# Primal, completely irreducible, and primary meet decompositions in modules 

by<br>Toma Albu* and Patrick F. Smith ${ }^{\dagger}$


#### Abstract

This paper was inspired by the work of Fuchs, Heinzer, and Olberding concerning primal and completely irreducible ideals. It is proved that if $R$ is a commutative Noetherian ring then every primal submodule of an $R$-module $M$ is a primary submodule of $M$ if and only if for all prime ideals $\mathfrak{p} \subset \mathfrak{q}$ of $R$, every $\mathfrak{p}$-primary submodule of $M$ is contained in every $\mathfrak{q}$-primary submodule of $M$. Moreover, for a commutative Noetherian ring $R$, every primal ideal of $R$ is primary if and only if $R$ is a finite direct product of Artinian rings and one-dimensional domains. Given a general ring $R$, a right $R$-module $M$ has the property that every submodule contains a completely coirreducible submodule if and only if the Jacobson radical of any non-zero submodule $N$ of $M$ is zero and an irredundant intersection of maximal submodules of $N$. The paper closes with seven open problems.


Key Words: Primal submodule, irreducible submodule, completely irreducible submodule, completely coirreducible module, primary submodule, primary decomposition, completely irreducible decomposition, Noetherian ring.
2010 Mathematics Subject Classification: Primary 13C13; Secondary $13 \mathrm{C} 99,13 \mathrm{E} 05,16 \mathrm{D} 80$.

## Introduction

This paper is a continuation of Albu and Smith [2] which was inspired by Fuchs, Heinzer, and Olberding [6], [7]. In Section 1 we consider primary submodules of a module over a commutative ring and their relation (if any) to completely

[^0]irreducible submodules. We analyze in Section 2 the connections between primal submodules and primary submodules of a module over a commutative ring. We show that for any module $M$, every primary submodule is also primal. Then we study when the converse holds and characterize those modules $M$ over a Noetherian ring $R$ for which every primal submodule is primary (Theorem 2.7). In particular, a commutative Noetherian ring $R$ has the property that every primal ideal is primary if and only if $R$ is a finite direct product of Artinian rings and one-dimensional domains (Theorem 2.9). In Section 3 we examine irredundant decompositions of a submodule of a module over an arbitrary ring as an intersection of irreducible, completely irreducible, or primal submodules. Similar to the characterization, due to Fort [4], of modules rich in coirreducibles via irredundant irreducible decompositions, we characterize modules rich in completely coirreducibles via irredundant completely irreducible decompositions. The final section contains a list of seven questions.

## 0 Preliminaries

We first present the basic terminology and notation that will be used in this paper and then briefly consider completely irreducible submodules of a general module.

Throughout, $R$ will denote an associative ring with non-zero identity element and all modules considered will be unital right modules over $R$. The notation $M_{R}$ will be used to designate a (unital right) $R$-module $M$, and the lattice of all submodules of $M_{R}$ will be denoted by $\mathcal{L}(M)$. The notation $N \leqslant M$ (resp. $N<M$ ) means that $N$ is a submodule (resp. proper submodule) of $M$. Whenever we want to indicate that $X$ is merely a subset (resp. proper subset) of $M$, then we shall use $X \subseteq M$ (resp. $X \subset M$ ). We denote by $\mathbb{N}$ the set $\{1,2, \ldots\}$ of all positive integers, by $\mathbb{Z}$ the ring of rational integers, and by $\mathbb{Q}$ the field of rational numbers. For all undefined terms and notation the reader is referred to Albu and Smith [2].

Let $R$ be any ring. Recall that a submodule $N$ of a module $M$ is called meet irreducible or, simply, irreducible provided $N \neq M$ and whenever $N=K \cap L$, for some submodules $K, L$ of $M$, then $N=K$ or $N=L$. On the other hand, a submodule $N$ of $M$ is called completely irreducible or, more briefly, $C I$ if $N \neq M$ and $N$ is not the intersection of any collection of submodules of $M$ each properly containing $N$. Clearly CI submodules of $M$ are irreducible submodules of $M$, but not conversely: the zero ideal of the ring $\mathbb{Z}$ is irreducible but not CI. A module $M$ is called coirreducible (resp. completely coirreducible) if 0 is an irreducible (resp. CI) submodule of $M$. Note that the coirreducible modules are often known as uniform modules. We use here the term of "coirreducible" in accordance with the following more general terminology: if $\mathbb{P}$ is a property of submodules of a module, then a module $M$ is called "coP" if the submodule 0 of
$M$ has $\mathbb{P}$ (e.g., primary submodule and coprimary module, primal submodule and coprimal module).

Recall the following known elementary facts (see, e.g., Albu [1] and/or Albu and Smith [2]).

Lemma 0.1. Let $R$ be any ring and let $M$ be a non-zero right $R$-module. Then every proper submodule of $M$ is an intersection of CI submodules of $M$.

Lemma 0.2. Let $R$ be any ring. Then the following statements are equivalent for a submodule $N$ of a right $R$-module $M$.
(i) $N$ is a CI submodule of $M$.
(ii) $N \neq M$ and $N \neq \bigcap L$, where the intersection is taken over all submodules $L$ of $M$ with $N \subset L$.
(iii) $N$ is an irreducible submodule of $M$ such that the module $M / N$ has nonzero socle.
(iv) The module $M / N$ has a simple essential socle.

For any module $M$, the collection of CI submodules will be denoted by $\mathcal{I}^{c}(M)$ and the collection of all irreducible submodules by $\mathcal{I}(M)$.

## 1 Completely irreducible submodules and primary submodules

In this section $R$ will always denote a commutative ring (with a non-zero identity) and $M$ an arbitrary (unital) $R$-module. We analyze in this section the connections between CI submodules and primary submodules of a module. We show that an $R$-module $M$ is a module with primary decomposition if and only if every CI submodule of $M$ is $\mathfrak{m}$-primary for some maximal ideal $\mathfrak{m}$ of $R$. This implies that if $R$ is a Noetherian ring then a submodule of $M$ is CI if and only if it is an irreducible $\mathfrak{m}$-primary submodule for some maximal ideal $\mathfrak{m}$ of $R$.

