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Abstract

The degree distance of a connected graph G with vertex set V (G) is
defined as D′(G) =

∑

u∈V (G)

dG(u)DG(u), where dG(u) is the degree of vertex

u and DG(u) is the sum of distances between u and all vertices of G. We
determine the maximum degree distances in the class of connected graphs
with exactly two vertex–disjoint cycles and in the class of connected graphs
with exactly two cycles of a common vertex, respectively, and then the
maximum degree distance in the class of connected graphs with exactly
two cycles. The extremal graphs are characterized.
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1 Introduction

The topological indices are numbers associated with chemical structures via their
hydrogen–depleted graphs. The topological indices especially those based on
graph distance are widely used in modeling of structure–property relationships
[2, 11].

Let G be a simple connected graph with vertex set V (G) and edge set E(G).
For u, v ∈ V (G), let dG(u, v) be the distance between the vertices u and v in G,
let DG(u) be the sum of distances between u and all vertices of G, i.e., DG(u) =
∑

v∈V (G)

dG(u, v). For u ∈ V (G), let dG(u) be the degree of u in G. The degree

distance of G is defined as [5, 6]

D′(G) =
∑

u∈V (G)

dG(u)DG(u).



120 Zhibin Du and Bo Zhou

Besides as a topological index itself, the degree distance is also the non-trivial
part of the molecular topological index (MTI) introduced by Schultz [10] for
characterization of alkanes [9, 6, 8]. Some properties for the degree distance may
be found, e.g., in [6, 8, 15] in the text of MTI.

The Wiener index of G is defined as [3, 4] W (G) = 1
2

∑

u∈V (G)

DG(u). Gutman

[6] showed that if T is a tree with n vertices, then D′(T ) = 4W (T ) − n(n − 1).
Thus, the study of the degree distance for trees is equivalent to the study of the
Wiener index, which was summarized in [3].

A connected graph with n vertices is said to be unicyclic for n ≥ 3 if it
possesses n edges and bicyclic for n ≥ 4 if it possesses n + 1 edges. I. Tomescu
[13] showed that the star is the unique graph with the minimum degree distance
in the class of connected graphs with n vertices. A. I. Tomescu [12] characterized
the unicyclic and bicyclic graphs with the minimum degree distances. I. Tomescu
[14] gave properties of the graphs with the minimum degree distance in the class
of connected graphs with n vertices and m ≥ n−1 edges, which were determined
recently by Bucicovschi and Cioabǎ [1]. Hou and Chang [7] characterized the
unicyclic graph(s) with the maximum degree distance.

Let B1(n) for n ≥ 6 be the class of connected graphs on n vertices with
exactly two vertex–disjoint cycles. Let B2(n) for n ≥ 5 be the class of connected
graphs on n vertices with exactly two cycles of a common vertex. Obviously, the
graphs in B1(n) or B2(n) are bicyclic graphs, and B2(5) contains only the graph
consisting of two triangles of a common vertex. In this paper, we determine the
maximum degree distances in B1(n), B2(n) and B1(n) ∪ B2(n), respectively, for
n ≥ 6. We also characterize the extremal graphs.

2 Preliminaries

For edge subset E1 of the graph G (the complement of G, respectively), G− E1

(G + E1, respectively) denotes the graph resulting from G by deleting (adding,
respectively) the edges in E1. A pendant vertex is a vertex of degree one. Let
Pn be the path on n vertices.

For vertex–disjoint connected graphs Q1 and Q2 with |V (Q1)|, |V (Q2)| ≥ 2,
x ∈ V (Q1), y ∈ V (Q2) and integer r ≥ 1, let H be the graph obtained from Q1

and Q2 by identifying x and y, and attaching a path Pr (at an end vertex) to
this common vertex, and H1 the graph obtained from Q1 and Q2 by joining x

and y by a path of length r. Gutman [6] proved that D′(H1) > D′(H).

Lemma 1. Let G and G∗ be the graphs in Fig. 1, where M and N are vertex–
disjoint connected graphs, T is a tree with k ≥ 3 vertices, V (M) ∩ V (T ) = {u},
V (N)∩V (T ) = {v}, G∗ is formed from G by setting the tree T to be Pk with end
vertices u and v. Suppose that G 6= G∗.

(i) If V (N) = {v}, then D′(G) < D′(G∗).

(ii) If |V (M)|, |V (N)| ≥ 2, then D′(G) < D′(G∗).
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Fig. 1. The graphs G and G∗.

Proof: Note that T can not be a path from u to v. By proper choosing of Q1

and Q2, and applying the transformation from H to H1 repeatedly, the results
(i) and (ii) follow from Gutman’s result mentioned above.

Let G and H be connected graphs. Let V1(G) = {x ∈ V (G) : dG(x) 6= 2}.
Then

D′(H)−D′(G) = 4[W (H)−W (G)] +
∑

x∈V1(H)

(dH(x)− 2)DH(x)

−
∑

x∈V1(G)

(dG(x)− 2)DG(x),

which will be used frequently to compare the degree distances of two related
graphs.

