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Primal, completely irreducible, and primary meet
decompositions in modules

by
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Abstract

This paper was inspired by the work of Fuchs, Heinzer, and Olberding
concerning primal and completely irreducible ideals. It is proved that if
R is a commutative Noetherian ring then every primal submodule of an
R-module M is a primary submodule of M if and only if for all prime
ideals p C q of R, every p-primary submodule of M is contained in every
g-primary submodule of M. Moreover, for a commutative Noetherian ring
R, every primal ideal of R is primary if and only if R is a finite direct
product of Artinian rings and one-dimensional domains. Given a general
ring R, a right R-module M has the property that every submodule contains
a completely coirreducible submodule if and only if the Jacobson radical of
any non-zero submodule N of M is zero and an irredundant intersection of
maximal submodules of N. The paper closes with seven open problems.
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Introduction

This paper is a continuation of Albu and Smith [2] which was inspired by Fuchs,
Heinzer, and Olberding [6], [7]. In Section 1 we consider primary submodules
of a module over a commutative ring and their relation (if any) to completely
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irreducible submodules. We analyze in Section 2 the connections between primal
submodules and primary submodules of a module over a commutative ring. We
show that for any module M, every primary submodule is also primal. Then we
study when the converse holds and characterize those modules M over a Noethe-
rian ring R for which every primal submodule is primary (Theorem 2.7). In
particular, a commutative Noetherian ring R has the property that every primal
ideal is primary if and only if R is a finite direct product of Artinian rings and
one-dimensional domains (Theorem 2.9). In Section 3 we examine irredundant
decompositions of a submodule of a module over an arbitrary ring as an inter-
section of irreducible, completely irreducible, or primal submodules. Similar to
the characterization, due to Fort [4], of modules rich in coirreducibles via irre-
dundant irreducible decompositions, we characterize modules rich in completely
coirreducibles via irredundant completely irreducible decompositions. The final
section contains a list of seven questions.

0 Preliminaries

We first present the basic terminology and notation that will be used in this paper
and then briefly consider completely irreducible submodules of a general module.

Throughout, R will denote an associative ring with non-zero identity element
and all modules considered will be unital right modules over R. The notation
Mp will be used to designate a (unital right) R-module M, and the lattice of
all submodules of Mg will be denoted by L(M). The notation N < M (resp.
N < M) means that N is a submodule (resp. proper submodule) of M. Whenever
we want to indicate that X is merely a subset (resp. proper subset) of M, then
we shall use X C M (resp. X C M). We denote by N the set {1, 2,...} of
all positive integers, by Z the ring of rational integers, and by Q the field of
rational numbers. For all undefined terms and notation the reader is referred to
Albu and Smith [2].

Let R be any ring. Recall that a submodule N of a module M is called meet
irreducible or, simply, irreducible provided N # M and whenever N = K N L,
for some submodules K, L of M, then N = K or N = L. On the other
hand, a submodule N of M is called completely irreducible or, more briefly, CT if
N # M and N is not the intersection of any collection of submodules of M each
properly containing N. Clearly CI submodules of M are irreducible submodules
of M, but not conversely: the zero ideal of the ring Z is irreducible but not
CIL. A module M is called coirreducible (resp. completely coirreducible) if 0 is
an irreducible (resp. CI) submodule of M. Note that the coirreducible modules
are often known as uniform modules. We use here the term of “coirreducible”
in accordance with the following more general terminology: if P is a property of
submodules of a module, then a module M is called “colP” if the submodule 0 of
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M has P (e.g., primary submodule and coprimary module, primal submodule and
coprimal module).

Recall the following known elementary facts (see, e.g., Albu [1] and/or Albu
and Smith [2]).

Lemma 0.1. Let R be any ring and let M be a non-zero right R-module. Then
every proper submodule of M is an intersection of Cl submodules of M.

Lemma 0.2. Let R be any ring. Then the following statements are equivalent
for a submodule N of a right R-module M.

(i) N is a CI submodule of M.

