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Primal, completely irreducible, and primary meet

decompositions in modules

by
Toma Albu∗ and Patrick F. Smith†

Abstract

This paper was inspired by the work of Fuchs, Heinzer, and Olberding

concerning primal and completely irreducible ideals. It is proved that if

R is a commutative Noetherian ring then every primal submodule of an

R-module M is a primary submodule of M if and only if for all prime

ideals p ⊂ q of R, every p-primary submodule of M is contained in every

q-primary submodule of M . Moreover, for a commutative Noetherian ring

R, every primal ideal of R is primary if and only if R is a finite direct

product of Artinian rings and one-dimensional domains. Given a general

ring R, a right R-module M has the property that every submodule contains

a completely coirreducible submodule if and only if the Jacobson radical of

any non-zero submodule N of M is zero and an irredundant intersection of

maximal submodules of N . The paper closes with seven open problems.
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Introduction

This paper is a continuation of Albu and Smith [2] which was inspired by Fuchs,
Heinzer, and Olberding [6], [7]. In Section 1 we consider primary submodules
of a module over a commutative ring and their relation (if any) to completely

∗The first author gratefully acknowledges partial financial support from the grant PN II -
IDEI 443, code 1190/2008, awarded by the CNCSIS - UEFISCSU, Romania.

†The second author would like to thank the Simion Stoilow Institute of Mathematics of the
Romanian Academy for their hospitality during a visit to the institute on 17-22 November 2008
and for their financial support which made this visit possible.



298 Toma Albu and Patrick F. Smith

irreducible submodules. We analyze in Section 2 the connections between primal
submodules and primary submodules of a module over a commutative ring. We
show that for any module M , every primary submodule is also primal. Then we
study when the converse holds and characterize those modules M over a Noethe-
rian ring R for which every primal submodule is primary (Theorem 2.7). In
particular, a commutative Noetherian ring R has the property that every primal
ideal is primary if and only if R is a finite direct product of Artinian rings and
one-dimensional domains (Theorem 2.9). In Section 3 we examine irredundant
decompositions of a submodule of a module over an arbitrary ring as an inter-
section of irreducible, completely irreducible, or primal submodules. Similar to
the characterization, due to Fort [4], of modules rich in coirreducibles via irre-
dundant irreducible decompositions, we characterize modules rich in completely
coirreducibles via irredundant completely irreducible decompositions. The final
section contains a list of seven questions.

0 Preliminaries

We first present the basic terminology and notation that will be used in this paper
and then briefly consider completely irreducible submodules of a general module.

Throughout, R will denote an associative ring with non-zero identity element
and all modules considered will be unital right modules over R. The notation
MR will be used to designate a (unital right) R-module M , and the lattice of
all submodules of MR will be denoted by L(M). The notation N 6 M (resp.
N < M) means that N is a submodule (resp. proper submodule) of M . Whenever
we want to indicate that X is merely a subset (resp. proper subset) of M , then
we shall use X ⊆ M (resp. X ⊂ M). We denote by N the set {1, 2, . . .} of
all positive integers, by Z the ring of rational integers, and by Q the field of
rational numbers. For all undefined terms and notation the reader is referred to
Albu and Smith [2].

Let R be any ring. Recall that a submodule N of a module M is called meet
irreducible or, simply, irreducible provided N 6= M and whenever N = K ∩ L,
for some submodules K, L of M , then N = K or N = L. On the other
hand, a submodule N of M is called completely irreducible or, more briefly, CI if
N 6= M and N is not the intersection of any collection of submodules of M each
properly containing N . Clearly CI submodules of M are irreducible submodules
of M , but not conversely: the zero ideal of the ring Z is irreducible but not
CI. A module M is called coirreducible (resp. completely coirreducible) if 0 is
an irreducible (resp. CI) submodule of M . Note that the coirreducible modules
are often known as uniform modules. We use here the term of “coirreducible”
in accordance with the following more general terminology: if P is a property of
submodules of a module, then a module M is called “coP” if the submodule 0 of
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M has P (e.g., primary submodule and coprimary module, primal submodule and
coprimal module).

Recall the following known elementary facts (see, e.g., Albu [1] and/or Albu
and Smith [2]).

Lemma 0.1. Let R be any ring and let M be a non-zero right R-module. Then
every proper submodule of M is an intersection of CI submodules of M .