Let Cn be the cycle on n ≥ 3 vertices. Let s and t be integers with s, t ≥ 3.
Let a1, a2, . . . , as−1 be nonnegative integers. Let U1 be the unicyclic graph with
cycle Cs = u0u1 . . . us−1u0 such that U1−E(Cs) consists of vertex–disjoint paths
P1 (= u0), Pa1+1, Pa2+1, . . . , Pas−1+1 with ui being an end vertex of the path
Pai+1 for i = 1, 2, . . . , s − 1, and U2 a unicyclic graph with a vertex v0 on its
cycle. Let G(a1, . . . , as−1;U2) be the bicyclic graph obtained by joining u0 of U1

and v0 of U2 by a path of length at least one, and H(a1, . . . , as−1;U2) the bicyclic
graph obtained by identifying u0 of U1 and v0 of U2.

Lemma 2. For fixed i and j with 1 ≤ i < j ≤ s− 1 and fixed ak for k 6= i, j, let
Gai,aj

be the graph G(a1, . . . , as−1;U2). If ai, aj ≥ 1, then

D′
(

Gai,aj

)

< max
{

D′
(

Gai+aj ,0

)

, D′
(

G0,ai+aj

)}

.

Proof: Let G = Gai,aj
, G1 = Gai+aj ,0. Then G − E(Cs) consists of a unicyclic

graph Q and s−1 paths. Let u∗
k be the pendant vertex of G in the path attached

to uk if ak ≥ 1, where k = 1, 2, . . . , s− 1. Denote by u the neighbor of uj outside
Cs. Obviously, G1 = G− {uuj}+ {uu∗

i }. Note that

V1(G1) = (V1(G1) ∩ V (Q)) ∪

(

∪ 1≤k≤s−1
ak≥1,k 6=i,j

{uk, u
∗
k}

)

∪ {ui, u
∗
j}
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and V1(G) = (V1(G) ∩ V (Q)) ∪

(

∪ 1≤k≤s−1
ak≥1

{uk, u
∗
k}

)

. It is easily seen that

DG1
(x)−DG(x) = DG1

(u0)−DG(u0) for x ∈ V (Q), and thus

∑

x∈V1(G1)∩V (Q)

(dG1
(x)− 2)DG1

(x)−
∑

x∈V1(G)∩V (Q)

(dG(x)− 2)DG(x)

=
∑

x∈V (Q)

(dG(x)− 2) [DG1
(x)−DG(x)]

= [DG1
(u0)−DG(u0)] ·





∑

x∈V (Q)

(dQ(x)− 2) + 2





= 2[DG1
(u0)−DG(u0)].

For k 6= i, j with ak ≥ 1, DG1
(uk)−DG(uk) = DG1

(u∗
k)−DG(u

∗
k), and then

∑

x∈{uk,u∗
k
}

(dG1
(x)− 2)DG1

(x)−
∑

x∈{uk,u∗
k
}

(dG(x)− 2)DG(x)

= (3− 2)[DG1
(uk)−DG(uk)] + (1− 2)[DG1

(u∗
k)−DG(u

∗
k)] = 0.

Also we have

∑

x∈{ui,u∗
j
}

(dG1
(x)− 2)DG1

(x)−
∑

x∈{ui,uj ,u∗
i
,u∗

j
}

(dG(x)− 2)DG(x)

= (3− 2)
[

DG1
(ui)−DG(ui)] + (1− 2)[DG1

(u∗
j )−DG(u

∗
j )
]

−(1− 2)DG(u
∗
i )− (3− 2)DG(uj)

=
[

DG1
(ui)−DG1

(u∗
j )
]

+ [DG(u
∗
i )−DG(ui)] +

[

DG(u
∗
j )−DG(uj)

]

.

Therefore

D′
(

Gai+aj ,0

)

−D′
(

Gai,aj

)

= 4 [W (G1)−W (G)] + 2 [DG1
(u0)−DG(u0)]

+
[

DG1
(ui)−DG1

(u∗
j )
]

+ [DG(u
∗
i )−DG(ui)] +

[

DG(u
∗
j )−DG(uj)

]

.

Let G2 = G − {uuj} + {uui}, a0 = |V (Q)| − 1, n = |V (G)|, and d(x, y) =
dG(x, y) for x, y ∈ V (G).

Let Z be the set of vertices in the path from u to u∗
j in G, and W the set of
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vertices in the path from ui to u∗
i in G. We have

W (G1)−W (G2)

=
∑

x∈Z

y∈W

[dG1
(x, y)− dG2

(x, y)] +
∑

x∈Z

y∈V (G)\(Z∪W )

[dG1
(x, y)− dG2

(x, y)]

= 0 +
∑

x∈Z

y∈V (G)\(Z∪W )

[dG1
(x, y)− dG2

(x, y)]

=
∑

x∈Z

y∈V (G)\(Z∪W )

ai = aiaj(n− ai − aj − 1),

W (G2)−W (G)

=
∑

x∈Z

y∈V (Cs)

[dG2
(x, y)− d(x, y)] +

∑

x∈Z

y∈V (G)\(Z∪V (Cs))

[dG2
(x, y)− d(x, y)]

= 0 +
∑

x∈Z

y∈V (G)\(Z∪V (Cs))

[dG2
(x, y)− d(x, y)]

=
∑

x∈Z

∑

0≤k≤s−1
k 6=j

ak [d(uk, ui)− d(uk, uj)]

= aj
∑

0≤k≤s−1
k 6=j

ak [d(uk, ui)− d(uk, uj)] ,

and then

W (G1)−W (G)

= [W (G1)−W (G2)] + [W (G2)−W (G)]

= aiaj(n− ai − aj − 1) + aj
∑

0≤k≤s−1
k 6=j

ak [d(uk, ui)− d(uk, uj)] .