Recall from Bourbaki [3] some definitions concerning primary submodules. If $N$ is a submodule of $M$, then the radical of $N$ in $M$ is the ideal of $R$ defined by

$$
\operatorname{Rad}_{M}(N):=\left\{r \in R \mid \forall m \in M, \exists k_{m} \in \mathbb{N} \text { such that } r^{k_{m}} m \in N\right\}
$$

If $M=R$ and $N$ is an ideal $\mathfrak{a}$ of $R$, then $\operatorname{Rad}_{R}(\mathfrak{a})$ is precisely the usual radical $\sqrt{\mathfrak{a}}$ of $\mathfrak{a}$. Note that if $M$ is finitely generated, then

$$
\operatorname{Rad}_{M}(N)=\left\{r \in R \mid \exists k \in \mathbb{N} \text { such that } r^{k} M \subseteq N\right\}
$$

A primary submodule of $M$ is a proper submodule $N$ of $M$ satisfying the following condition: whenever $r \in R$ and $m \in M$ are such that $r m \in N$, then
$r \in \operatorname{Rad}_{M}(N)$ or $m \in N$. Equivalently, $N$ is a primary submodule of $M$ if $\operatorname{Ass}_{f}(M / N)$ has exactly one element, say $\mathfrak{p} \in \operatorname{Spec}(R)$, and in that case we call $N$ a $\mathfrak{p}$-primary submodule of $M$. Note that if $N$ is a $\mathfrak{p}$-primary submodule of $M$, then $\mathfrak{p}=\operatorname{Rad}_{M}(N)$. A module $M$ is said to be coprimary if 0 is a primary submodule of $M$; so, $N$ is a primary submodule of $M$ if and only if the quotient module $M / N$ is coprimary.

A submodule $N$ of $M$ is said to be strongly primary if it is a $\mathfrak{p}$-primary submodule of $M$ such that $\mathfrak{p}^{n} M \subseteq N$ for some positive integer $n$. A module $M$ is said to be with primary decomposition (resp. Laskerian) if each of its proper submodules is an intersection, possibly infinite, (resp. a finite intersection) of primary submodules of $M$.

For all other undefined terms and notation the reader is referred to Albu and Smith [2].

Lemma 1.1. (Radu [9, Propoziția 4.3]). An $R$-module $M$ is a module with primary decomposition if and only if every CI submodule of $M$ is primary.

Proof: If any CI submodule of $M$ is primary, then any proper submodule of $M$ is an intersection of primary submodules, i.e., the module $M$ is with primary decomposition, because every proper submodule of $M$ is an intersection of CI submodules by Lemma 0.1.

Conversely, if $M$ is with primary decomposition, since any CI submodule $N$ of $M$ cannot be an intersection of primary submodules that properly contain it, it follows that $N$ must be primary.

Proposition 1.2. An $R$-module $M$ is a module with primary decomposition if and only if every CI submodule of $M$ is $\mathfrak{m}$-primary for some $\mathfrak{m} \in \operatorname{Max}(R)$. In particular, if $M$ is a Laskerian module, then every CI submodule of $M$ is $\mathfrak{m}$ primary for some $\mathfrak{m} \in \operatorname{Max}(R)$.

Proof: In view of Lemma 1.1, it is sufficient to show that if $M$ is a module with primary decomposition then every CI submodule of $M$ is $\mathfrak{m}$-primary for some $\mathfrak{m} \in \operatorname{Max}(R)$. Let $N$ be any CI submodule of $M$. Then, by Lemma 0.2 , there exists $\mathfrak{m} \in \operatorname{Max}(R)$ such that $\operatorname{Soc}(M / N)=N^{*} / N \simeq R / \mathfrak{m}$ and $N^{*} / N$ is an essential submodule of $M / N$. By Lemma 1.1, $N$ is a primary submodule of $M$, say $\mathfrak{p}$-primary. Thus $\{\mathfrak{p}\}=\operatorname{Ass}_{f}(M / N) \supseteq \operatorname{Ass}(M / N)=\operatorname{Ass}(R / \mathfrak{m})=\{\mathfrak{m}\}$, and then, $\mathfrak{p}=\mathfrak{m}$, which implies that $N$ is $\mathfrak{m}$-primary, as desired.

Corollary 1.3. If $\operatorname{Spec}(R)=\operatorname{Max}(R)$, i.e., if the ring $R$ has classical Krull dimension 0 , then for every $R$-module $M$, every CI submodule of $M$ is $\mathfrak{m}$-primary for some $\mathfrak{m} \in \operatorname{Max}(R)$.

Proof: By Radu [9, Corolar 4.10], every module over any ring with classical Krull dimension 0 is with primary decomposition, so we can apply Proposition 1.2.

Corollary 1.4. Let $M$ be an $R$-module such that $V\left(\operatorname{Ann}_{R}(M)\right) \subseteq \operatorname{Max}(R)$. Then every CI submodule of $M$ is $\mathfrak{m}$-primary for some $\mathfrak{m} \in \operatorname{Max}(R)$.

Proof: By Radu [9, Corolar 4.11], $M$ is a module with primary decomposition. The result now follows from Proposition 1.2.

Corollary 1.5. Let $\mathfrak{m} \in \operatorname{Max}(R)$ and let $M$ be any $R$-module. Then every irreducible strongly $\mathfrak{m}$-primary submodule of $M$ is CI. Moreover, if $\mathfrak{m}$ is finitely generated then every irreducible $\mathfrak{m}$-primary submodule of $M$ is CI. In particular, if $R$ is a Noetherian ring then a submodule of $M$ is CI if and only if it is an irreducible $\mathfrak{p}$-primary submodule for some $\mathfrak{p} \in \operatorname{Max}(R)$.

Proof: Let $N$ be an irreducible strongly $\mathfrak{m}$-primary submodule of $M$. Then $\mathfrak{m}^{n} M \subseteq N$ for some positive integer $n$. Without loss of generality we may assume that $n \geqslant 1$ is minimum with $\mathfrak{m}^{n} M \subseteq N$. If $n=1$, then $\mathfrak{m} M \subseteq N$, so the non-zero $R$-module $M / N$ is semisimple. If $n \geqslant 2$, then $\mathfrak{m}^{n} M \subseteq N$ and $\mathfrak{m}^{n-1} M \nsubseteq N$, so there exists $x \in \mathfrak{m}^{n-1} M \backslash N$. Since $\mathfrak{m}\left(\mathfrak{m}^{n-1} M\right) \subseteq N$, we deduce that $\mathfrak{m} x \subseteq N$, and then $M / N$ has non-zero socle. Thus, in any case, $M / N$ has non-zero socle. Now apply Lemma 0.2 to conclude that $N$ is CI.