Lemma 0.2. Let R be any ring. Then the following statements are equivalent
for a submodule N of a right R-module M .

(i) N is a CI submodule of M .

(ii) N 6= M and N 6= ⋂

L, where the intersection is taken over all submodules
L of M with N ⊂ L.

(iii) N is an irreducible submodule of M such that the module M/N has non-
zero socle.

(iv) The module M/N has a simple essential socle.

For any module M , the collection of CI submodules will be denoted by Ic(M)
and the collection of all irreducible submodules by I(M).

1 Completely irreducible submodules and primary submodules

In this section R will always denote a commutative ring (with a non-zero identity)
and M an arbitrary (unital) R-module. We analyze in this section the connections
between CI submodules and primary submodules of a module. We show that an
R-module M is a module with primary decomposition if and only if every CI
submodule of M is m-primary for some maximal ideal m of R. This implies
that if R is a Noetherian ring then a submodule of M is CI if and only if it is an
irreducible m-primary submodule for some maximal ideal m of R.

Recall from Bourbaki [3] some definitions concerning primary submodules. If
N is a submodule of M , then the radical of N in M is the ideal of R defined by

RadM (N) := { r ∈ R | ∀m ∈ M, ∃ km ∈ N such that rkmm ∈ N }.

If M = R and N is an ideal a of R, then RadR(a) is precisely the usual radical√
a of a. Note that if M is finitely generated, then

RadM (N) = { r ∈ R | ∃ k ∈ N such that rkM ⊆ N }.

A primary submodule of M is a proper submodule N of M satisfying the
following condition: whenever r ∈ R and m ∈ M are such that rm ∈ N , then
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r ∈ RadM (N) or m ∈ N . Equivalently, N is a primary submodule of M if
Assf (M/N) has exactly one element, say p ∈ Spec(R), and in that case we call
N a p-primary submodule of M . Note that if N is a p-primary submodule of
M , then p = RadM (N). A module M is said to be coprimary if 0 is a primary
submodule of M ; so, N is a primary submodule of M if and only if the quotient
module M/N is coprimary.

A submodule N of M is said to be strongly primary if it is a p-primary
submodule of M such that pnM ⊆ N for some positive integer n. A module M
is said to be with primary decomposition (resp. Laskerian) if each of its proper
submodules is an intersection, possibly infinite, (resp. a finite intersection) of
primary submodules of M .

For all other undefined terms and notation the reader is referred to Albu and
Smith [2].

Lemma 1.1. (Radu [9, Propoziţia 4.3]). An R-module M is a module with
primary decomposition if and only if every CI submodule of M is primary.

Proof: If any CI submodule of M is primary, then any proper submodule of M
is an intersection of primary submodules, i.e., the module M is with primary
decomposition, because every proper submodule of M is an intersection of CI
submodules by Lemma 0.1.

Conversely, if M is with primary decomposition, since any CI submodule N
of M cannot be an intersection of primary submodules that properly contain it,
it follows that N must be primary.

Proposition 1.2. An R-module M is a module with primary decomposition if
and only if every CI submodule of M is m-primary for some m ∈ Max(R). In
particular, if M is a Laskerian module, then every CI submodule of M is m-
primary for some m ∈ Max(R).

Proof: In view of Lemma 1.1, it is sufficient to show that if M is a module with
primary decomposition then every CI submodule of M is m-primary for some
m ∈ Max(R). Let N be any CI submodule of M . Then, by Lemma 0.2, there
exists m ∈ Max(R) such that Soc(M/N) = N∗/N ≃ R/m and N∗/N is an
essential submodule of M/N . By Lemma 1.1, N is a primary submodule of M ,
say p-primary. Thus {p} = Assf (M/N) ⊇ Ass(M/N) = Ass(R/m) = {m}, and
then, p = m, which implies that N is m-primary, as desired.

Corollary 1.3. If Spec(R) = Max(R), i.e., if the ring R has classical Krull
dimension 0, then for every R-module M , every CI submodule of M is m-primary
for some m ∈ Max(R).

Proof: By Radu [9, Corolar 4.10], every module over any ring with classical
Krull dimension 0 is with primary decomposition, so we can apply Proposition
1.2.
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Corollary 1.4. Let M be an R-module such that V (AnnR(M)) ⊆ Max(R).
Then every CI submodule of M is m-primary for some m ∈ Max(R).