(i) N # M and N # ()L, where the intersection is taken over all submodules
L of M with N C L.

(iii) N is an irreducible submodule of M such that the module M/N has non-
zero socle.

(iv) The module M /N has a simple essential socle.

For any module M, the collection of CI submodules will be denoted by Z¢(M)
and the collection of all irreducible submodules by Z(M).

1 Completely irreducible submodules and primary submodules

In this section R will always denote a commutative ring (with a non-zero identity)
and M an arbitrary (unital) R-module. We analyze in this section the connections
between CI submodules and primary submodules of a module. We show that an
R-module M is a module with primary decomposition if and only if every CI
submodule of M is m-primary for some maximal ideal m of R. This implies
that if R is a Noetherian ring then a submodule of M is CI if and only if it is an
irreducible m-primary submodule for some maximal ideal m of R.

Recall from Bourbaki [3] some definitions concerning primary submodules. If
N is a submodule of M, then the radical of N in M is the ideal of R defined by

Rady/(N) := {r € R|Ym € M, 3k,, € N such that r*»m € N }.

If M =R and N is an ideal a of R, then Radg(a) is precisely the usual radical
va of a. Note that if M is finitely generated, then

Rady (N) = {r € R|3k € N such that r¥*M C N }.

A primary submodule of M is a proper submodule N of M satisfying the
following condition: whenever r € R and m € M are such that rm € N, then
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r € Radpy(N) or m € N. Equivalently, N is a primary submodule of M if
Ass;(M/N) has exactly one element, say p € Spec(R), and in that case we call
N a p-primary submodule of M. Note that if N is a p-primary submodule of
M, then p = Radp/(N). A module M is said to be coprimary if 0 is a primary
submodule of M; so, N is a primary submodule of M if and only if the quotient
module M/N is coprimary.

A submodule N of M is said to be strongly primary if it is a p-primary
submodule of M such that p™M C N for some positive integer n. A module M
is said to be with primary decomposition (resp. Laskerian) if each of its proper
submodules is an intersection, possibly infinite, (resp. a finite intersection) of
primary submodules of M.

For all other undefined terms and notation the reader is referred to Albu and
Smith [2].

Lemma 1.1. (Radu [9, Propozitia 4.3]). An R-module M is a module with
primary decomposition if and only if every CI submodule of M is primary.

Proof: If any CI submodule of M is primary, then any proper submodule of M
is an intersection of primary submodules, i.e., the module M is with primary
decomposition, because every proper submodule of M is an intersection of CI
submodules by Lemma 0.1.

Conversely, if M is with primary decomposition, since any CI submodule N
of M cannot be an intersection of primary submodules that properly contain it,
it follows that N must be primary. 0

Proposition 1.2. An R-module M is a module with primary decomposition if
and only if every CI submodule of M is m-primary for some m € Max(R). In
particular, if M is a Laskerian module, then every Cl submodule of M is m-
primary for some m € Max(R).

Proof: In view of Lemma 1.1, it is sufficient to show that if M is a module with
primary decomposition then every CI submodule of M is m-primary for some
m € Max(R). Let N be any CI submodule of M. Then, by Lemma 0.2, there
exists m € Max(R) such that Soc(M/N) = N*/N ~ R/m and N*/N is an
essential submodule of M/N. By Lemma 1.1, N is a primary submodule of M,
say p-primary. Thus {p} = Ass;(M/N) D Ass(M/N) = Ass(R/m) = {m}, and
then, p = m, which implies that N is m-primary, as desired. 0

Corollary 1.3. If Spec(R) = Max(R), i.e., if the ring R has classical Krull
dimension 0, then for every R-module M, every CI submodule of M is m-primary
for some m € Max(R).

Proof: By Radu [9, Corolar 4.10], every module over any ring with classical
Krull dimension 0 is with primary decomposition, so we can apply Proposition
1.2. 0
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Corollary 1.4. Let M be an R-module such that V(Anng(M)) C Max(R).
Then every CI submodule of M is m-primary for some m € Max(R).