Now assume that $\mathfrak{m}$ is a finitely generated, and let $Q$ be an irreducible $\mathfrak{m}$ primary submodule of $M$. Then $\mathfrak{m}=\left\{a \in R \mid \forall x \in M, \exists n(x) \in \mathbb{N}\right.$, $\left.a^{n(x)} x \in Q\right\}$ $\left(=\operatorname{Rad}_{M}(Q)\right)$. Without loss of generality we may assume that $Q=0$. Suppose that $\mathfrak{m}=R a_{1}+\ldots+R a_{n}$. Let $0 \neq x \in M$. For all $i, 1 \leqslant i \leqslant n$, there exists $k(i) \geqslant 1$ such that $a_{i}^{k(i)} x=0$. Let $k=k(1) \cdots k(n)$. Then $\mathfrak{m}^{k} x=0$. There exists $t \geqslant 1$ such that $\mathfrak{m}^{t-1} x \neq 0$ but $\mathfrak{m}^{t} x=0$. Therefore $\operatorname{Soc}(R x) \neq 0$. Since $Q(=0)$ is an irreducible submodule of $M$, it follows that $Q$ is CI by Lemma 0.2, as desired.

If $R$ is a Noetherian ring then every $R$-module is with primary decomposition by Radu [9, Corolar 4.8], so that, for any $R$-module $M$, every CI submodule of $M$ is $\mathfrak{p}$-primary for some $\mathfrak{p} \in \operatorname{Max}(R)$ by Proposition 1.2. Conversely, if $\mathfrak{p} \in \operatorname{Max}(R)$, then $\mathfrak{p}$ is finitely generated, hence every irreducible $\mathfrak{p}$-primary submodule of $M$ is CI, as we have already proved.

Remarks 1.6. (1) If a module $M$ is not with primary decomposition, then, by Lemma 1.1, it has CI submodules that are not primary. According to Radu [9, Exemple 4.15 (ii)], the trivial extension $\mathbb{Z} \rtimes \mathbb{Q}$ is not a ring with primary decomposition, so it has CI ideals which are not primary; more precisely, every CI ideal of $\mathbb{Z} \rtimes \mathbb{Q}$ strictly contained in $0 \rtimes \mathbb{Q}$ is not primary, since the primary ideals of $\mathbb{Z} \rtimes \mathbb{Q}$ have one of the following forms: $\mathbb{Z} p^{n} \rtimes \mathbb{Q}$, where $p>0$ is prime in $\mathbb{Z}$ and $n \in \mathbb{N}, 0 \rtimes \mathbb{Q}$, and $0 \rtimes 0$ by Radu [9, Exemple 2.9 (v)]. For example, $0 \rtimes \mathbb{Z}_{(p)}$, where $\mathbb{Z}_{(p)}$ is the localization of $\mathbb{Z}$ at any non-zero prime ideal $p \mathbb{Z}$, is not a primary ideal, but it is a CI ideal of $\mathbb{Z} \rtimes \mathbb{Q}$.
(2) An example of an $\mathfrak{m}$-primary submodule that is not CI is the following one. Let $R$ be a rank-one nondiscrete valuation domain with maximal ideal $\mathfrak{m}$, and let $0 \neq x \in R$. If we set $\mathfrak{q}:=R x$, then $\sqrt{\mathfrak{q}}$ is a non-zero prime ideal of $R$, so necessarily $\sqrt{\mathfrak{q}}=\mathfrak{m}$, and hence $\mathfrak{q}$ is a principal $\mathfrak{m}$-primary ideal. Then $\mathfrak{q}$ is irreducible but not CI (see Fuchs, Heinzer, and Olberding [7, Remark 1.8]).

Another example is the following one. Let $F$ be a field of non-zero characteristic $p$, let $G$ be the Prüfer $p$-group $C\left(p^{\infty}\right)$, and let $R$ be the group algebra $F[G]$. Let $\mathfrak{m}$ denote the augmentation ideal of $R$. Then $\mathfrak{m}$ is a nil idempotent ideal of $R$. For any two elements $a, b$ in $R$ there exists a finite cyclic subgroup $H$ of $G$ such that $a, b \in F[H]$. But $H$ is a finite $p$-group so that $F[H]$ is a valuation ring. Thus $F[H] a \subseteq F[H] b$ or $F[H] b \subseteq F[H] a$. It follows that $R a \subseteq R b$ or $R b \subseteq R a$ for all $a$ and $b$ in $R$. Thus $R$ is a valuation ring. It follows that 0 is an irreducible $\mathfrak{m}$-primary submodule of ${ }_{R} R$. Suppose that 0 is CI. Then there exists $0 \neq r \in R$ such that $r \mathfrak{m}=0$. This is impossible because $G$ is infinite. Thus 0 is not a CI submodule of ${ }_{R} R$.

## 2 Primal submodules and primary submodules

Throughout this section $R$ will again be a commutative ring with non-zero identity element. We analyze the connections between primal submodules and primary submodules of a module. We show that for any module $M$, each primary submodule is also primal. Then we study when the converse holds. We characterize those modules $M$ over a Noetherian ring $R$ for which every primal submodule is primary. In particular, we describe the structure of Noetherian rings $R$ for which all primal ideals are primary.

If $M$ is an $R$-module, then we denote by

$$
Z(M):=\{a \in R \mid \exists x \in M, x \neq 0, \text { with } a x=0\}
$$

the set of all zero divisors on $M$. Recall that a submodule $N$ of $M$ is said to primal if $N \neq M$ and $Z(M / N)$ is an ideal of $R$, which is necessarily prime; in this case, if $Z(M / N)=\mathfrak{p}$, then $N$ is called $\mathfrak{p}$-primal and $\mathfrak{p}$ is called the adjoint ideal of $N$ and is denoted by adj $N$. The module $M$ is called coprimal if 0 is a primal submodule of $M$. By $\mathcal{P}(M)$ (resp. $\mathcal{Q}(M)$ ) we denote the set of all primal (resp. primary) submodules of $M$.

For basic properties of primal submodules of a module, see Albu and Smith [2].