Note also that

DG1
(u0)−DG(u0) = [DG1

(u0)−DG2
(u0)] + [DG2

(u0)−DG(u0)]

= aiaj + aj [d(u0, ui)− d(u0, uj)],

DG1
(ui)−DG1

(u∗
j ) = −(ai + aj)(n− ai − aj − 1),

DG(u
∗
i )−DG(ui) = ai(n− ai − 1),

DG(u
∗
j )−DG(uj) = aj(n− aj − 1).

Then

D′
(

Gai+aj ,0

)

−D′
(

Gai,aj

)

= 4aiaj(n− ai − aj) + 2aj [d(u0, ui)− d(u0, uj)]

+4aj
∑

0≤k≤s−1
k 6=j

ak [d(uk, ui)− d(uk, uj)] .
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If D′(Gai+aj ,0) ≤ D′(Gai,aj
), then

2[d(u0, uj)− d(u0, ui)] + 4
∑

0≤k≤s−1
k 6=j

ak [d(uk, uj)− d(uk, ui)] ≥ 4ai(n− ai − aj),

and thus

D′(G0,ai+aj
)−D′(Gai,aj

)

= 4aiaj(n− ai − aj) + 2ai[d(u0, uj)− d(u0, ui)]

+4ai
∑

0≤k≤s−1
k 6=i

ak [d(uk, uj)− d(uk, ui)]

= 4aiaj(n− ai − aj)− 4ai(ai + aj)d(ui, uj)

+2ai[d(u0, uj)− d(u0, ui)] + 4ai
∑

0≤k≤s−1
k 6=j

ak [d(uk, uj)− d(uk, ui)]

≥ 4aiaj(n− ai − aj)− 4ai(ai + aj)d(ui, uj)

+ai · 4ai(n− ai − aj)

= 4ai(ai + aj)[(n− ai − aj)− d(ui, uj)]

> 4ai(ai + aj)
(

s−
s

2

)

= 2ai(ai + aj)s > 0.

Now the result follows.

Similar to Lemma 2, we have

Lemma 3. For fixed i and j with 1 ≤ i < j ≤ s − 1 and fixed ak with k 6= i, j,
let Hai,aj

be the graph H(a1, . . . , as−1;U2). If ai, aj ≥ 1, then

D′(Hai,aj
) < max

{

D′
(

Hai+aj ,0

)

, D′
(

H0,ai+aj

)}

.

3 Degree distances of graphs in B1(n)

In this section, we determine the maximum degree distance in the class of con-
nected graphs with exactly two vertex–disjoint cycles.

Let Un,m be the unicyclic graph obtained by attaching a path Pn−m to a
vertex u of the cycle Cm, where 3 ≤ m ≤ n. In particular, Un,n = Cn. Denote
by v the pendant vertex in Un,m if 3 ≤ m ≤ n − 1, and w a vertex on Cm with

dUn,m
(u,w) = ⌊m

2 ⌋. Recall that W (Ps) =
s3−s
6 and W (Cs) =

s
2⌊

s2

4 ⌋. By direct
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calculation, we have

W (Un,m) =
n3

6
+

(⌊

m2

4

⌋

−
m2

2
+

m

2
−

1

6

)

n

−
m

2

⌊

m2

4

⌋

+
m3

3
−

m2

2
+

m

6
, (1)

DUn,m
(u) =

⌊

m2

4

⌋

+
1

2
(n−m)(n−m+ 1), (2)

DUn,m
(v) =

⌊

m2

4

⌋

+
1

2
(n−m)(n+m− 1), (3)

DUn,m
(w) =

⌊

m2

4

⌋

+
1

2
(n−m)

(

n−m+ 1 + 2
⌊m

2

⌋)

. (4)

Let Cs1 = u0u1 . . . us1−1u0 and Cs2 = v0v1 . . . vs2−1v0 be two vertex–disjoint
cycles. Let Gn(s1, s2) be the bicyclic graph obtained by joining u0 and v0 by a
path of length n− s1 − s2 + 1, where s1 + s2 ≤ n.

Lemma 4. For integers n, m1 and m2 with n ≥ 6, m1,m2 ≥ 3 and m1+m2 ≤ n,
we have D′ (Gn(m1,m2)) ≤ D′(Gn(3, 3)) with equality if and only if (m1,m2) =
(3, 3).