Proof: By Radu [9, Corolar 4.11], M is a module with primary decomposition.
The result now follows from Proposition 1.2. D

Corollary 1.5. Let m € Max(R) and let M be any R-module. Then every
irreducible strongly m-primary submodule of M is CI. Moreover, if m is finitely
generated then every irreducible m-primary submodule of M is CL. In particular,
if R is a Noetherian ring then a submodule of M is Cl if and only if it is an
irreducible p-primary submodule for some p € Max(R).

Proof: Let N be an irreducible strongly m-primary submodule of M. Then
m"M C N for some positive integer n. Without loss of generality we may
assume that n > 1 is minimum with m"M C N. If n = 1, then mM C N,
so the non-zero R-module M /N is semisimple. If n > 2, then m"M C N and
m" M ¢ N, so there exists z € m" 1M\ N. Since m(m"~ M) C N, we deduce
that ma C N, and then M/N has non-zero socle. Thus, in any case, M /N has
non-zero socle. Now apply Lemma 0.2 to conclude that N is CI.

Now assume that m is a finitely generated, and let @) be an irreducible m-
primary submodule of M. Then m = {a € R|Vz € M, 3n(z) €N, a"@z c Q}
(= Radp (Q)). Without loss of generality we may assume that @ = 0. Suppose
that m = Ra; + ...+ Ra,. Let 0 £ x € M. For all i, 1 < i < n, there exists
k(i) = 1 such that af(i)x = 0. Let kK = k(1)---k(n). Then mFz = 0. There
exists t > 1 such that m!~1z # 0 but m‘z = 0. Therefore Soc(Rz) # 0. Since
Q@ (= 0) is an irreducible submodule of M, it follows that @ is CI by Lemma 0.2,
as desired.

If R is a Noetherian ring then every R-module is with primary decomposition
by Radu [9, Corolar 4.8], so that, for any R-module M, every CI submodule
of M is p-primary for some p € Max(R) by Proposition 1.2. Conversely, if
p € Max(R), then p is finitely generated, hence every irreducible p-primary
submodule of M is CI, as we have already proved. D

Remarks 1.6. (1) If a module M is not with primary decomposition, then, by
Lemma 1.1, it has CI submodules that are not primary. According to Radu
[9, Exemple 4.15 (ii)], the trivial extension Z x Q is not a ring with primary
decomposition, so it has CI ideals which are not primary; more precisely, every
CI ideal of Z x Q strictly contained in 0 x Q is not primary, since the primary
ideals of Z x Q have one of the following forms: Zp™ x Q, where p > 0 is prime
in Zand n €N, 0xQ, and 0x 0 by Radu [9, Exemple 2.9 (v)]. For example,
0 X Z(y,), where Z, is the localization of Z at any non-zero prime ideal pZ, is
not a primary ideal, but it is a CI ideal of Z x Q.
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(2) An example of an m-primary submodule that is not CI is the following
one. Let R be a rank-one nondiscrete valuation domain with maximal ideal m,
and let 0 # x € R. If we set q := Rz, then ,/q is a non-zero prime ideal of R,
so necessarily ,/q = m, and hence q is a principal m-primary ideal. Then q is
irreducible but not CI (see Fuchs, Heinzer, and Olberding [7, Remark 1.8]).

Another example is the following one. Let F' be a field of non-zero character-
istic p, let G be the Priifer p-group C(p™), and let R be the group algebra F[G].
Let m denote the augmentation ideal of R. Then m is a nil idempotent ideal of
R. For any two elements a, b in R there exists a finite cyclic subgroup H of G
such that a,b € F[H]. But H is a finite p-group so that F[H] is a valuation ring.
Thus F[H]a C F[H]b or F[H]b C F[H]a. It follows that Ra C Rb or Rb C Ra
for all @ and b in R. Thus R is a valuation ring. It follows that 0 is an irreducible
m-primary submodule of pR. Suppose that 0 is CI. Then there exists 0 £ r € R
such that rm = 0. This is impossible because G is infinite. Thus 0 is not a CI
submodule of gR.