Proposition 2.1. Any coprimary module is coprimal, so $\mathcal{Q}(M) \subseteq \mathcal{P}(M)$ for any module $M$, in other words, any primary submodule of a module is also primal.

Proof: Let $M$ be a coprimary module; this means that whenever $c \in R$ and $z \in M$ are such that $c z=0$, then $c \in \operatorname{Rad}_{M}(0)$ or $z=0$. Let $a, b \in Z(M)$. Then, there exist non-zero elements $x, y \in M$ such that $a x=0$ and $b y=0$. Since $M$ is a coprimary module, it follows that $a, b \in \operatorname{Rad}_{M}(0)$, so also $a-b \in$ $\operatorname{Rad}_{M}(0) \subseteq Z(M)$. Thus $M$ is coprimal.

Remarks 2.2. (1) A primal submodule of a module $M$ is not necessarily primary, as an example from Fuchs [5] shows: the ideal $\left(X^{2}, X Y\right)$ of the ring $F[X, Y]$ of polynomials over a field $F$ is primal but is not primary.
(2) It would be interesting to characterize those modules $M$ such that $\mathcal{Q}(M)=$ $\mathcal{P}(M)$; see Section 4, Problem 6. A partial answer is given below for modules over Noetherian rings.
Lemma 2.3. Let $M$ be a module such that the zero submodule $0=\bigcap_{i \in I} N_{i}$ is an intersection of a family $\left(N_{i}\right)_{i \in I}$ of submodules of $M$. Then

$$
Z(M) \subseteq \bigcup_{i \in I} Z\left(M / N_{i}\right)
$$

Proof: Let $r \in Z(M)$. Then $r m=0$ for some $0 \neq m \in M$. There exists $i \in I$ such that $m \notin N_{i}$ but $r m \in N_{i}$ so that $r \in Z\left(M / N_{i}\right)$.

Lemma 2.4. Let $M$ be a module such that the zero submodule $0=\bigcap_{i \in I} N_{i}$ is an irredundant intersection of a family $\left(N_{i}\right)_{i \in I}$ of primary submodules of $M$. Then

$$
Z(M)=\bigcup_{i \in I} Z\left(M / N_{i}\right)
$$

Proof: Let $r \in Z\left(M / N_{i}\right)$ for some $i \in I$. Because $\bigcap_{j \neq i} N_{j} \nsubseteq N_{i}$, there exists $m \in \bigcap_{j \neq i} N_{j}$ with $m \notin N_{i}$. There exists $k \in \mathbb{N}$ such that $r^{k} m \in N_{i}$, and so $r^{k} m \in \bigcap_{j \in I} N_{j}=0$. Then, there exists $t \in \mathbb{N}, 1 \leqslant t \leqslant k$ such that $r^{t-1} m \neq 0$ but $r^{t} m=0$, hence $r \in Z(M)$. The result follows by Lemma 2.3.

Lemma 2.5. Let $R$ be a Noetherian ring, and let $M$ be an arbitrary non-zero $R$-module. Then every irreducible submodule $N$ of $M$ is a primary submodule of $M$, and moreover, $Z(M / N)=\mathfrak{p}$, where $\operatorname{Ass}(M / N)=\operatorname{Ass}_{f}(M / N)=\{\mathfrak{p}\}$.
Proof: Let $N$ be an irreducible submodule of $M$. Then $M / N$ is a coirreducible module. Since $R$ is a Noetherian ring, $\operatorname{Ass}(M / N)=\operatorname{Ass}_{f}(M / N) \neq \varnothing$. Let $\mathfrak{p} \in$ $\operatorname{Ass}(M / N)$. Then $\mathfrak{p}=\operatorname{Ann}_{R}(y)$ for some $y \in M / N$, so $R / \mathfrak{p} \simeq R y \hookrightarrow M / N$. Since $R y$ is an essential submodule of $M / N$, we have $\{\mathfrak{p}\}=\operatorname{Ass}(R / \mathfrak{p})=\operatorname{Ass}(M / N)=$ $\operatorname{Ass}_{f}(M / N)$, and so, $\operatorname{Ass}_{f}(M / N)=\{\mathfrak{p}\}$, which means precisely that $N$ is a $\mathfrak{p}$-primary submodule of $M$.

Since $Z(M / N)=\bigcup_{\mathfrak{q} \in \operatorname{Ass}_{f}(M / N)} \mathfrak{q}$, we deduce that $Z(M / N)=\mathfrak{p}$, as desired.

Lemma 2.6. Suppose that every primal submodule of a non-zero $R$-module $M$ is primary. Let $\mathfrak{p} \subset \mathfrak{q}$ be prime ideals of $R$. Then every $\mathfrak{p}$-primary submodule of $M$ is contained in every $\mathfrak{q}$-primary submodule of $M$.

Proof: Let $N$ be any $\mathfrak{p}$-primary submodule of $M$ and let $L$ be any $\mathfrak{q}$-primary submodule of $M$. Suppose that $N \nsubseteq L$. Let $r \in Z(M /(N \cap L))$. Then there exists $m \in M \backslash(N \cap L)$ such that $r m \in N \cap L$. Either $m \notin N$ in which case $r \in \mathfrak{p}$ or $m \notin L$ in which case $r \in \mathfrak{q}$. In any case $r \in \mathfrak{q}$. Thus $Z(M /(N \cap L)) \subseteq \mathfrak{q}$. Now suppose that $s \in \mathfrak{q}$. Let $x \in N \backslash L$. There exists a positive integer $k$ such that $s^{k} x \in N \cap L$. It follows that $s \in Z(M /(N \cap L))$. Thus $Z(M /(N \cap L))=\mathfrak{q}$, so that $N \cap L$ is a primal submodule of $M$, and hence primary, say $\mathfrak{r}$-primary, by assumption. Then $\operatorname{Ass}_{f}(M /(N \cap L))=\{\mathfrak{r}\}$. As in the proof of Lemma 2.5, we have $\mathfrak{q}=Z(M /(N \cap L))=\bigcup_{\mathfrak{n} \in \operatorname{Ass}_{f}(M /(N \cap L))} \mathfrak{n}=\mathfrak{r}$, so $N \cap L$ is a $\mathfrak{q}$-primary submodule of $M$. Let $a \in \mathfrak{q}$, and let $y \in M \backslash N$. There exists a positive integer $n$ such that $a^{n} y \in N \cap L \subseteq N$. Because $N$ is $\mathfrak{p}$-primary, $a^{n} \in \mathfrak{p}$ and hence $a \in \mathfrak{p}$. This implies that $\mathfrak{q} \subseteq \mathfrak{p}$ and hence $\mathfrak{p}=\mathfrak{q}$, a contradiction. It follows that $N \subseteq L$, as desired.