Proof: Suppose that m1 ≥ 5. Let G = Gn(m1,m2) and G1 = Gn(m1 − 2,m2).
Note that V1(G) = V1(G1) = {u0, v0}. Then

D′ (Gn(m1 − 2,m2))−D′ (Gn(m1,m2))

= 4[W (G1)−W (G)] + (3− 2)[DG1
(u0)−DG(u0)]

+(3− 2)[DG1
(v0)−DG(v0)]

= 4[W (G1)−W (G)] + [DG1
(u0)−DG(u0)] + [DG1

(v0)−DG(v0)].

Denote by u∗
0 the vertex outside Cm1−2 in G1 with dG1

(u0, u
∗
0) = 2. Let Q be

the graph obtained fromG by deleting the vertices of Cm1
. Then |V (Q)| = n−m1.
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Note that for v ∈ V (Q), dG1
(u∗

0, v) = dG(u0, v), and then

∑

u∈V (Um1,m1−2)

∑

v∈V (Q)

dG1
(u, v)−

∑

u∈V (Cm1
)

∑

v∈V (Q)

dG(u, v)

=
∑

v∈V (Q)





∑

u∈V (Um1,m1−2)

(dG1
(u, u∗

0) + dG1
(u∗

0, v))

−
∑

u∈V (Cm1
)

(dG(u, u0) + dG(u0, v))





=
∑

v∈V (Q)





∑

u∈V (Um1,m1−2)

dG1
(u, u∗

0)−
∑

u∈V (Cm1
)

dG(u, u0)





+
∑

v∈V (Q)

m1 · [dG1
(u∗

0, v)− dG(u0, v)]

=
∑

v∈V (Q)





∑

u∈V (Um1,m1−2)

dG1
(u, u∗

0)−
∑

u∈V (Cm1
)

dG(u, u0)



+ 0

= (n−m1)
[

DUm1,m1−2
(u∗

0)−DCm1
(u0)

]

,

from which and Eqs. (1) and (3), we have

W (G1)−W (G)

=



W (Um1,m1−2) +W (Q) +
∑

u∈V (Um1,m1−2)

∑

v∈V (Q)

dG1
(u, v)





−



W (Cm1
) +W (Q) +

∑

u∈V (Cm1
)

∑

v∈V (Q)

dG(u, v)





= W (Um1,m1−2)−W (Cm1
) + (n−m1)

[

DUm1,m1−2
(u∗

0)−DCm1
(u0)

]

=

⌊

m2
1

4

⌋

−
3

2
m2

1 +

(

n+
9

2

)

m1 − 2n− 4.

For v ∈ V (Q), dG1
(u0, v)− dG(u0, v) = 2+ dG1

(u∗
0, v)− dG(u0, v) = 2. Using Eq.
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(2),

DG1
(u0)−DG(u0)

=





∑

v∈V (Um1,m1−2)

dG1
(u0, v) +

∑

v∈V (Q)

dG1
(u0, v)





−





∑

v∈V (Cm1
)

dG(u0, v) +
∑

v∈V (Q)

dG(u0, v)





=
∑

v∈V (Um1,m1−2)

dG1
(u0, v)−

∑

v∈V (Cm1
)

dG(u0, v) +
∑

v∈V (Q)

2

= DUm1,m1−2
(u0)−DCm1

(u0) + 2(n−m1)

= 2n− 3m1 + 4.

Using Eq. (3),

DG1
(v0)−DG(v0)

=
∑

v∈V (Um1,m1−2)

dG1
(v0, v)−

∑

v∈V (Cm1
)

dG(v0, v)

=
∑

v∈V (Um1,m1−2)

[

dG1
(v0, u

∗
0) + dUm1,m1−2

(u∗
0, v)

]

−
∑

v∈V (Cm1
)

[dG(v0, u0) + dCm1
(u0, v)]

= m1 · [dG1
(v0, u

∗
0)− dG(v0, u0)]

+





∑

v∈V (Um1,m1−2)

dUm1,m1−2
(u∗

0, v)−
∑

v∈V (Cm1
)

dCm1
(u0, v)





= 0 +
[

DUm1,m1−2
(u∗

0)−DCm1
(u0)

]

= m1 − 2.

Hence

D′ (Gn(m1 − 2,m2))−D′ (Gn(m1,m2))

= 4

[⌊

m2
1

4

⌋

−
3

2
m2

1 +

(

n+
9

2

)

m1 − 2n− 4

]

+(2n− 3m1 + 4) + (m1 − 2)

=

{

−5m2
1 + 4(n+ 4)m1 − 6n− 14 if m1 is even,

−5m2
1 + 4(n+ 4)m1 − 6n− 15 if m1 is odd.

