
Bull. Math. Soc. Sci. Math. Roumanie
Tome 54(102) No. 2, 2011, 185–191

Comparison of Different Bounding Sets of Polynomial

Functions Defined in a Given Domain

by
Gun Srijuntongsiri

Abstract

Subdivision and subdivision/iterative hybrid methods for solving a sys-
tem of polynomial equations require the ability to compute the bound-
ing set of a polynomial function for a given domain. There are different
methods to compute the bounding sets and each method produces different
bounding sets. Since the sizes of these bounding sets directly affect the
running time of subdivision and hybrid methods, selecting the appropriate
method for computing bounding sets is important. This article investigates
three methods for computing bounding sets and compares them experi-
mentally to see which one produces the smallest sets. The results show
that reparametrization followed by constructing convex hulls of the con-
trol points of the resulting polynomials in Bernstein basis almost always
produces smaller bounding sets than the other two methods. Therefore,
using this method to compute bounding sets would result in more efficient
subdivision or hybrid methods for solving polynomial systems.

Key Words: Bounding sets; Subdivision; Polynomial equations;
Intersection problems.
2010 Mathematics Subject Classification: Primary 68U07; Se-
condary 65D17.

1 Introduction

Given a polynomial function f : Rn → R
N and a domain D, we are interested in

an efficiently-computable convex bounding set V containing f(x) for all x ∈ D.
The bounding set V is often used in subdivision methods for finding all zeros of f
in a given domain. Therefore, it should be much more efficient to compute V than
solving f itself. A common special case of finding all zeros of f in a given domain
is locating all intersections between two or more geometric objects [20, 16, 10, 14].
The intersection problems have many applications in computer-aided geometric
design, computational geometry, geometric modeling and design, robotics, and



186 Gun Srijuntongsiri

other fields [9, 13, 6, 15]. There are also hybrid methods that combine subdivision
and iterative methods proposed for intersection problems [19, 11, 17].

The key idea of subdivision methods is to compute a bounding set that is easy
to check if it contains the origin. If it does not, then there are no zeros of f in the
domain. If it does, the methods subdivide the domain and check if the bounding
set of each subdomains contains the origin recursively. When a subdomain is
small enough, it is taken as an approximation of a zero. Hybrid methods operate
similarly but instead invoke an iterative method to locate a zero once it is certain
that the iterative method converges. We note that hybrid methods are applicable
only to some combinations of N and n.

For both pure subdivision and hybrid methods, their efficiencies depend largely
on the size of the computed bounding sets. If bounding sets are much larger than
the bounded ranges of a function for a given domain, the bounding sets may
contain the origin although there is no zero in the domain. Consequently, the
methods perform more subdivisions than they should need. Since there are more
than one way to define and compute bounding sets, selecting the appropriate
definition becomes vital to the efficiency of the subdivision and hybrid methods.

This article considers three methods to compute bounding sets. First is by
applying interval arithmetic to the polynomial represented in Bernstein basis.
Second is by rewriting the polynomial in monomial basis and applying interval
arithmetic to the rewritten expression. Third is by reparametrization followed by
computation of a convex hull. The details of these three methods are described
in Section 2, 3 and 4. We compare the sizes of the bounding sets computed by
the three methods by experimenting on various polynomials to see which method
produces the smallest bounding sets.

We now define the problem under consideration more precisely by specifying
a representation for the polynomial system. Let Zi,m(t) denote the Bernstein

polynomials

Zi,m(t) =
m!

i!(m− i)!
(1− t)m−iti.

Consider a system of N polynomial equations in n variables

f(x) ≡

m1∑

i1=0

· · ·

mn∑

in+1=0

bi1,··· ,inZi1,m1
(x1) · · ·Zin,mn

(xn) = 0, (1)

where bi1,··· ,in ∈ R
N (ij = 0, 1, . . . ,mj) denote the coefficients, also known as

the control points. Note that f is a function that maps R
n to R

N . For a given
hyperrectangle D = [l1, h1] × [l2, h2] × · · · × [ln, hn], where lj ≤ hj , we seek a
bounding set V satisfying

V ⊇ {f(x) : x ∈ D} .