2 Primal submodules and primary submodules

Throughout this section R will again be a commutative ring with non-zero identity
element. We analyze the connections between primal submodules and primary
submodules of a module. We show that for any module M, each primary sub-
module is also primal. Then we study when the converse holds. We characterize
those modules M over a Noetherian ring R for which every primal submodule is
primary. In particular, we describe the structure of Noetherian rings R for which
all primal ideals are primary.

If M is an R-module, then we denote by
ZM)={a€eR|FxeM,z+#0, with az =0}

the set of all zero divisors on M. Recall that a submodule N of M is said to
primal if N # M and Z(M/N) is an ideal of R, which is necessarily prime; in
this case, if Z(M/N) = p, then N is called p-primal and p is called the adjoint
ideal of N and is denoted by adj N. The module M is called coprimal if O is
a primal submodule of M. By P(M) (resp. Q(M)) we denote the set of all
primal (resp. primary) submodules of M.

For basic properties of primal submodules of a module, see Albu and Smith

[2].

Proposition 2.1. Any coprimary module is coprimal, so Q(M) C P(M) for any
module M, in other words, any primary submodule of a module is also primal.
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Proof: Let M be a coprimary module; this means that whenever ¢ € R and
z € M are such that ¢z = 0, then ¢ € Radp(0) or z = 0. Let a, b € Z(M).
Then, there exist non-zero elements x, y € M such that axz = 0 and by = 0.
Since M is a coprimary module, it follows that a, b € Rad;(0), so also a —b €
Radjs(0) € Z(M). Thus M is coprimal. 0

Remarks 2.2. (1) A primal submodule of a module M is not necessarily primary,
as an example from Fuchs [5] shows: the ideal (X2, XY) of the ring F[X,Y] of
polynomials over a field F' is primal but is not primary.

(2) It would be interesting to characterize those modules M such that Q(M) =
P(M); see Section 4, Problem 6. A partial answer is given below for modules
over Noetherian rings. O

Lemma 2.3. Let M be a module such that the zero submodule 0 = (,c; N; is
an intersection of a family (N;);cr of submodules of M. Then

z(M) € | 2(M/N,).
iel
Proof: Let r € Z(M). Then rm = 0 for some 0 # m € M. There exists i €
such that m ¢ N; but rm € N; so that r € Z(M/N;). 0

Lemma 2.4. Let M be a module such that the zero submodule 0 = (,.; N; is
an irredundant intersection of a family (N;)icr of primary submodules of M.
Then
Z(M) = | Z(M/N;).
el

Proof: Let r € Z(M/N;) for some i € I. Because (;; N; € Nj, there exists
m € ﬂj# N; with m ¢ N;. There exists k € N such that r*m € N;, and so
rFm € Njer Nj = 0. Then, there exists ¢ € N, 1 < ¢ < k such that rt=lm #£0
but rm = 0, hence r € Z(M). The result follows by Lemma 2.3. 0

Lemma 2.5. Let R be a Noetherian ring, and let M be an arbitrary non-zero
R-module. Then every irreducible submodule N of M is a primary submodule
of M, and moreover, Z(M/N) =p, where Ass(M/N) = Ass;(M/N) = {p}.

Proof: Let N be an irreducible submodule of M. Then M/N is a coirreducible
module. Since R is a Noetherian ring, Ass(M/N) = Ass;(M/N) # @. Let p €
Ass(M/N). Then p = Anng(y) for some y € M/N, so R/p ~ Ry — M/N. Since
Ry is an essential submodule of M /N, we have {p} = Ass(R/p) = Ass(M/N) =
Ass;(M/N), and so, Ass;(M/N) = {p}, which means precisely that N is a
p-primary submodule of M.