Theorem 2.7. Let $R$ be a Noetherian ring. Then the following statements are equivalent for a non-zero $R$-module $M$.
(1) Every primal submodule of $M$ is a primary submodule of $M$.
(2) For all prime ideals $\mathfrak{p} \subset \mathfrak{q}$ of $R$, every $\mathfrak{p}$-primary submodule of $M$ is contained in every $\mathfrak{q}$-primary submodule of $M$.
(3) For any submodules $P$ and $Q$ of $M$ such that $\operatorname{Ass}(M / P)=\{\mathfrak{p}\}, \operatorname{Ass}(M / Q)$ $=\{\mathfrak{q}\}$, and $\mathfrak{p} \subset \mathfrak{q}$, one has $P \subset Q$.

Proof: $(1) \Longrightarrow(2)$ : By Lemma 2.6.
$(2) \Longrightarrow(1)$ : Let $N$ be any primal submodule of $M$. Note that condition (2) passes from $M$ to $M / N$ so that we can suppose without loss of generality that $N=0$. Every non-zero submodule of $M$ contains a coirreducible submodule. Let $\left\{U_{i} \mid i \in I\right\}$ be a maximal independent collection of coirreducible submodules of $M$. Then $L=\bigoplus_{i \in I} U_{i}$ is an essential submodule of $M$. For each $i \in I$ let $\mathfrak{p}_{i}:=\operatorname{Ass}\left(U_{i}\right)$ and let $N_{i}$ be a submodule of $M$ which is maximal in the collection of submodules $H$ of $M$ such that $\bigoplus_{j \neq i} U_{j} \subseteq H$ and $H \cap U_{i}=0$. In this situation it is a standard fact that $N_{i}$ is an irreducible submodule of $M$ for all $i \in I$. By Lemma $2.5, N_{i}$ is a primary submodule of $M$ for all $i \in I$. Moreover, for each $i \in I, U_{i} \subseteq \bigcap_{j \neq i} N_{j}$ and $L \cap\left(\bigcap_{i \in I} N_{i}\right)=0$. Thus $0=\bigcap_{i \in I} N_{i}$ is an irredundant intersection of primary submodules of $M$.

Let $\mathfrak{p}=Z(M)$. Note that $\mathfrak{p}_{i}=Z\left(M / N_{i}\right)$ for all $i \in I$, according to Lemma 2.5. By Lemma 2.4, $\mathfrak{p}=\bigcup_{i \in I} \mathfrak{p}_{i}$. But $\mathfrak{p}$ is finitely generated, so that $\mathfrak{p}=\bigcup_{j \in J} \mathfrak{p}_{j}$ for some finite subset $J$ of $I$. It follows that $\mathfrak{p}=\mathfrak{p}_{j}$ for some $j$ in $J$. Let $i \in I$. Then
$\mathfrak{p}_{i} \subseteq \mathfrak{p}_{j}$. If $\mathfrak{p}_{i} \neq \mathfrak{p}_{j}$ then $N_{i} \subseteq N_{j}$ by (2), which contradicts the irredundancy of $0=\bigcap_{i \in I} N_{i}$. Thus $\mathfrak{p}_{i}=\mathfrak{p}_{j}$ for all $i \in I$. We have proved that $\mathfrak{p}=\operatorname{Ass}\left(U_{i}\right)$ for all $i \in I$. Since $L=\bigoplus_{i \in I} U_{i}$ is an essential submodule of $M$, it follows that $\operatorname{Ass}_{f}(M)=\operatorname{Ass}(M)=\operatorname{Ass}\left(\bigoplus_{i \in I} U_{i}\right)=\bigcup_{i \in I} \operatorname{Ass}\left(U_{i}\right)=\{\mathfrak{p}\}$. This shows precisely that 0 is a $\mathfrak{p}$-primary submodule of $M$, as desired.
$(2) \Longleftrightarrow(3)$ : Since $R$ is a Noetherian ring, one has $\operatorname{Ass}(V)=\operatorname{Ass}_{f}(V)$ for any $R$-module $V$, and so $N \leqslant M$ is a $\mathfrak{p}$-primary submodule of $M$ if and only if $\operatorname{Ass}(M / N)=\{\mathfrak{p}\}$.

As usual, for any non-empty subset $X$ of a ring $R$ the annihilator of $X$ in $R$ will be denoted by $\operatorname{Ann}_{R}(X)$, i.e., $\operatorname{Ann}_{R}(X):=\{r \in R \mid r x=0$ for all $x \in X\}$.

Lemma 2.8. Let $R$ be a Noetherian ring such that every primal ideal of $R$ is a primary ideal of $R$. Then $R=\mathfrak{p}+\operatorname{Ann}_{R}(\mathfrak{p})$ for every non-maximal prime ideal $\mathfrak{p}$ of $R$. Moreover, in this case $R$ is one-dimensional.

Proof: Let $\mathfrak{p}$ be any non-maximal prime ideal of $R$, and suppose that $R \neq$ $\mathfrak{p}+\operatorname{Ann}_{R}(\mathfrak{p})$. Let $\mathfrak{q}$ be any maximal ideal of $R$ such that $\mathfrak{p}+\operatorname{Ann}_{R}(\mathfrak{p}) \subseteq \mathfrak{q}$. For each positive integer $n, \mathfrak{q}^{n}$ is a $\mathfrak{q}$-primary ideal of $R$. Because $\mathfrak{p} \subset \mathfrak{q}$, Theorem 2.7 gives that $\mathfrak{p} \subseteq \bigcap_{n=1}^{\infty} \mathfrak{q}^{n}$. By Krull's Intersection Theorem (see, for example, Kaplansky [8, Theorems 74 and 76$]$ ), there exists $q \in \mathfrak{q}$ such that $(1-q) \mathfrak{p}=0$. But this implies that $1-q \in \operatorname{Ann}_{R}(\mathfrak{p}) \subseteq \mathfrak{q}$, a contradiction. Thus $R=\mathfrak{p}+\operatorname{Ann}_{R}(\mathfrak{p})$, as required. In particular, there exists $p \in \mathfrak{p}$ such that $(1-p) \mathfrak{p}=0$. If $\mathfrak{r}$ is a prime ideal of $R$ such that $\mathfrak{r} \subseteq \mathfrak{p}$ then $(1-p) \mathfrak{p} \subseteq \mathfrak{r}$ so that $\mathfrak{p}=\mathfrak{r}$. It follows that $R$ is one-dimensional.