Suppose that m1 is even. Let f(m1) = −5m2
1 + 4(n + 4)m1 − 6n − 14 for

m1 ≥ 6. Let r1 and r2 be the two roots of f(m1) = 0 with r1 ≤ r2. Since
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f(6) = 18n− 98 > 0, we have r1 < 6 < r2. Thus, f(m1) ≥ 0 if 6 ≤ m1 ≤ r2, and
f(m1) < 0 if m1 > r2. If n − m2 is even, then m1 ≤ n − m2, D

′(Gn(m1,m2))
is maximum for fixed m2 only if m1 = 4 for r2 ≥ n −m2 or m1 = 4, n −m2 for
r2 < n−m2. Similarly, if n−m2 is odd, then m1 ≤ n−m2 − 1, D′(Gn(m1,m2))
is maximum for fixed m2 only if m1 = 4, n−m2 − 1. Hence D′ (Gn(m1,m2)) is
maximum implies that Gn(m1,m2) = Gn(4,m2), Gn(n−m2−i,m2), where i = 0
if n−m2 is even and i = 1 if n−m2 is odd. For fixed m2, let s = n−m2 − i ≥
6, G2 = Gn(4,m2) and G3 = Gn(n − m2 − i,m2), by similar technique as in
calculation of D′ (Gn(m1 − 2,m2))−D′ (Gn(m1,m2)), we have

D′ (Gn(4,m2))−D′ (Gn(n−m2 − i,m2))

= 4[W (G2)−W (G3)] + [DG2
(u0)−DG3

(u0)] + [DG2
(v0)−DG3

(v0)]

= 4

[

−
5

24
s3 +

(

n

4
+

1

2

)

s2 −

(

n

2
+

1

6

)

s− 2n+ 6

]

+

[

−
3

4
s2 +

(

n+
1

2

)

s− 4n+ 10

]

+

(

s2

4
−

s

2
− 2

)

= n(s2 − s− 12)−
5

6
s3 +

3

2
s2 −

2

3
s+ 32

≥ (s+ 3)(s2 − s− 12)−
5

6
s3 +

3

2
s2 −

2

3
s+ 32

=
s3

6
+

7

2
s2 −

47

3
s− 4 > 0,

and thus, if m1 > 4 is even, then D′ (Gn(m1,m2)) < D′ (Gn(4,m2)). If m1 >

3 is odd, then by similar arguments as above, we have D′ (Gn(m1,m2)) <

D′(Gn(3,m2)). Since D′ (Gn(3,m2)) −D′ (Gn(4,m2)) = 5(n − 4) > 0, we have
D′ (Gn(m1,m2)) < D′ (Gn(3,m2)) if m1 > 3, and if m2 > 3, then

D′ (Gn(3,m2)) = D′ (Gn(m2, 3)) < D′(Gn(3, 3)).

The result follows.

Theorem 1. Let G ∈ B1(n), where n ≥ 6. Then

D′(G) ≤
2

3
n3 + n2 −

41

3
n+ 24

with equality if and only if G = Gn(3, 3).

Proof: Suppose that G is a graph in B1(n) with the maximum degree distance.
Let Cm1

= u0u1 . . . um1−1u0 and Cm2
= v0v1 . . . vm2−1v0 be the two vertex–

disjoint cycles of G. Let dG(u0, v0) = min{dG(u, v) : u ∈ V (Cm1
), v ∈ V (Cm2

)}.
By Lemma 1 (i) and (ii), G−E(Cm1

)∪E(Cm2
) consists of vertex–disjoint paths,

for which, by Lemma 2, except the path containing u0 and v0, there is at most
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one path containing a vertex in Cm1
and at most one path containing a vertex

in Cm2
with length at least one.

Suppose that there is a path of length a ≥ 1 containing us, s 6= 0. Denote by
u∗
s the pendant vertex of G in this path, and u the neighbor of u0 outside Cm1

.
Let G1 = G− {u0u}+ {uu∗

s} ∈ B1(n).
Let Q be the component of G−{u0} containing u. Then Q is a unicyclic graph.

Note that V1(G) ∩ V (Q) = V1(G1) ∩ V (Q) = {v0} if all vertices on Cm2
except

v0 are of degree two, or V1(G) ∩ V (Q) = V1(G1) ∩ V (Q) = {v0, vt, v
∗
t } if there is

another vertex vt on Cm2
with degree three, where v∗t is the pendant vertex of the

path attached to vt. In either case, we have DG1
(x)−DG(x) = DG1

(u)−DG(u)
for x ∈ V (Q), and thus

∑

x∈V1(G1)∩V (Q)

(dG1
(x)− 2)DG1

(x)−
∑

x∈V1(G)∩V (Q)

(dG(x)− 2)DG(x)

=
∑

x∈V (Q)

(dG(x)− 2) [DG1
(x)−DG(x)]

= [DG1
(u)−DG(u)] ·





∑

x∈V (Q)

(dQ(x)− 2) + 1





= DG1
(u)−DG(u).

It is easily seen that V1(G) = {us, u
∗
s, u0}∪ (V1(G)∩V (Q)) and V1(G1) = {us}∪

(V1(G1) ∩ V (Q)), and thus

D′(G1)−D′(G)

= 4[W (G1)−W (G)] + (3− 2)[DG1
(us)−DG(us)]

−(1− 2)DG(u
∗
s)− (3− 2)DG(u0) + [DG1

(u)−DG(u)]

= 4[W (G1)−W (G)] + [DG1
(us)−DG(us)]

+[DG(u
∗
s)−DG(u0)] + [DG1

(u)−DG(u)].