Since Z(M/N) = quAssf(M/N) q, we deduce that Z(M/N) =p, as desiredE.]
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Lemma 2.6. Suppose that every primal submodule of a non-zero R-module M
is primary. Let p C q be prime ideals of R. Then every p-primary submodule
of M 1is contained in every q-primary submodule of M.

Proof: Let N be any p-primary submodule of M and let L be any g-primary
submodule of M. Suppose that N ¢ L. Let r € Z(M/(N N L)). Then there
exists m € M\(N N L) such that rm € NN L. Either m ¢ N in which case r € p
or m ¢ L in which case r € q. In any case r € q. Thus Z(M/(N NL)) C q. Now
suppose that s € q. Let x € N\L. There exists a positive integer k such that
skz € NN L. Tt follows that s € Z(M/(N N L)). Thus Z(M/(N N L)) = g, so
that N N L is a primal submodule of M, and hence primary, say t-primary, by
assumption. Then Assy(M/(N N L)) = {r}. As in the proof of Lemma 2.5, we
have q = Z(M/(N N L)) = UnGASSf(M/(NmL))n =1t,s0 NNL is a g-primary
submodule of M. Let a € q, and let y € M\N. There exists a positive integer n
such that a"y € NN L C N. Because N is p-primary, a™ € p and hence a € p.
This implies that ¢ C p and hence p = g, a contradiction. It follows that N C L,
as desired. 0

Theorem 2.7. Let R be a Noetherian ring. Then the following statements are
equivalent for a non-zero R-module M.

(1) Ewery primal submodule of M is a primary submodule of M.

(2) For all prime ideals p C q of R, every p-primary submodule of M is con-
tained in every q-primary submodule of M.

(3) For any submodules P and Q of M such that Ass(M/P) = {p}, Ass(M/Q)
={q}, and p C q, one has P C Q.

Proof: (1) = (2): By Lemma 2.6.

(2) = (1): Let N be any primal submodule of M. Note that condition (2)
passes from M to M/N so that we can suppose without loss of generality that
N = 0. Every non-zero submodule of M contains a coirreducible submodule. Let
{U;|i € I} be a maximal independent collection of coirreducible submodules
of M. Then L = @,.;U; is an essential submodule of M. For each i € I let
p; := Ass(U;) and let N; be a submodule of M which is maximal in the collection
of submodules H of M such that EB#Z- U; € H and HNU; = 0. In this situation
it is a standard fact that N; is an irreducible submodule of M for all ¢ € I. By
Lemma 2.5, N; is a primary submodule of M for all i € I. Moreover, for each
i€l, U €4 N; and LN(N;er Ni) = 0. Thus 0 = (;; V; is an irredundant
intersection of primary submodules of M.

Let p = Z(M). Note that p; = Z(M/N;) for all i € I, according to Lemma 2.5.
By Lemma 2.4, p = {J;c; p;. But p is finitely generated, so that p = J;.; p; for
some finite subset J of I. It follows that p = p; for some j in J. Let ¢ € I. Then

icl
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p; Cp;. If p; #p; then N; C N; by (2), which contradicts the irredundancy
of 0= );c; Ni. Thus p; = p; for all i € I. We have proved that p = Ass(U;)
for all i € I. Since L = @,;U; is an essential submodule of M, it follows
that Assp(M) = Ass(M) = Ass(@,c; Ui) = U;er Ass(Us) = {p}. This shows
precisely that 0 is a p-primary submodule of M, as desired.

(2) <= (3): Since R is a Noetherian ring, one has Ass(V) = Assy(V) for
any R-module V, and so N < M is a p-primary submodule of M if and only if
Ass(M/N) = {p}. O

As usual, for any non-empty subset X of a ring R the annihilator of X in R
will be denoted by Anng(X), i.e., Annp(X):={re€ R|rz=0 forall z € X }.

Lemma 2.8. Let R be a Noetherian ring such that every primal ideal of R is a
primary ideal of R. Then R =p + Anng(p) for every non-mazximal prime ideal
p of R. Moreover, in this case R is one-dimensional.