Proof: By Radu [9, Corolar 4.11], M is a module with primary decomposition.
The result now follows from Proposition 1.2.

Corollary 1.5. Let m ∈ Max(R) and let M be any R-module. Then every
irreducible strongly m-primary submodule of M is CI. Moreover, if m is finitely
generated then every irreducible m-primary submodule of M is CI. In particular,
if R is a Noetherian ring then a submodule of M is CI if and only if it is an
irreducible p-primary submodule for some p ∈ Max(R).

Proof: Let N be an irreducible strongly m-primary submodule of M . Then
mnM ⊆ N for some positive integer n. Without loss of generality we may
assume that n > 1 is minimum with mnM ⊆ N . If n = 1, then mM ⊆ N ,
so the non-zero R-module M/N is semisimple. If n > 2, then mnM ⊆ N and
mn−1M 6⊆ N , so there exists x ∈ mn−1M \N . Since m(mn−1M) ⊆ N , we deduce
that mx ⊆ N , and then M/N has non-zero socle. Thus, in any case, M/N has
non-zero socle. Now apply Lemma 0.2 to conclude that N is CI.

Now assume that m is a finitely generated, and let Q be an irreducible m-
primary submodule of M . Then m = { a ∈ R | ∀x ∈ M, ∃n(x) ∈ N, an(x)x ∈ Q }
(= RadM (Q)). Without loss of generality we may assume that Q = 0. Suppose
that m = Ra1 + . . . + Ran. Let 0 6= x ∈ M . For all i, 1 6 i 6 n, there exists

k(i) > 1 such that a
k(i)
i x = 0. Let k = k(1) · · · k(n). Then mkx = 0. There

exists t > 1 such that mt−1x 6= 0 but mtx = 0. Therefore Soc(Rx) 6= 0. Since
Q (= 0) is an irreducible submodule of M , it follows that Q is CI by Lemma 0.2,
as desired.

If R is a Noetherian ring then every R-module is with primary decomposition
by Radu [9, Corolar 4.8], so that, for any R-module M , every CI submodule
of M is p-primary for some p ∈ Max(R) by Proposition 1.2. Conversely, if
p ∈ Max(R), then p is finitely generated, hence every irreducible p-primary
submodule of M is CI, as we have already proved.

Remarks 1.6. (1) If a module M is not with primary decomposition, then, by
Lemma 1.1, it has CI submodules that are not primary. According to Radu
[9, Exemple 4.15 (ii)], the trivial extension Z ⋊ Q is not a ring with primary
decomposition, so it has CI ideals which are not primary; more precisely, every
CI ideal of Z ⋊ Q strictly contained in 0 ⋊ Q is not primary, since the primary
ideals of Z ⋊ Q have one of the following forms: Zpn ⋊ Q, where p > 0 is prime
in Z and n ∈ N, 0 ⋊ Q, and 0 ⋊ 0 by Radu [9, Exemple 2.9 (v)]. For example,
0 ⋊ Z(p), where Z(p) is the localization of Z at any non-zero prime ideal pZ, is
not a primary ideal, but it is a CI ideal of Z ⋊ Q .
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(2) An example of an m-primary submodule that is not CI is the following
one. Let R be a rank-one nondiscrete valuation domain with maximal ideal m,
and let 0 6= x ∈ R. If we set q := Rx, then

√
q is a non-zero prime ideal of R,

so necessarily
√

q = m, and hence q is a principal m-primary ideal. Then q is
irreducible but not CI (see Fuchs, Heinzer, and Olberding [7, Remark 1.8]).

Another example is the following one. Let F be a field of non-zero character-
istic p, let G be the Prüfer p-group C(p∞), and let R be the group algebra F [G].
Let m denote the augmentation ideal of R. Then m is a nil idempotent ideal of
R. For any two elements a, b in R there exists a finite cyclic subgroup H of G
such that a, b ∈ F [H]. But H is a finite p-group so that F [H] is a valuation ring.
Thus F [H]a ⊆ F [H]b or F [H]b ⊆ F [H]a. It follows that Ra ⊆ Rb or Rb ⊆ Ra
for all a and b in R. Thus R is a valuation ring. It follows that 0 is an irreducible
m-primary submodule of RR. Suppose that 0 is CI. Then there exists 0 6= r ∈ R
such that rm = 0. This is impossible because G is infinite. Thus 0 is not a CI
submodule of RR.