Theorem 2.9. The following statements are equivalent for a Noetherian ring $R$.
(1) Every primal ideal of $R$ is a primary ideal of $R$.
(2) $R=\mathfrak{p}+\operatorname{Ann}_{R}(\mathfrak{p})$ for every non-maximal prime ideal $\mathfrak{p}$ of $R$.
(3) $R$ is a finite direct product of Artinian rings and one-dimensional domains.

Proof: $(1) \Longrightarrow(2)$ : By Lemma 2.8.
$(2) \Longrightarrow(3)$ : It is easy to check that condition (2) goes over to every ring homomorphic image of $R$. Thus, without loss of generality, we can suppose that $R$ is an indecomposable ring. If every prime ideal of $R$ is maximal then it is well known that $R$ is an Artinian ring. Suppose that $R$ contains a non-maximal prime ideal $\mathfrak{p}$. Let $\mathfrak{n}=\mathfrak{p} \cap \operatorname{Ann}_{R}(\mathfrak{p})$. By (2), $\mathfrak{p} / \mathfrak{n}$ is a direct summand of $R / \mathfrak{n}$ and hence is generated by an idempotent $\bar{e}$. Because $\mathfrak{n}^{2}=0$, we can lift $\bar{e}$ to an idempotent of $R$, that is, $\bar{e}=e+\mathfrak{n}$ for some idempotent $e$ in $R$. Because $R$ is indecomposable, $e=1$ or $e=0$. Clearly $e \neq 1$. Thus $e=0$ and hence $R=\operatorname{Ann}_{R}(\mathfrak{p})$, so that
$\mathfrak{p}=0$. We have proved that $R$ is a domain and $R$ is one-dimensional by Lemma 2.8.
$(3) \Longrightarrow(2)$ : Assume that $R$ is isomorphic to a direct product $R_{1} \times \cdots \times R_{n}$ of rings $R_{i}, 1 \leqslant i \leqslant n$, for some positive integer $n$, such that $R_{i}$ is Artinian or a one-dimensional domain for each $1 \leqslant i \leqslant n$. Without loss of generality we may consider that $R=R_{1} \times \cdots \times R_{n}$. Let $\mathfrak{g}$ be a non-maximal prime ideal of $R$. Then

$$
\mathfrak{g}=R_{1} \times \cdots \times R_{i-1} \times 0 \times R_{i+2} \times \cdots \times R_{n}
$$

for some $1 \leqslant i \leqslant n$. It is easy to check that $R=\mathfrak{g}+\operatorname{Ann}_{R}(\mathfrak{g})$.
$(2) \Longrightarrow(1):$ Let $\mathfrak{p} \subset \mathfrak{q}$ be prime ideals of $R$, and let $\mathfrak{a}$ be any $\mathfrak{q}$-primary ideal of $R$. Note that $\mathfrak{a} \subseteq \mathfrak{q}$. By (2), there exists $p \in \mathfrak{p}$ such that $(1-p) \mathfrak{p}=0$. Hence $(1-p) \mathfrak{p} \subseteq \mathfrak{a}$, so that $\mathfrak{p} \subseteq \mathfrak{a}$. It is now clear that every $\mathfrak{p}$-primary ideal of $R$ is contained in every $\mathfrak{q}$-primary ideal of $R$. By Theorem 2.7, every primal ideal of $R$ is primary, as required.

Remark 2.10. Observe that if $R$ is a Noetherian ring such that $\mathcal{P}(R)=\mathcal{Q}(R)$, i.e., every primal ideal of $R$ is a primary ideal of $R$, then, this does not imply in general that $\mathcal{P}(M)=\mathcal{Q}(M)$ for every non-zero $R$-module $M$. To see this, take $R=\mathbb{Z}$ and $M=\mathbb{Z} \oplus(\mathbb{Z} / 2 \mathbb{Z})$.

## 3 Irredundant intersections

In this section we examine irredundant decompositions of a submodule of a module over an arbitrary ring as an intersection of irreducible, completely irreducible, or primal submodules. Thus, we extend from ideals to modules some results of Fuchs, Heinzer, and Olberding [7], and similar to the characterization, due to Fort [4], of modules rich in coirreducibles via irredundant irreducible decompositions, we characterize modules rich in completely coirreducibles via irredundant completely irreducible decompositions.
Definition 3.1. Let $M_{R}$ be a module, and let $A \leqslant C$ be submodules of $M$. We say that $C$ is a relevant completely irreducible divisor, abbreviated an RCID, of $A$ if $A$ has a decomposition as an intersection of completely irreducibles submodules of $M$ in which $C$ appears and is relevant, i.e., cannot be omitted.

Proposition 3.2. Let $P \leqslant N$ be submodules of a module $M$ such that $N$ is a CI submodule of $M$. Then $N$ is an RCID of $P$ if and only if the submodule $N / P$ of $M / P$ is not essential in $M / P$.

Proof: Apply Albu [1, Proposition 1.19] to the lattice $L=\mathcal{L}(M)$ of all submodules of $M$.

If $N$ is a completely irreducible submodule of $M$ then $\operatorname{Soc}(M / N)=N^{*} / N$ is a simple essential submodule of $M / N$ by Lemma 0.2 . The submodule $N^{*}$ is called the cover of $N$.

Corollary 3.3. Let $P \leqslant N$ be submodules of a module $M$ such that $N$ is a CI submodule of $M$. Then, $N^{*} / P$ is an essential submodule of $M / P$, where $N^{*}$ is the cover of $N$.

Proof: Apply Albu [1, Corollary 1.20] to the lattice $L=\mathcal{L}(M)$.

Corollary 3.4. Let $N$ be a proper submodule of a module $M$. Then there exists an RCID of $N$ if and only if $\operatorname{Soc}(M / N) \neq 0$.

Proof: Apply Albu [1, Corollary 1.21] to the lattice $L=\mathcal{L}(M)$.