Proof: Let p be any non-maximal prime ideal of R, and suppose that R #
p+Anng(p). Let q be any maximal ideal of R such that p+Anng(p) C q. For each
positive integer n, q" is a g-primary ideal of R. Because p C q, Theorem 2.7 gives
that p € (),—, 9" By Krull’s Intersection Theorem (see, for example, Kaplansky
[8, Theorems 74 and 76]), there exists ¢ € q such that (1 — ¢)p = 0. But this
implies that 1 — ¢ € Anng(p) C g, a contradiction. Thus R = p + Anng(p), as
required. In particular, there exists p € p such that (1—p)p =0. If ¢ is a prime
ideal of R such that ¢ Cp then (1 —p)p C ¢ so that p =t. It follows that R is
one-dimensional. 0

Theorem 2.9. The following statements are equivalent for a Noetherian ring R.
(1) Every primal ideal of R is a primary ideal of R.
(2) R=p+ Anng(p) for every non-maximal prime ideal p of R.
(3) R is a finite direct product of Artinian rings and one-dimensional domains.

Proof: (1) = (2): By Lemma 2.8.

(2) = (3): It is easy to check that condition (2) goes over to every ring
homomorphic image of R. Thus, without loss of generality, we can suppose that
R is an indecomposable ring. If every prime ideal of R is maximal then it is well
known that R is an Artinian ring. Suppose that R contains a non-maximal prime
ideal p. Let n = pNAnng(p). By (2), p/n is a direct summand of R/n and hence
is generated by an idempotent €. Because n? = 0, we can lift € to an idempotent
of R, that is, € = e+n for some idempotent e in R. Because R is indecomposable,
e=1ore=0. Clearly e # 1. Thus e = 0 and hence R = Anng(p), so that
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p = 0. We have proved that R is a domain and R is one-dimensional by Lemma
2.8.

(3) = (2): Assume that R is isomorphic to a direct product Ry X -+ X R,
of rings R;, 1 <4 < n, for some positive integer n, such that R; is Artinian or a
one-dimensional domain for each 1 < i < n. Without loss of generality we may
consider that R = Ry X --- X R,,. Let g be a non-maximal prime ideal of R.
Then
g=Ryi X -+ X Ri_1 X0OX Rjyo X -+ X Ry,

for some 1 <7 < n. It is easy to check that R = g+ Anng(g).

(2) = (1): Let p C q be prime ideals of R, and let a be any g-primary
ideal of R. Note that a C q. By (2), there exists p € p such that (1 —p)p = 0.
Hence (1 —p)p C a, so that p C a. It is now clear that every p-primary ideal
of R is contained in every g-primary ideal of R. By Theorem 2.7, every primal
ideal of R is primary, as required. 0

Remark 2.10. Observe that if R is a Noetherian ring such that P(R) = Q(R),
i.e., every primal ideal of R is a primary ideal of R, then, this does not imply in
general that P(M) = Q(M) for every non-zero R-module M. To see this, take
R=7Z and M =7 & (Z/27). O

3 Irredundant intersections

In this section we examine irredundant decompositions of a submodule of a mod-
ule over an arbitrary ring as an intersection of irreducible, completely irreducible,
or primal submodules. Thus, we extend from ideals to modules some results of
Fuchs, Heinzer, and Olberding [7], and similar to the characterization, due to
Fort [4], of modules rich in coirreducibles via irredundant irreducible decomposi-
tions, we characterize modules rich in completely coirreducibles via irredundant
completely irreducible decompositions.

Definition 3.1. Let Mg be a module, and let A < C be submodules of M. We
say that C is a relevant completely irreducible divisor, abbreviated an RCID, of A
if A has a decomposition as an intersection of completely irreducibles submodules
of M in which C appears and is relevant, i.e., cannot be omitted. O

Proposition 3.2. Let P < N be submodules of a module M such that N is a
CI submodule of M. Then N is an RCID of P if and only if the submodule N/P
of M/P is not essential in M/P.