Let G2 = G − {u0u} + {uus}, dG(u0, us) = c and n0 = |V (Q)| = n − m1 − a.
Note that

W (G1)−W (G) = [W (G1)−W (G2)] + [W (G2)−W (G)]

= an0(m1 − 1)− an0c = an0(m1 − 1− c),

DG1
(us)−DG(us) = [DG1

(us)−DG2
(us)] + [DG2

(us)−DG(us)]

= an0 − cn0 = (a− c)n0,

DG(u
∗
s)−DG(u0) = [DG(u

∗
s)−DG(us)] + [DG(us)−DG(u0)]

= a(m1 − 1 + n0) + c(n0 − a)

= a(m1 − 1− c) + n0(a+ c),

DG1
(u)−DG(u) = [DG1

(u)−DG2
(u)] + [DG2

(u)−DG(u)]

= a(m1 − 1)− ac = a(m1 − 1− c).
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Then

D′(G1)−D′(G) = 2a[(2n0 + 1)(m1 − 1− c) + n0]

≥ 2a
[

(2n0 + 1)
(

m1 − 1−
m1

2

)

+ n0

]

= 2a
[

(2n0 + 1)
(m1

2
− 1

)

+ n0

]

> 0,

and thusD′(G1) > D′(G), a contradiction. Thus, there is no such path containing
a vertex on the cycle Cm1

. Similarly, there is no such path containing a vertex
on the cycle Cm2

. Then G = Gn(m1,m2). By Lemma 4, we have G = Gn(3, 3).

4 Degree distances of graphs in B2(n)

In this section, we determine the maximum degree distance in the class of con-
nected graphs with exactly two cycles of a common vertex.

Let Cs1 = u0u1 . . . us1−1u0 and Cs2 = v0v1 . . . vs2−1v0 be two vertex–disjoint
cycles. Let Hn(a, s1, s2) be the bicyclic graph obtained by identifying u0 of Cs1

and v0 of Cs2 , which is denoted by u0, and attaching a path Pa and a path Pb to
u⌊s1/2⌋ and v⌊s2/2⌋, respectively, where a, b ≥ 0 and a+ b = n+ 1− s1 − s2, and
if a = 0 or b = 0, then no path is attached to u⌊s1/2⌋ or v⌊s2/2⌋. If a ≥ 1, then let
u be the pendant vertex of the path attached to u⌊s1/2⌋. If s1 = s2, then a ≥ b is
required.

Lemma 5. For integers n, m1 and m2 with n ≥ 7, m1,m2 ≥ 3 and m1 +m2 ≤
n+1, we have D′ (Hn(a,m1,m2)) ≤ D′ (Hn(n− 5, 3, 3)) with equality if and only
if (a,m1,m2) = (n− 5, 3, 3).

Proof: Suppose that m1 ≥ 5. Let k = a + m1. For G1 = Hn(a,m1,m2) and
G2 = Hn(a + 2,m1 − 2,m2), using Eqs. (1) and (4), and by similar arguments
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as in the proof of Lemma 4, we have

D′ (Hn(a+ 2,m1 − 2,m2))−D′ (Hn(a,m1,m2))

= 4[W (G2)−W (G1)] + (4− 2)[DG2
(u0)−DG1

(u0)]

+(3− 2)
[

DG2

(

u⌊m1
2 ⌋−1

)

−DG1

(

u⌊m1
2 ⌋

)]

+ (1− 2)[DG2
(u)−DG1

(u)]

= 4[W (G2)−W (G1)] + 2[DG2
(u0)−DG1

(u0)]

+
[

DG2

(

u⌊m1
2 ⌋−1

)

−DG2
(u)

]

+
[

DG1
(u)−DG1

(

u⌊m1
2 ⌋

)]

= 4

[

−
3m2

1

2
−

(

2n− 3k −
9

2

)

m1 +

⌊

m2
1

4

⌋

+ 2
⌊m1

2

⌋

(n− k) + (k + 2)(n− k − 2)
]

+ 2
(

2
⌊m1

2

⌋

− 2m1 + k + 2
)

−(k −m1 + 2)(n− k +m1 − 3) + (k −m1)(n− k +m1 − 1)

=















−5m2
1 − (4n− 8k − 12)m1 − 4k2 + (4n− 10)k + 6n− 6

if m1 is even,

−5m2
1 − (4n− 8k − 12)m1 − 4k2 + (4n− 6)k + 2n− 9

if m1 is odd.

Suppose that m1 is even. Let g(m1) = −5m2
1 − (4n− 8k − 12)m1 − 4k2 + (4n−

10)k + 6n− 6. Note that k ≥ 6. It is easily seen that

g(6) = n(4k − 18)− 4k2 + 38k − 114

≥ (k + 2)(4k − 18)− 4k2 + 38k − 114 = 28k − 150 > 0.

