1,
h0(M(−C0 − F )) = h1(M(−C0 − F )) = h2(M(−C0 − F )) = 0.

(6)

To see this, we compute the Chern classes for the bundles M(−C0),M(−F ) and
M(−C0 − F ). We use that c1(M) = −C0 − (e + 1)F, c2(M) = 1 and get

c1(M(−C0)) = −3C0 − (e + 1)F, c2(M(−C0)) = 2 − e,

c1(M(−F )) = −C0 − (e + 3)F, c2(M(−F )) = 2,
c1(M(−C0 − F )) = −3C0 − (e + 3)F, c2(M(−C0 − F )) = 5 − e.

Applying the Riemann-Roch theorem we find that

χ(M) = 0, χ(M(−C0)) = −1,

χ(M(−C0 − F )) = 0, χ(M(−F ) = −1.
(7)

Since h0(M) = 0 and the divisor D ∈ {C0, F, C0 + F} is effective,

h0(M(−C0)) = h0(M(−F )) = h0(M(−C0 − F )) = 0. (8)

Since c1(M) = −C0 − (e + 1)F , it follows that det(M) = OX(−C0 − (e + 1)F ),
hence M∗ ∼= M(C0 + (e + 1)F ). Then, by Serre Duality, we get

h2(M) = h0(M∗(K)) = h0(M(−C0 − F )) = 0,
h2(M(−C0)) = h0(M∗(K + C0)) = h0(M(−F )) = 0,
h2(M(−F )) = h0(M∗(K + F )) = h0(M(−C0)) = 0,
h2(M(−C0 − F )) = h0(M∗(K + C0 + F )) = h0(M) = 0.

(9)
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The hypotheses, combined with (7), (8) and (9), imply the other conditions in
(6).

Next, we compute E
p, q
1 for the bundle M, with p ∈ {−2,−1, 0} and q ∈

{0, 1, 2}. From (3) we get

E
0, q
1

∼= Hq(M) ⊗OX = 0,

E
−2, q
1

∼= Hq(M(−C0 − F )) ⊗OX(−C0 − (e + 1)F ) = 0,

for all q ∈ {0, 1, 2}, and the long exact sequence (4) gives us

0 → H0(M(−F )) ⊗OX(−F ) → E
−1, 0
1 → H0(M(−C0)) ⊗OX(−C0 − eF ) →

→ H1(M(−F )) ⊗OX(−F ) → E
−1, 1
1 → H1(M(−C0)) ⊗OX(−C0 − eF ) →

→ H2(M(−F )) ⊗OX(−F ) → E
−1, 2
1 → H2(M(−C0)) ⊗OX(−C0 − eF ) → 0.

Since we have h0(M(−C0)) = h0(M(−F )) = h2(M(−C0)) = h2(M(−F )) = 0
and h1(M(−C0)) = h1(M(−F )) = 1 (from (6)), then we get E

−1, 0
1 = E

−1, 2
1 = 0

and the short exact sequence

0 → OX(−F ) → E
−1, 1
1 → OX(−C0 − eF ) → 0. (10)

But the extensions of this type are parameterized by

Ext1(OX(−C0 − eF ),OX(−F )) ∼= H1(OX(C0 + (e − 1)F )).

Applying lemma 1 we have

H1(OX(C0 + (e − 1)F )) ∼= H0(OP1(−e − 1) ⊕OP1(−1)) = 0,

so, the exact sequence (10) splits, hence

E
−1, 1
1

∼= OX(−F ) ⊕OX(−C0 − eF ).

By what we know so far, the first page of the spectral sequence has the following
shape:

0 0 0

0 E
−1, 1
1 0

0 0 0

.

Since Ep, q
∞ ⇒ M for p + q = 0 and Ep, q

∞ = E
p, q
1 , it follows that

M ∼= E
−1, 1
1

∼= OX(−F ) ⊕OX(−C0 − eF ).