Proof: Apply Albu [1, Proposition 1.19] to the lattice L = L(M) of all submod-
ules of M. 0
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If N is a completely irreducible submodule of M then Soc(M/N) = N*/N
is a simple essential submodule of M/N by Lemma 0.2. The submodule N* is
called the cover of N.

Corollary 3.3. Let P < N be submodules of a module M such that N is a CI
submodule of M. Then, N*/P is an essential submodule of M /P, where N* is
the cover of N.

Proof: Apply Albu [1, Corollary 1.20] to the lattice L = L(M). 0

Corollary 3.4. Let N be a proper submodule of a module M. Then there exists
an RCID of N if and only if Soc(M/N) # 0.

Proof: Apply Albu [1, Corollary 1.21] to the lattice L = L(M). 0

As in Fort [4], a right module Mp, is said to be rich in coirreducibles, abbrevi-
ated RC, if M # 0 and each of its non-zero submodules contains a coirreducible
(or uniform) submodule. The next result characterizes the RC modules.

Theorem 3.5. (Fort [4, Théoréme 3]). The following statements are equivalent
for a non-zero module Mp.

(1) M is RC.

(2) M is an essential extension of a direct sum of coirreducible submodules of
M.

(3) The injective hull Er(M) of M is an essential extension of a direct sum
of indecomposable injective modules.

(4) 0 has an irredundant irreducible decomposition in any non-zero submodule
of M. O

It is natural to ask whether condition (4) in Theorem 3.5 can be replaced
by the weaker one: 0 has an irredundant irreducible decomposition in M (see
also Section 4, Problem 1). We guess that the answer in no, but do not have
any counterexample. Such a counterexample will be a module Mg that is not
rich in coirreducibles such that 0 has an irredundant irreducible decomposition
in M. According to Fort [4, Théoréme 1, Proposition 5], the module M has to
be a direct sum of a module without any coirreducibles with a module that is a
maximal direct sum of coirreducibles.

If we replace “coirreducibles” by “completely coirreducibles” in the definition
of a module rich in coirreducibles one obtains the concept of a module rich in
completely coirreducibles. More precisely, a module M is said to be rich in
completely coirreducibles, abbreviated RCC, if M # 0 and for any 0 # N < M
there exists a completely coirreducible submodule C' of M such that C < N.
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Recall that in Albu and Smith [2] a module M is called completely coirreducible
provided M is non-zero and the zero submodule of M is completely irreducible.
The next result gives a characterization of RCC modules similar to that for RC
modules in Theorem 3.5.

Theorem 3.6. The following statements are equivalent for a non-zero module
Mg.

1) M is RCC.

2

FEvery non-zero submodule of M contains a simple submodule.

3) The socle Soc(M) of M is essential in M.

(1)
(2)
3)
(4) M is an essential extension of a direct sum of completely coirreducible sub-

modules of M.
(5) M is an essential extension of a direct sum of simple submodules of M.

(6) The injective hull Er(M) of M is an essential extension of a direct sum
of injective hulls of simple R-modules.

(7) For every 0 £ N < M there exists a nonempty set Iy such that 0 can
written as an irredundant intersection

0= ﬂ N;
i€ln
of CI submodules N; (i € In) of N.

(8) For every 0 £ N < M there exists a nonempty set Jy such that 0 can
written as an irredundant intersection

0= ()] K
i€JN

of maximal submodules K; (i € Jy) of N, in other words the Jacobson
radical Rad (N) of N is zero and an irredundant intersection of mazimal
submodules of N.

Proof: Apply Albu [1, Theorem 1.16] to the lattice L = L(MEg). D

From now on, R will be a commutative ring with a non-zero identity element,
and M a unital R-module.