2 Primal submodules and primary submodules

Throughout this section R will again be a commutative ring with non-zero identity
element. We analyze the connections between primal submodules and primary
submodules of a module. We show that for any module M , each primary sub-
module is also primal. Then we study when the converse holds. We characterize
those modules M over a Noetherian ring R for which every primal submodule is
primary. In particular, we describe the structure of Noetherian rings R for which
all primal ideals are primary.

If M is an R-module, then we denote by

Z(M) := { a ∈ R | ∃ x ∈ M, x 6= 0, with ax = 0 }

the set of all zero divisors on M . Recall that a submodule N of M is said to
primal if N 6= M and Z(M/N) is an ideal of R, which is necessarily prime; in
this case, if Z(M/N) = p, then N is called p-primal and p is called the adjoint
ideal of N and is denoted by adj N . The module M is called coprimal if 0 is
a primal submodule of M . By P(M) (resp. Q(M)) we denote the set of all
primal (resp. primary) submodules of M .

For basic properties of primal submodules of a module, see Albu and Smith
[2].

Proposition 2.1. Any coprimary module is coprimal, so Q(M) ⊆ P(M) for any
module M , in other words, any primary submodule of a module is also primal.
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Proof: Let M be a coprimary module; this means that whenever c ∈ R and
z ∈ M are such that cz = 0, then c ∈ RadM (0) or z = 0. Let a, b ∈ Z(M).
Then, there exist non-zero elements x, y ∈ M such that ax = 0 and by = 0.
Since M is a coprimary module, it follows that a, b ∈ RadM (0), so also a − b ∈
RadM (0) ⊆ Z(M). Thus M is coprimal.

Remarks 2.2. (1) A primal submodule of a module M is not necessarily primary,
as an example from Fuchs [5] shows: the ideal (X2,XY ) of the ring F [X,Y ] of
polynomials over a field F is primal but is not primary.

(2) It would be interesting to characterize those modules M such that Q(M) =
P(M); see Section 4, Problem 6. A partial answer is given below for modules
over Noetherian rings. ¤

Lemma 2.3. Let M be a module such that the zero submodule 0 =
⋂

i∈I Ni is
an intersection of a family (Ni)i∈I of submodules of M . Then

Z(M) ⊆
⋃

i∈I

Z(M/Ni).

Proof: Let r ∈ Z(M). Then rm = 0 for some 0 6= m ∈ M . There exists i ∈ I
such that m /∈ Ni but rm ∈ Ni so that r ∈ Z(M/Ni).

Lemma 2.4. Let M be a module such that the zero submodule 0 =
⋂

i∈I Ni is
an irredundant intersection of a family (Ni)i∈I of primary submodules of M .
Then

Z(M) =
⋃

i∈I

Z(M/Ni).

Proof: Let r ∈ Z(M/Ni) for some i ∈ I. Because
⋂

j 6=i Nj * Ni, there exists

m ∈ ⋂

j 6=i Nj with m /∈ Ni. There exists k ∈ N such that rkm ∈ Ni, and so

rkm ∈ ⋂

j∈I Nj = 0. Then, there exists t ∈ N, 1 6 t 6 k such that rt−1m 6= 0

but rtm = 0, hence r ∈ Z(M). The result follows by Lemma 2.3.

Lemma 2.5. Let R be a Noetherian ring, and let M be an arbitrary non-zero
R-module. Then every irreducible submodule N of M is a primary submodule
of M , and moreover, Z(M/N) = p, where Ass(M/N) = Assf (M/N) = {p}.
Proof: Let N be an irreducible submodule of M . Then M/N is a coirreducible
module. Since R is a Noetherian ring, Ass(M/N) = Assf (M/N) 6= ∅. Let p ∈
Ass(M/N). Then p = AnnR(y) for some y ∈ M/N , so R/p ≃ Ry →֒ M/N . Since
Ry is an essential submodule of M/N , we have {p} = Ass(R/p) = Ass(M/N) =
Assf (M/N), and so, Assf (M/N) = {p}, which means precisely that N is a
p-primary submodule of M .