We choose to represent the polynomial system in the Bernstein basis because it
is known to have better numerical stability than the monomial basis [3, 5, 4] and
is widely used in practice due to its geometric properties.



Bounding Sets of Polynomial Functions 187

As mentioned above, many classes of problems of finding intersections be-
tween two parametric geometric objects can reduce to solving (1). For examples,
line/surface intersection reduces to the case where N = n = 2, curve/curve in-
tersection corresponds with N = 3, n = 2, curve/surface intersection corresponds
with N = n = 3, and surface/surface intersection corresponds with N = 3, n = 4.

We proceed with the description of the three methods for computing bounding
sets that are considered in this article.

2 Computing Bounding Sets by Interval Arithmetic on Bernstein Ba-

sis Representation

An interval [a, b] is a set of real numbers defined as follows [12]:

[a, b] = {x : a ≤ x ≤ b}.

The width of an interval [a, b] is b− a. Interval arithmetic operations are defined
by

[a, b] ◦ [c, d] = {x ◦ y : x ∈ [a, b] ∧ y ∈ [c, d]}, (2)

where ◦ represents an arithmetic operation. Three basic interval arithmetic
operations—addition, subtraction, and multiplication—can be rewritten equiv-
alently as

[a, b] + [c, d] = [a+ c, b+ d],

[a, b]− [c, d] = [a− d, b− c],

[a, b] · [c, d] = [min(ac, ad, bc, bd),max(ac, ad, bc, bd)],

which give simpler ways to perform interval arithmetic operations than (2). To
compute a bounding set V of f for a given domain D = [l1, h1] × · · · × [ln, hn],
replace each occurrence of xi in (1) with interval [li, hi] and use interval arithmetic
operations instead in the evaluation of (1) (usually by the de Casteljau algorithm

[9, 15]). The correctness of interval arithmetic [8] ensures that the resulting
interval is indeed a bounding set of f for D.

3 Computing Bounding Sets by Interval Arithmetic on Monomial

Basis Representation

Alternatively, we may rewrite (1) in the monomial basis

f(x) =

m1∑

i1=0

· · ·

mn∑

in+1=0

ci1,··· ,inx
i1
1
· · ·xin

n = 0, (3)

where ci1,··· ,in ∈ R
N (ij = 0, 1, . . . ,mj), and perform interval arithmetic on the

rewritten expression (3). The appeal for the monomial basis is a direct interval
arithmetic evaluation of a polynomial represented in the monomial basis is known



188 Gun Srijuntongsiri

to yield a bounding set with an error linear in the width of the interval of the
variables [1]. On the other hand, we do not know of such an error bound for
polynomials represented in the Bernstein basis. In fact, it is possible to rewrite a
polynomial further to achieve an error quadratic in the width of the interval [1].
We do not investigate the quadratic-error method in this article.

Finally, recall that Bernstein representation of polynomials is known to be
numerically more stable than the monomial representation hence the conversion
to the monomial basis may not be desirable from numerical viewpoint.

4 Computing Bounding Sets by Reparametrization and Computing

Convex Hulls

Another method to compute bounding sets follows the well-known property of
the Bernstein representation of a polynomial that any point f(x), where x ∈
[0, 1]n, lies inside the convex hull of the control points of f [2]. For a given

hyperrectangle D, let f̂D be the Bernstein polynomial that reparametrizes with
[0, 1]n the function defined by f over D. In other words, f̂D(q) ≡ f(λ(q)), where
λ(q) is a composition of a dilation and translation (uniquely determined) such
that λ : [0, 1]n → D is bijective. Then, the convex hull of the control points of

f̂D is the bounding set of f over D.
There are at least two efficient ways to perform the reparametrization. One

method is by applying the de Casteljau algorithm twice; once to reparametrize the
right endpoints of the domain with 1 and another to reparametrize the left end-
points with 0. Alternatively, the reparametrization can be efficiently performed
by a generalization of Horner’s rule (An example of this reparametrization method
for bivariate Bernstein polynomials is in [18]).