Proposition 3.7. Let M be an R-module, let P be a proper submodule of M,
and let m € Max(R). Then m € Ass(M/P) if and only if there exists an RCID
of P that is m-primal.
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Proof: “=": Suppose that m € Ass(M/P). There exists € M \ P such that
(P:2z) =m. Let N < M be maximal with P < N and = ¢ N. Then it is easy
to check that N is a CI submodule of M with cover N* = N+ Rx. We have m =
(P:z)C(N:2)# R,s0 m= (N :z) and m € Ass(M/N). Then Ass(M/N) =
{m} because the socle N*/N ~ R/m of the completely coirreducible module
M/N is essential in M/N. Thus, N is m-primal by Albu and Smith [2, Lemma
3.3]. Moreover, P < NN(P+ Rx) < P+ Rz and (P+ Rx)/P~R/(P:x) =
R/m, so that (P + Rz)/P is simple. Thus N N (P + Rx) = P. By Proposition
3.2, N is an RCID of P.

“«<=": Conversely, suppose that N is an RCID of P that is m-primal. Then

N is a CI submodule of M and, by Proposition 3.2, N N L = P for some

submodule L of M properly containing P. It follows that N < N + L and hence
N* < N+L. Thus N* = N+(N*NL)sothat P < N*NL. Let z € (N*NL)\P.
Then mz C N N L = P which implies that m = (P : z) € Ass(M/P) as desired.

O

As we know, for any R-module M one has Z(M) = UpeAssf(M) p. The next
result says that in some cases, the set Assy(M) can be replaced by its subset

Ass(M).

Proposition 3.8. Let N be a proper submodule of an R-module M. If N is an
irredundant intersection N = (;,c; N; of CI submodules N; (i € I) of M, then
ZzM/N)y=|J » = adiN.

pEAss(M/N) i€l
Proof: For each i € I let p;, = Z(M/N;) = adjN;. Then p; € Ass(M/N) for
each i € I by Proposition 3.7. Let r € Z(M/N). Then rm € N for some
m € M\N. There exists j € I such that m ¢ N; and hence r € p;. Thus

zm/Nycl e U p Cz@/N),
i€l peAss(M/N)

and the result follows. O

Corollary 3.9. Let N =(),c; N; be an irredundant intersection of CI submod-
ules of a module M. Then N is m-primal if and only if N; is m-primal for all
1el.

Proof: Set m; := adj N; for each i € I. By Proposition 3.8, we have Z(M/N) =
;e mi, so that if all the N; are m-primal, then m; =m for all i € I, and then
Z(M/N)=m,ie., N is m-primal.

Conversely, if N is m-primal, then again by Proposition 3.8, m = (J,.; m;,
and then necessarily m; = m for all ¢ € I because the m; are all maximal ideals
of R, so all the IN; are m-primal. 0



310 Toma Albu and Patrick F. Smith

4 Seven open problems

In this section we present a list of seven open questions mainly related with the
opposite inclusions in the tower of inclusions

I°(M) C I(M) € P(M)

of Albu and Smith [2, Lemma 1.3] associated with any R-module over a commu-
tative ring R.

1. A classical result of Fort [4, Théoréme 3] (see also Theorem 3.5) states:
A module M over a not necessarily commutative ring R is rich in coirre-
ducibles (RC) <= 0 has an irredundant irreducible meet decomposition in
any non-zero submodule of M.

It is natural to ask whether the right hand condition above can be re-
placed by the weaker one: 0 has an irredundant irreducible meet decompo-
sition 1 M.

We guess that the answer in no, but no counterexample is available so
far.

2. Characterize M such that Z¢(M) = Z(M). Note that
Mp is semi-Artinian = (M) = Z(M),

but not conversely.

3. Characterize Mp such that Z(M) C Q(M). Note that the inclusion holds
for any Noetherian module.

4. Characterize Mg such that Q(M) C Z(M).

5. Characterize Mp such that Q(M) = P(M) for an arbitrary commutative
ring R.

6. Characterize Mg such that I¢(M) = P(M).

7. We have seen that Z¢(M) C Q(M) <= M is a module with primary
decomposition. Characterize Mg such that Q(M) CZ¢(M).
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