Since Z(M/N) =
⋃

q∈Assf (M/N) q , we deduce that Z(M/N) = p, as desired.
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Lemma 2.6. Suppose that every primal submodule of a non-zero R-module M
is primary. Let p ⊂ q be prime ideals of R. Then every p-primary submodule
of M is contained in every q-primary submodule of M .

Proof: Let N be any p-primary submodule of M and let L be any q-primary
submodule of M . Suppose that N * L. Let r ∈ Z(M/(N ∩ L)). Then there
exists m ∈ M\(N ∩L) such that rm ∈ N ∩L. Either m /∈ N in which case r ∈ p

or m /∈ L in which case r ∈ q. In any case r ∈ q. Thus Z(M/(N ∩L)) ⊆ q. Now
suppose that s ∈ q. Let x ∈ N\L. There exists a positive integer k such that
skx ∈ N ∩ L. It follows that s ∈ Z(M/(N ∩ L)). Thus Z(M/(N ∩ L)) = q, so
that N ∩ L is a primal submodule of M , and hence primary, say r-primary, by
assumption. Then Assf (M/(N ∩ L)) = {r}. As in the proof of Lemma 2.5, we
have q = Z(M/(N ∩ L)) =

⋃

n∈Assf (M/(N∩L)) n = r , so N ∩ L is a q-primary

submodule of M . Let a ∈ q, and let y ∈ M\N . There exists a positive integer n
such that any ∈ N ∩ L ⊆ N . Because N is p-primary, an ∈ p and hence a ∈ p.
This implies that q ⊆ p and hence p = q, a contradiction. It follows that N ⊆ L,
as desired.

Theorem 2.7. Let R be a Noetherian ring. Then the following statements are
equivalent for a non-zero R-module M .

(1) Every primal submodule of M is a primary submodule of M .

(2) For all prime ideals p ⊂ q of R, every p-primary submodule of M is con-
tained in every q-primary submodule of M .

(3) For any submodules P and Q of M such that Ass(M/P ) = {p}, Ass(M/Q)
= {q}, and p ⊂ q, one has P ⊂ Q.

Proof: (1) =⇒ (2): By Lemma 2.6.

(2) =⇒ (1): Let N be any primal submodule of M . Note that condition (2)
passes from M to M/N so that we can suppose without loss of generality that
N = 0. Every non-zero submodule of M contains a coirreducible submodule. Let
{Ui | i ∈ I} be a maximal independent collection of coirreducible submodules
of M . Then L =

⊕

i∈I Ui is an essential submodule of M . For each i ∈ I let
pi := Ass(Ui) and let Ni be a submodule of M which is maximal in the collection
of submodules H of M such that

⊕

j 6=i Uj ⊆ H and H∩Ui = 0. In this situation
it is a standard fact that Ni is an irreducible submodule of M for all i ∈ I. By
Lemma 2.5, Ni is a primary submodule of M for all i ∈ I. Moreover, for each
i ∈ I, Ui ⊆

⋂

j 6=i Nj and L∩
(
⋂

i∈I Ni

)

= 0. Thus 0 =
⋂

i∈I Ni is an irredundant
intersection of primary submodules of M .

Let p = Z(M). Note that pi = Z(M/Ni) for all i ∈ I, according to Lemma 2.5.
By Lemma 2.4, p =

⋃

i∈I pi. But p is finitely generated, so that p =
⋃

j∈J pj for
some finite subset J of I. It follows that p = pj for some j in J . Let i ∈ I. Then
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pi ⊆ pj . If pi 6= pj then Ni ⊆ Nj by (2), which contradicts the irredundancy
of 0 =

⋂

i∈I Ni. Thus pi = pj for all i ∈ I. We have proved that p = Ass(Ui)
for all i ∈ I. Since L =

⊕

i∈I Ui is an essential submodule of M , it follows
that Assf (M) = Ass(M) = Ass(

⊕

i∈I Ui) =
⋃

i∈I Ass(Ui) = {p}. This shows
precisely that 0 is a p-primary submodule of M , as desired.

(2) ⇐⇒ (3): Since R is a Noetherian ring, one has Ass(V ) = Assf (V ) for
any R-module V , and so N 6 M is a p-primary submodule of M if and only if
Ass(M/N) = {p}.

As usual, for any non-empty subset X of a ring R the annihilator of X in R
will be denoted by AnnR(X), i.e., AnnR(X) := { r ∈ R | rx = 0 for all x ∈ X }.