Let r1 and r2 be the two roots of g(m1) = 0, where r1 ≤ r2. It is easily seen
that r1 < 6 < r2. Thus, g(m1) ≥ 0 if 6 ≤ m1 ≤ r2, and g(m1) < 0 if m1 > r2.
If k is even, then m1 ≤ k, D′ (Hn(a,m1,m2)) is maximum for fixed m2 only if
m1 = 4 for r2 ≥ k or m1 = 4, k for r2 < k, and by setting G3 = Hn(0, k,m2),
G4 = Hn(k − 4, 4,m2), and using similar arguments as above, we have

D′ (Hn(k − 4, 4,m2))−D′ (Hn(0, k,m2))

= 4[W (G4)−W (G3)] + 2[DG4
(u0)−DG3

(u0)] + [DG4
(u2)−DG4

(u)]

= 4

[

−
5

24
k3 +

1

4
(n+ 6)k2 −

1

6
(9n+ 25)k + 2n+ 6

]

+ 2

(

k2

4
−

3

2
k + 2

)

−(k − 4)(n− k + 3)

= n(k2 − 7k + 12)−
5

6
k3 +

15

2
k2 −

80

3
k + 40

≥ (k + 2)(k2 − 7k + 12)−
5

6
k3 +

15

2
k2 −

80

3
k + 40

=
k3

6
+

5

2
k2 −

86

3
k + 64 > 0,

implying that D′ (Hn(k − 4, 4,m2)) > D′ (Hn(0, k,m2)). Similarly, if k is odd,
then m1 ≤ k − 1, D′ (Hn(a,m1,m2)) is maximum for fixed m2 only if m1 = 4
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or m1 = k − 1, and thus D′(Hn(k − 4, 4,m2)) > D′(Hn(1, k − 1,m2)). Let
b = n+ 1−m1 −m2 − a. We conclude that, if m1 > 4 is even, then

D′ (Hn(a,m1,m2)) < D′ (Hn(a+m1 − 4, 4,m2)) = D′ (Hn(b,m2, 4)) .

If m1 > 3 is odd, then by similar arguments as above, we have

D′ (Hn(a,m1,m2)) < D′ (Hn(a+m1 − 3, 3,m2)) = D′ (Hn(b,m2, 3)) .

Thus, D′(Hn(a,m1,m2)) is maximum for fixed n only if m1,m2 = 3, 4. For
0 ≤ s ≤ n− 7, let t = n− 7− s. We may check that

D′(Hn(n− 5, 3, 3))−D′(Hn(s, 4, 4)) = 12st+ 16s+ 16t+ 2 > 0,

D′(Hn(n− 5, 3, 3))−D′(Hn(0, 3, 4)) = 5n− 34 > 0,

D′(Hn(n− 5, 3, 3))−D′(Hn(s+ 1, 3, 4)) = 12st+ 11s+ 17t+ 7 > 0,

D′(Hn(n− 5, 3, 3))−D′(Hn(s+ 1, 3, 3)) = 12st+ 12s+ 12t+ 12 > 0.

The result follows easily.

Theorem 2. Let G ∈ B2(n), where n ≥ 6. Then for n = 6, D′(G) ≤ 112 with
equality if and only if G = H6(0, 3, 4), and for n ≥ 7,

D′(G) ≤
2

3
n3 + n2 −

83

3
n+ 94

with equality if and only if G = Hn(n− 5, 3, 3).

Proof: Obviously, there are only three graphs in B2(6). By direct calculation,
the result follows easily for n = 6. In the following, suppose that n ≥ 7.

Suppose that G is a graph in B2(n) with the maximum degree distance. Let
Cm1

= u0u1 . . . um1−1u0 and Cm2
= v0v1 . . . vm2−1v0 be the two cycles of G with

u0 = v0. By Lemma 1 (i), we have G − E(Cm1
) ∪ E(Cm2

) consists of vertex–
disjoint paths, for which, by Lemma 3, at most three paths have length at least
one: a path Q with u0 as an end vertex, a path containing some vertex us in
Cm1

with s 6= 0, and a path containing some vertex vt in Cm2
with t 6= 0.

If there is such a path containing us with length a ≥ 1, then denote by u∗
s the

pendant vertex of G in this path. Otherwise, all vertices on Cm1
except u0 have

degree two and we set a = 0, us = u∗
s = u⌊

m1
2 ⌋. If there is such a path containing

vt with length at least one, then denote by b the length of this path. Otherwise,
all vertices on Cm2

except v0 have degree two and we set b = 0.
Suppose that there is such a path Q containing u0 with length at least one

in G. Let u be the neighbor of u0 outside the two cycles, and u∗ the pendant
vertex of G in Q. Suppose without loss of generality that a ≤ b. Let G1 =
G− {u0u}+ {u∗

su} ∈ B2(n). Let c = dG(u0, us) and k = dG(u
∗, u0).
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Let G∗ = G− {u0u}+ {usu}. Suppose first that a ≥ 1. We have

W (G1)−W (G) = [W (G1)−W (G∗)] + [W (G∗)−W (G)]

= ka(n− a− k − 1) + kc(b+m2 − 1− a).