(iii) As in the previous case, we are more interested in the converse. First of all,
we compute and find χ(M) = 1, χ(M(−C0)) = 0, χ(M(−F ) = −1, χ(M(−C0 −
F )) = 0. Then, by hypothesis, by Serre Duality, and from M∗ ∼= M(F ), we get

h0(M) = 1, h2(M) = 0,
h1(M(−C0)) = h2(M(−C0)) = 0,
h1(M(−F )) = 1, h2(M(−F )) = 0,
h0(M(−C0 − F )) = h1(M(−C0 − F )) = h2(M(−C0 − F )) = 0.
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It follows that E
p, q
1 = 0, except E

0, 0
1

∼= OX and E
−1, 1
1

∼= OX(−F ). The first
page of the spectral sequence has the following shape:

0 0 0

0 E
−1, 1
1 0

0 0 E
0, 0
1

.

This means that we have the extension

0 → OX → M → OX(−F ) → 0

that arises from the Beilinson spectral sequence and which is split because

Ext1(OX(−F ),OX) ∼= H1(OX(F )) ∼= H0(OP1(−3)) = 0

(last isomorphism follows by lemma 1). Hence M ∼= OX ⊕OX(−F ).
(iv) In a similar manner we find χ(M) = 0, χ(M(−C0)) = 0, χ(M(−F ) = −1,

χ(M(−C0 −F )) = 1. Notice that M∗ ∼= M(C0 + (e + 2)F ) hence, by hypothesis
and by Serre Duality, we find that

h1(M) = h2(M) = 0,
h0(M(−C0)) = h1(M(−C0)) = h2(M(−C0)) = 0,
h0(M(−F )) = 0, h1(M(−F )) = 1,
h0(M(−C0 − F )) = 0, h2(M(−C0 − F )) = 1.

Therefore E
p, q
1 = 0, except E

−2, 2
1

∼= OX(−C0−(e+1)F ) and E
−1, 1
1

∼= OX(−F ).
The first page of the spectral sequence has the following shape:

E
−2, 2
1 0 0

0 E
−1, 1
1 0

0 0 0

.

For this reason, the Beilinson spectral sequence gives rise to the extension

0 → OX(−F ) → M → OX(−C0 − (e + 1)F ) → 0,

which is split because

Ext1(OX(−C0 − (e + 1)F ),OX(−F )) ∼= H1(OX(C0 + eF ))

and
H1(OX(C0 + eF )) ∼= H0(OP1(−e − 2) ⊕OP1(−2)) = 0

(by lemma 1). Hence M ∼= OX(−F ) ⊕OX(−C0 − (e + 1)F ).
(v) In the last case we may follow the same path. We find χ(M) = 1, χ(M(−C0)) =
0, χ(M(−F ) = 0, χ(M(−C0 −F )) = 1. If we note that M∗ ∼= M(C0 + (e + 1)F )
then, by hypothesis, Serre Duality we obtain that

h0(M) = 1, h2(M) = 0,
h1(M(−C0)) = h2(M(−C0)) = 0,
h1(M(−F )) = h2(M(−F )) = 0,
h0(M(−C0 − F )) = h1(M(−C0 − F )) = 0, h2(M(−C0 − F )) = 1.
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It follows that E
p, q
1 = 0, except E

0, 0
1

∼= OX and E
−2, 2
1

∼= OX(−C0 − (e + 1)F ).
The first page of the spectral sequence has the following shape:

E
−2, 2
1 0 0
0 0 0

0 0 E
0, 0
1

.

Consequently, we have the extension

0 → OX → M → OX(−C0 − (e + 1)F ) → 0

that arises from the Beilinson spectral sequence and which is split because

Ext1(OX(−C0 − (e + 1)F ),OX) ∼= H1(OX(C0 + (e + 1)F ))

and
H1(OX(C0 + (e + 1)F )) ∼= H0(OP1(−e − 3) ⊕OP1(−3)) = 0

(by lemma 1). Hence M ∼= OX ⊕OX(−C0 − (e + 1)F ).

Remark 2. From the proof of the theorem, we see that these are the only cases
that can occur at the first level of the Beilinson spectral sequence. Therefore, if we
want other splitting criteria, we have to involve the second page of the spectral
sequence, which means that we need more information about the differentials
appearing at the first level.
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