Lemma 2.8. Let R be a Noetherian ring such that every primal ideal of R is a
primary ideal of R. Then R = p + AnnR(p) for every non-maximal prime ideal
p of R. Moreover, in this case R is one-dimensional.

Proof: Let p be any non-maximal prime ideal of R, and suppose that R 6=
p+AnnR(p). Let q be any maximal ideal of R such that p+AnnR(p) ⊆ q. For each
positive integer n, qn is a q-primary ideal of R. Because p ⊂ q, Theorem 2.7 gives
that p ⊆ ⋂∞

n=1 qn. By Krull’s Intersection Theorem (see, for example, Kaplansky
[8, Theorems 74 and 76]), there exists q ∈ q such that (1 − q)p = 0. But this
implies that 1 − q ∈ AnnR(p) ⊆ q, a contradiction. Thus R = p + AnnR(p), as
required. In particular, there exists p ∈ p such that (1−p)p = 0. If r is a prime
ideal of R such that r ⊆ p then (1 − p)p ⊆ r so that p = r. It follows that R is
one-dimensional.

Theorem 2.9. The following statements are equivalent for a Noetherian ring R.

(1) Every primal ideal of R is a primary ideal of R.

(2) R = p + AnnR(p) for every non-maximal prime ideal p of R.

(3) R is a finite direct product of Artinian rings and one-dimensional domains.

Proof: (1) =⇒ (2): By Lemma 2.8.

(2) =⇒ (3): It is easy to check that condition (2) goes over to every ring
homomorphic image of R. Thus, without loss of generality, we can suppose that
R is an indecomposable ring. If every prime ideal of R is maximal then it is well
known that R is an Artinian ring. Suppose that R contains a non-maximal prime
ideal p. Let n = p∩AnnR(p) . By (2), p/n is a direct summand of R/n and hence
is generated by an idempotent e. Because n2 = 0, we can lift e to an idempotent
of R, that is, e = e+n for some idempotent e in R. Because R is indecomposable,
e = 1 or e = 0. Clearly e 6= 1. Thus e = 0 and hence R = AnnR(p), so that
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p = 0. We have proved that R is a domain and R is one-dimensional by Lemma
2.8.

(3) =⇒ (2): Assume that R is isomorphic to a direct product R1 × · · · ×Rn

of rings Ri, 1 6 i 6 n, for some positive integer n, such that Ri is Artinian or a
one-dimensional domain for each 1 6 i 6 n. Without loss of generality we may
consider that R = R1 × · · · × Rn. Let g be a non-maximal prime ideal of R.
Then

g = R1 × · · · × Ri−1 × 0 × Ri+2 × · · · × Rn,

for some 1 6 i 6 n. It is easy to check that R = g + AnnR(g).

(2) =⇒ (1): Let p ⊂ q be prime ideals of R, and let a be any q-primary
ideal of R. Note that a ⊆ q. By (2), there exists p ∈ p such that (1 − p)p = 0.
Hence (1 − p)p ⊆ a, so that p ⊆ a. It is now clear that every p-primary ideal
of R is contained in every q-primary ideal of R. By Theorem 2.7, every primal
ideal of R is primary, as required.

Remark 2.10. Observe that if R is a Noetherian ring such that P(R) = Q(R),
i.e., every primal ideal of R is a primary ideal of R, then, this does not imply in
general that P(M) = Q(M) for every non-zero R-module M . To see this, take
R = Z and M = Z ⊕ (Z/2Z). ¤

3 Irredundant intersections

In this section we examine irredundant decompositions of a submodule of a mod-
ule over an arbitrary ring as an intersection of irreducible, completely irreducible,
or primal submodules. Thus, we extend from ideals to modules some results of
Fuchs, Heinzer, and Olberding [7], and similar to the characterization, due to
Fort [4], of modules rich in coirreducibles via irredundant irreducible decomposi-
tions, we characterize modules rich in completely coirreducibles via irredundant
completely irreducible decompositions.

Definition 3.1. Let MR be a module, and let A 6 C be submodules of M . We
say that C is a relevant completely irreducible divisor, abbreviated an RCID, of A
if A has a decomposition as an intersection of completely irreducibles submodules
of M in which C appears and is relevant, i.e., cannot be omitted. ¤

Proposition 3.2. Let P 6 N be submodules of a module M such that N is a
CI submodule of M . Then N is an RCID of P if and only if the submodule N/P
of M/P is not essential in M/P .