Note also that

DG1
(us)−DG1

(u∗) = −(k + a)(n− k − a− 1),

DG(u
∗)−DG(u0) = k(n− k − 1),

DG(u
∗
s)−DG(us) = a(n− a− 1),

DG1
(u0)−DG(u0) = [DG1

(u0)−DG∗(u0)] + [DG∗(u0)−DG(u0)]

= ka+ kc = k(a+ c).

Then

D′(G1)−D′(G)

= 4[W (G1)−W (G)] + (3− 2)[DG1
(us)−DG(us)]

+(1− 2)[DG1
(u∗)−DG(u

∗)] + (4− 2)DG1
(u0)

−(5− 2)DG(u0)− (1− 2)DG(u
∗
s)

= 4[W (G1)−W (G)] + [DG1
(us)−DG1

(u∗)] + [DG(u
∗)−DG(u0)]

+[DG(u
∗
s)−DG(us)] + 2[DG1

(u0)−DG(u0)]

= 4kc

(

b+m2 − a−
1

2

)

+ 4ka(b+m1 +m2 − 1) > 0,

and thus, D′(G1) > D′(G). If a = 0, then

D′(G1)−D′(G)

= 4[W (G1)−W (G)] + (1− 2)[DG1
(u∗)−DG(u

∗)] + (4− 2)DG1
(u0)

−(5− 2)DG(u0) + (3− 2)DG1

(

u⌊m1
2 ⌋

)

= 4[W (G1)−W (G)] +
[

DG1

(

u⌊m1
2 ⌋

)

−DG1
(u∗)

]

+ [DG(u
∗)−DG(u0)]

+2[DG1
(u0)−DG(u0)]

= 4k
⌊m1

2

⌋

(

b+m2 −
1

2

)

> 0,

and thus, D′(G1) > D′(G). In either case, D′(G1) > D′(G), a contradiction.
Thus, there is no such path Q containing u0 in G, i.e., dG(u0) = 4.

Suppose that there is such a path containing us with length a ≥ 1 and
dG(u0, us) = c <

⌊

m1

2

⌋

. Let us1 be the neighbor of us outside Cm1
in G. For
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G2 = G− {usus1}+
{

u⌊
m1
2 ⌋us1

}

∈ B2(n),

D′(G2)−D′(G)

= 4 [W (G2)−W (G)] + (4− 2)[DG2
(u0)−DG(u0)]

+(1− 2) [DG2
(u∗

s)−DG(u
∗
s)]

+(3− 2)DG2

(

u⌊
m1
2 ⌋

)

− (3− 2)DG(us)

= 4 [W (G2)−W (G)] + 2[DG2
(u0)−DG(u0)]

+
[

DG2

(

u⌊
m1
2 ⌋

)

−DG2
(u∗

s)
]

+ [DG(u
∗
s)−DG(us)]

= 4 · a
(⌊m1

2

⌋

− c
)

(n− a−m1) + 2 · a
(⌊m1

2

⌋

− c
)

−a(n− a− 1) + a(n− a− 1)

= 2a
(⌊m1

2

⌋

− c
)

(2n− 2a− 2m1 + 1) > 0,

and then D′(G2) > D′(G), a contradiction. Thus, if there is such a path con-
taining us with length at least one, then dG(u0, us) =

⌊

m1

2

⌋

. Similarly, if there

is such a path containing vt with length at least one, then dG(u0, vt) =
⌊

m2

2

⌋

. It
follows that G = Hn(a,m1,m2), and by Lemma 5, we have G = Hn(n− 5, 3, 3).

5 Conclusions

It is easily checked that D′ (G6(3, 3)) −D′(H6(0, 3, 4)) = 10 > 0, and for n ≥ 7,
D′ (Gn(3, 3)) − D′ (Hn(n− 5, 3, 3)) = 14n − 70 > 0. By Theorems 1 and 2, we
have the following conclusions:
(i) for n ≥ 6, Gn(3, 3) is the unique graph in B1(n) with the maximum degree
distance 2

3n
3 + n2 − 41

3 n+ 24;
(ii) for n = 6, H6(0, 3, 4) is the unique graph in B2(6) with the maximum degree
distance 112, and for n ≥ 7, Hn(n− 5, 3, 3) is the unique graph in B2(n) with the
maximum degree distance 2

3n
3 + n2 − 83

3 n+ 94;
(iii) for n ≥ 6, Gn(3, 3) is the unique graph in B1(n) ∪ B2(n) with the maximum
degree distance 2

3n
3 + n2 − 41

3 n+ 24.
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[1] O. Bucicovschi, S. M. Cioabǎ, The minimum degree distance of graphs
of given order and size, Discrete Appl. Math. 156 (2008) 3518–3521.

[2] J. Devillers, A. T. Balaban (Eds.), Topological Indices and Related
Descriptors in QSAR and QSPR, Gordon and Breach, Amsterdam, 1999.

[3] A. A. Dobrynin, R. Entringer, I. Gutman, Wiener index of trees:
Theory and applications, Acta Appl. Math. 66 (2001) 211–249.

[4] A. A. Dobrynin, I. Gutman, S. Klavžar, P. Žigert, Wiener index of
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