As in Fort [4], a right module $M_{R}$ is said to be rich in coirreducibles, abbreviated RC, if $M \neq 0$ and each of its non-zero submodules contains a coirreducible (or uniform) submodule. The next result characterizes the RC modules.

Theorem 3.5. (Fort [4, Théoréme 3]). The following statements are equivalent for a non-zero module $M_{R}$.
(1) $M$ is RC.
(2) $M$ is an essential extension of a direct sum of coirreducible submodules of $M$.
(3) The injective hull $E_{R}(M)$ of $M$ is an essential extension of a direct sum of indecomposable injective modules.
(4) 0 has an irredundant irreducible decomposition in any non-zero submodule of $M$.

It is natural to ask whether condition (4) in Theorem 3.5 can be replaced by the weaker one: 0 has an irredundant irreducible decomposition in $M$ (see also Section 4, Problem 1). We guess that the answer in no, but do not have any counterexample. Such a counterexample will be a module $M_{R}$ that is not rich in coirreducibles such that 0 has an irredundant irreducible decomposition in $M$. According to Fort [4, Théorème 1, Proposition 5], the module $M$ has to be a direct sum of a module without any coirreducibles with a module that is a maximal direct sum of coirreducibles.

If we replace "coirreducibles" by "completely coirreducibles" in the definition of a module rich in coirreducibles one obtains the concept of a module rich in completely coirreducibles. More precisely, a module $M$ is said to be rich in completely coirreducibles, abbreviated RCC, if $M \neq 0$ and for any $0 \neq N \leqslant M$ there exists a completely coirreducible submodule $C$ of $M$ such that $C \leqslant N$.

Recall that in Albu and Smith [2] a module $M$ is called completely coirreducible provided $M$ is non-zero and the zero submodule of $M$ is completely irreducible. The next result gives a characterization of RCC modules similar to that for RC modules in Theorem 3.5.

Theorem 3.6. The following statements are equivalent for a non-zero module $M_{R}$.
(1) $M$ is RCC.
(2) Every non-zero submodule of $M$ contains a simple submodule.
(3) The socle $\operatorname{Soc}(M)$ of $M$ is essential in $M$.
(4) $M$ is an essential extension of a direct sum of completely coirreducible submodules of $M$.
(5) $M$ is an essential extension of a direct sum of simple submodules of $M$.
(6) The injective hull $E_{R}(M)$ of $M$ is an essential extension of a direct sum of injective hulls of simple $R$-modules.
(7) For every $0 \neq N \leqslant M$ there exists a nonempty set $I_{N}$ such that 0 can written as an irredundant intersection

$$
0=\bigcap_{i \in I_{N}} N_{i}
$$

of CI submodules $N_{i}\left(i \in I_{N}\right)$ of $N$.
(8) For every $0 \neq N \leqslant M$ there exists a nonempty set $J_{N}$ such that 0 can written as an irredundant intersection

$$
0=\bigcap_{i \in J_{N}} K_{i}
$$

of maximal submodules $K_{i}\left(i \in J_{N}\right)$ of $N$, in other words the Jacobson radical $\operatorname{Rad}(N)$ of $N$ is zero and an irredundant intersection of maximal submodules of $N$.

Proof: Apply Albu [1, Theorem 1.16] to the lattice $L=\mathcal{L}\left(M_{R}\right)$.

From now on, $R$ will be a commutative ring with a non-zero identity element, and $M$ a unital $R$-module.

Proposition 3.7. Let $M$ be an $R$-module, let $P$ be a proper submodule of $M$, and let $\mathfrak{m} \in \operatorname{Max}(R)$. Then $\mathfrak{m} \in \operatorname{Ass}(M / P)$ if and only if there exists an RCID of $P$ that is $\mathfrak{m}$-primal.

Proof: " $\Longrightarrow$ ": Suppose that $\mathfrak{m} \in \operatorname{Ass}(M / P)$. There exists $x \in M \backslash P$ such that $(P: x)=\mathfrak{m}$. Let $N \leqslant M$ be maximal with $P \leqslant N$ and $x \notin N$. Then it is easy to check that $N$ is a CI submodule of $M$ with cover $N^{*}=N+R x$. We have $\mathfrak{m}=$ $(P: x) \subseteq(N: x) \neq R$, so $\mathfrak{m}=(N: x)$ and $\mathfrak{m} \in \operatorname{Ass}(M / N)$. Then $\operatorname{Ass}(M / N)=$ $\{\mathfrak{m}\}$ because the socle $N^{*} / N \simeq R / \mathfrak{m}$ of the completely coirreducible module $M / N$ is essential in $M / N$. Thus, $N$ is $\mathfrak{m}$-primal by Albu and Smith [2, Lemma 3.3]. Moreover, $P \leqslant N \cap(P+R x)<P+R x$ and $(P+R x) / P \simeq R /(P: x)=$ $R / \mathfrak{m}$, so that $(P+R x) / P$ is simple. Thus $N \cap(P+R x)=P$. By Proposition $3.2, N$ is an RCID of $P$.
" ": Conversely, suppose that $N$ is an RCID of $P$ that is m-primal. Then $N$ is a CI submodule of $M$ and, by Proposition 3.2, $N \cap L=P$ for some submodule $L$ of $M$ properly containing $P$. It follows that $N<N+L$ and hence $N^{*} \leqslant N+L$. Thus $N^{*}=N+\left(N^{*} \cap L\right)$ so that $P<N^{*} \cap L$. Let $z \in\left(N^{*} \cap L\right) \backslash P$. Then $\mathfrak{m} z \subseteq N \cap L=P$ which implies that $\mathfrak{m}=(P: z) \in \operatorname{Ass}(M / P)$ as desired.