Proof: Apply Albu [1, Proposition 1.19] to the lattice L = L(M) of all submod-
ules of M .
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If N is a completely irreducible submodule of M then Soc(M/N) = N∗/N
is a simple essential submodule of M/N by Lemma 0.2. The submodule N∗ is
called the cover of N .

Corollary 3.3. Let P 6 N be submodules of a module M such that N is a CI
submodule of M . Then, N∗/P is an essential submodule of M/P , where N∗ is
the cover of N .

Proof: Apply Albu [1, Corollary 1.20] to the lattice L = L(M).

Corollary 3.4. Let N be a proper submodule of a module M . Then there exists
an RCID of N if and only if Soc(M/N) 6= 0.

Proof: Apply Albu [1, Corollary 1.21] to the lattice L = L(M).

As in Fort [4], a right module MR is said to be rich in coirreducibles, abbrevi-
ated RC, if M 6= 0 and each of its non-zero submodules contains a coirreducible
(or uniform) submodule. The next result characterizes the RC modules.

Theorem 3.5. (Fort [4, Théoréme 3]). The following statements are equivalent
for a non-zero module MR.

(1) M is RC.

(2) M is an essential extension of a direct sum of coirreducible submodules of
M .

(3) The injective hull ER(M) of M is an essential extension of a direct sum
of indecomposable injective modules.

(4) 0 has an irredundant irreducible decomposition in any non-zero submodule
of M . ¤

It is natural to ask whether condition (4) in Theorem 3.5 can be replaced
by the weaker one: 0 has an irredundant irreducible decomposition in M (see
also Section 4, Problem 1). We guess that the answer in no, but do not have
any counterexample. Such a counterexample will be a module MR that is not
rich in coirreducibles such that 0 has an irredundant irreducible decomposition
in M . According to Fort [4, Théorème 1, Proposition 5], the module M has to
be a direct sum of a module without any coirreducibles with a module that is a
maximal direct sum of coirreducibles.

If we replace “coirreducibles” by “completely coirreducibles” in the definition
of a module rich in coirreducibles one obtains the concept of a module rich in
completely coirreducibles. More precisely, a module M is said to be rich in
completely coirreducibles, abbreviated RCC, if M 6= 0 and for any 0 6= N 6 M
there exists a completely coirreducible submodule C of M such that C 6 N .
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Recall that in Albu and Smith [2] a module M is called completely coirreducible
provided M is non-zero and the zero submodule of M is completely irreducible.
The next result gives a characterization of RCC modules similar to that for RC
modules in Theorem 3.5.

Theorem 3.6. The following statements are equivalent for a non-zero module
MR.

(1) M is RCC.

(2) Every non-zero submodule of M contains a simple submodule.

(3) The socle Soc(M) of M is essential in M .

(4) M is an essential extension of a direct sum of completely coirreducible sub-
modules of M .

(5) M is an essential extension of a direct sum of simple submodules of M .

(6) The injective hull ER(M) of M is an essential extension of a direct sum
of injective hulls of simple R-modules.

(7) For every 0 6= N 6 M there exists a nonempty set IN such that 0 can
written as an irredundant intersection

0 =
⋂

i∈IN

Ni

of CI submodules Ni (i ∈ IN ) of N .

(8) For every 0 6= N 6 M there exists a nonempty set JN such that 0 can
written as an irredundant intersection

0 =
⋂

i∈JN

Ki

of maximal submodules Ki (i ∈ JN ) of N , in other words the Jacobson
radical Rad (N) of N is zero and an irredundant intersection of maximal
submodules of N .

Proof: Apply Albu [1, Theorem 1.16] to the lattice L = L(MR).

From now on, R will be a commutative ring with a non-zero identity element,
and M a unital R-module.