As we know, for any $R$-module $M$ one has $Z(M)=\bigcup_{\mathfrak{p} \in \operatorname{Ass}_{f}(M)} \mathfrak{p}$. The next result says that in some cases, the set $\operatorname{Ass}_{f}(M)$ can be replaced by its subset Ass( $M$ ).
Proposition 3.8. Let $N$ be a proper submodule of an $R$-module $M$. If $N$ is an irredundant intersection $N=\bigcap_{i \in I} N_{i}$ of CI submodules $N_{i}(i \in I)$ of $M$, then

$$
Z(M / N)=\bigcup_{\mathfrak{p} \in \operatorname{Ass}(M / N)} \mathfrak{p}=\bigcup_{i \in I} \operatorname{adj} N_{i} .
$$

Proof: For each $i \in I$ let $\mathfrak{p}_{i}=Z\left(M / N_{i}\right)=\operatorname{adj} N_{i}$. Then $\mathfrak{p}_{i} \in \operatorname{Ass}(M / N)$ for each $i \in I$ by Proposition 3.7. Let $r \in Z(M / N)$. Then $r m \in N$ for some $m \in M \backslash N$. There exists $j \in I$ such that $m \notin N_{j}$ and hence $r \in \mathfrak{p}_{j}$. Thus

$$
Z(M / N) \subseteq \bigcup_{i \in I} \mathfrak{p}_{i} \subseteq \bigcup_{\mathfrak{p} \in \operatorname{Ass}(M / N)} \mathfrak{p} \subseteq Z(M / N)
$$

and the result follows.

Corollary 3.9. Let $N=\bigcap_{i \in I} N_{i}$ be an irredundant intersection of CI submodules of a module $M$. Then $N$ is $\mathfrak{m}$-primal if and only if $N_{i}$ is $\mathfrak{m}$-primal for all $i \in I$.

Proof: Set $\mathfrak{m}_{i}:=\operatorname{adj} N_{i}$ for each $i \in I$. By Proposition 3.8, we have $Z(M / N)=$ $\bigcup_{i \in I} \mathfrak{m}_{i}$, so that if all the $N_{i}$ are $\mathfrak{m}$-primal, then $\mathfrak{m}_{i}=\mathfrak{m}$ for all $i \in I$, and then $Z(M / N)=\mathfrak{m}$, i.e., $N$ is $\mathfrak{m}$-primal.

Conversely, if $N$ is $\mathfrak{m}$-primal, then again by Proposition 3.8, $\mathfrak{m}=\bigcup_{i \in I} \mathfrak{m}_{i}$, and then necessarily $\mathfrak{m}_{i}=\mathfrak{m}$ for all $i \in I$ because the $\mathfrak{m}_{i}$ are all maximal ideals of $R$, so all the $N_{i}$ are $\mathfrak{m}$-primal.

## 4 Seven open problems

In this section we present a list of seven open questions mainly related with the opposite inclusions in the tower of inclusions

$$
\mathcal{I}^{c}(M) \subseteq \mathcal{I}(M) \subseteq \mathcal{P}(M)
$$

of Albu and Smith [2, Lemma 1.3] associated with any $R$-module over a commutative ring $R$.

1. A classical result of Fort [4, Théoréme 3] (see also Theorem 3.5) states: A module $M$ over a not necessarily commutative ring $R$ is rich in coirreducibles $(R C) \Longleftrightarrow 0$ has an irredundant irreducible meet decomposition in any non-zero submodule of $M$.

It is natural to ask whether the right hand condition above can be replaced by the weaker one: 0 has an irredundant irreducible meet decomposition in $M$.

We guess that the answer in no, but no counterexample is available so far.
2. Characterize $M_{R}$ such that $\mathcal{I}^{c}(M)=\mathcal{I}(M)$. Note that

$$
M_{R} \text { is semi-Artinian } \Longrightarrow \mathcal{I}^{c}(M)=\mathcal{I}(M)
$$

but not conversely.
3. Characterize $M_{R}$ such that $\mathcal{I}(M) \subseteq \mathcal{Q}(M)$. Note that the inclusion holds for any Noetherian module.
4. Characterize $M_{R}$ such that $\mathcal{Q}(M) \subseteq \mathcal{I}(M)$.
5. Characterize $M_{R}$ such that $\mathcal{Q}(M)=\mathcal{P}(M)$ for an arbitrary commutative ring $R$.
6. Characterize $M_{R}$ such that $\mathcal{I}^{c}(M)=\mathcal{P}(M)$.
7. We have seen that $\mathcal{I}^{c}(M) \subseteq \mathcal{Q}(M) \Longleftrightarrow M$ is a module with primary decomposition. Characterize $M_{R}$ such that $\mathcal{Q}(M) \subseteq \mathcal{I}^{c}(M)$.

## References

[1] T. ALBU, Completely irreducible meet decompositions in lattices, with applications to Grothendieck categories and torsion theories (I), Bull. Math. Soc. Sci. Math. Roumanie 52 (100) (2009), 393-419.
[2] T. ALBU and P.F. SMITH, Primality, irreducibility, and complete irreducibility in modules over commutative rings, Rev. Roumaine Math. Pures Appl. 54 (2009), 275-286.
[3] N. BOURBAKI, "Commutative Algebra", Chapters 1-7, Springer-Verlag, Berlin Heidelberg New York, 1989.
[4] J. FORT, Sommes directes de sous-modules coirréductibles d'un module, Math. Z. 103 (1967), 363-388.
[5] L. FUCHS, On primal ideals, Proc. Amer. Math. Soc. 1 (1950), 1-6.
[6] L. FUCHS, W. HEINZER, and B. OLBERDING, Commutative ideal theory without finiteness conditions: primal ideals, Trans. Amer. Math. Soc. 357 (2004), 2771-2798.
[7] L. FUCHS, W. HEINZER, and B. OLBERDING, Commutative ideal theory without finiteness conditions: completely irreducible ideals, Trans. Amer. Math. Soc. 358 (2006), 3113-3131.
[8] I. KAPLANSKY, "Commutative Rings", The University of Chicago Press, Chicago and London, 1974.
[9] N. RADU, "Lessons on Algebra: Primary Decomposition in Commutative Rings" (in Romanian), Tipografia Universităţii Bucureşti, Bucureşti, 1981.

Received: 10.10.2010,
Accepted: 10.07.2011.

Simion Stoilow Institute of Mathematics of the Romanian Academy Research Unit 5
P.O. Box 1-764

RO-010145 Bucharest 1, ROMANIA
E-mail: Toma.Albu@imar.ro


[^0]:    *The first author gratefully acknowledges partial financial support from the grant PN II IDEI 443, code 1190/2008, awarded by the CNCSIS - UEFISCSU, Romania.
    ${ }^{\dagger}$ The second author would like to thank the Simion Stoilow Institute of Mathematics of the Romanian Academy for their hospitality during a visit to the institute on 17-22 November 2008 and for their financial support which made this visit possible.