Proposition 3.7. Let M be an R-module, let P be a proper submodule of M ,
and let m ∈ Max(R). Then m ∈ Ass(M/P ) if and only if there exists an RCID
of P that is m-primal.
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Proof: “=⇒”: Suppose that m ∈ Ass(M/P ). There exists x ∈ M \P such that
(P : x) = m. Let N 6 M be maximal with P 6 N and x 6∈ N . Then it is easy
to check that N is a CI submodule of M with cover N∗ = N +Rx. We have m =
(P : x) ⊆ (N : x) 6= R, so m = (N : x) and m ∈ Ass(M/N). Then Ass(M/N) =
{m} because the socle N∗/N ≃ R/m of the completely coirreducible module
M/N is essential in M/N . Thus, N is m-primal by Albu and Smith [2, Lemma
3.3]. Moreover, P 6 N ∩ (P + Rx) < P + Rx and (P + Rx)/P ≃ R/(P : x) =
R/m, so that (P + Rx)/P is simple. Thus N ∩ (P + Rx) = P . By Proposition
3.2, N is an RCID of P .

“⇐=”: Conversely, suppose that N is an RCID of P that is m-primal. Then
N is a CI submodule of M and, by Proposition 3.2, N ∩ L = P for some
submodule L of M properly containing P . It follows that N < N +L and hence
N∗ 6 N +L. Thus N∗ = N +(N∗∩L) so that P < N∗∩L. Let z ∈ (N∗∩L)\P .
Then mz ⊆ N ∩ L = P which implies that m = (P : z) ∈ Ass(M/P ) as desired.

As we know, for any R-module M one has Z(M) =
⋃

p∈Assf (M) p. The next

result says that in some cases, the set Assf (M) can be replaced by its subset
Ass(M).

Proposition 3.8. Let N be a proper submodule of an R-module M . If N is an
irredundant intersection N =

⋂

i∈I Ni of CI submodules Ni (i ∈ I) of M , then

Z(M/N) =
⋃

p∈Ass(M/N)

p =
⋃

i∈I

adj Ni.

Proof: For each i ∈ I let pi = Z(M/Ni) = adj Ni. Then pi ∈ Ass(M/N) for
each i ∈ I by Proposition 3.7. Let r ∈ Z(M/N). Then rm ∈ N for some
m ∈ M\N . There exists j ∈ I such that m /∈ Nj and hence r ∈ pj . Thus

Z(M/N) ⊆
⋃

i∈I

pi ⊆
⋃

p∈Ass(M/N)

p ⊆ Z(M/N),

and the result follows.

Corollary 3.9. Let N =
⋂

i∈I Ni be an irredundant intersection of CI submod-
ules of a module M . Then N is m-primal if and only if Ni is m-primal for all
i ∈ I.

Proof: Set mi := adjNi for each i ∈ I. By Proposition 3.8, we have Z(M/N) =
⋃

i∈I mi, so that if all the Ni are m-primal, then mi = m for all i ∈ I, and then
Z(M/N) = m, i.e., N is m-primal.

Conversely, if N is m-primal, then again by Proposition 3.8, m =
⋃

i∈I mi,
and then necessarily mi = m for all i ∈ I because the mi are all maximal ideals
of R, so all the Ni are m-primal.
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4 Seven open problems

In this section we present a list of seven open questions mainly related with the
opposite inclusions in the tower of inclusions

Ic(M) ⊆ I(M) ⊆ P(M)

of Albu and Smith [2, Lemma 1.3] associated with any R-module over a commu-
tative ring R.

1. A classical result of Fort [4, Théoréme 3] (see also Theorem 3.5) states:
A module M over a not necessarily commutative ring R is rich in coirre-
ducibles (RC) ⇐⇒ 0 has an irredundant irreducible meet decomposition in
any non-zero submodule of M .

It is natural to ask whether the right hand condition above can be re-
placed by the weaker one: 0 has an irredundant irreducible meet decompo-
sition in M.

We guess that the answer in no, but no counterexample is available so
far.

2. Characterize MR such that Ic(M) = I(M). Note that

MR is semi-Artinian =⇒ Ic(M) = I(M),

but not conversely.

3. Characterize MR such that I(M) ⊆ Q(M). Note that the inclusion holds
for any Noetherian module.

4. Characterize MR such that Q(M) ⊆ I(M).

5. Characterize MR such that Q(M) = P(M) for an arbitrary commutative
ring R.

6. Characterize MR such that Ic(M) = P(M).

7. We have seen that Ic(M) ⊆ Q(M) ⇐⇒ M is a module with primary
decomposition. Characterize MR such that Q(M) ⊆ Ic(M).
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