5 Comparison of Bounding Sets Computed by Different Methods

In this section, we show the experimental results comparing the sizes of bounding
sets computed by the three methods: (i) by applying interval arithmetic directly
to (1), (ii) by rewriting (1) in monomial basis and then applying interval arith-
metic to the rewritten expression (3), and (iii) by reparametrization to obtain the

control points of f̂D and then computing the convex hull of these control points.
For Method (i), (1) is evaluated by the de Casteljau algorithm. For Method
(ii),(3) is evaluated using Horner’s rule [7].

We experiment on the case where N = n = 1 with polynomials generated
by different methods. Table 1 shows the results of the experiments for the cases
where the widths of D are between .4 and 1. Table 2 shows the results for the
cases where the widths of D are smaller than .1. The polynomials are generated
as follows. The “low-deg. rand.” polynomials have normally distributed random
control points with degrees between 1 and 5, inclusive. The “high-deg. rand.”
ones have normally distributed random control points with degrees between 10
and 20, inclusive. The “low-period sine” ones are polynomial interpolations of



Bounding Sets of Polynomial Functions 189

Table 1: The numbers of test polynomials that each method yields the smallest
bounding sets when the widths of D are between .4 and 1. One thousand of each
polynomial types are generated and tested.

Num. of poly. Num. of poly. Num. of poly.
that interval that interval that reparam.

Polynomial type arithmetic in arithmetic in method yields
Bernstein basis monomial basis smallest V
method yields method yields
smallest V smallest V

Low-deg. rand. 8 54 938
High-deg. rand. 0 0 1000
Low-period sine 0 0 1000
High-period sine 0 0 1000
Low-var. rand. 11 111 878

sin(ax + b) at five to sixteen evenly-spaced points between -1 and 1, inclusive,
where a and b are normally distributed random numbers. The “high-period
sine” ones are generated in the same way as the “low-period sine” ones but with
the function sin(20ax + b) instead. The “low-var. rand.” ones have degrees
between 1 and 3, inclusive, with control points normally distributed with very
small variance. The experimental results show that method (iii) consistently
produces the smallest bounding sets among the three methods for all five types
of polynomials and for both small and large D’s. Another observation is that
Method (iii) performs even better than the other twos when the polynomials have
many “wiggles” such as those arising from interpolation of the sine function.

6 Conclusion and Future Directions

We compare three methods for computing bounding sets of polynomial functions
over a given domain. It is shown experimentally that reparametrization with
[0, 1]n followed by constructing convex hulls of the resulting control points usually
yields smaller bounding sets than the other two methods. We conclude the article
by posing the following related questions that are not considered here:

• Formal proofs. Can it be shown analytically that the convex hull methods
always produce the smallest bounding sets among the three methods?

• Better methods to compute bounding sets. Are there other methods
to compute bounding sets that are not considered here but are more efficient
and/or produce smaller bounding sets? For example, Alefeld and Rokne
show that it is possible to rewrite polynomials in such a way that interval
arithmetic yields quadratic error [1]. Does this method produce smaller
bounding sets than the other methods?



190 Gun Srijuntongsiri

Table 2: The numbers of test polynomials that each method yields the smallest
bounding sets when the widths of D are smaller than .1. One thousand of each
polynomial types are generated and tested.

Num. of poly. Num. of poly. Num. of poly.
that interval that interval that reparam.

Polynomial type arithmetic in arithmetic in method yields
Bernstein basis monomial basis smallest V
method yields method yields
smallest V smallest V

Low-deg. rand. 19 73 908
High-deg. rand. 0 0 1000
Low-period sine 0 0 1000
High-period sine 0 0 1000
Low-var. rand. 32 121 847

References

[1] G. Alefeld and J. G. Rokne. On the evaluation of rational functions in
interval arithmetic. SIAM Journal on Numerical Analysis, 18(5):862–870,
1981.

[2] G. Farin. Curves and Surfaces for CAGD: A Practical Guide. Academic
Press, 5 edition, 2002.

[3] R. T. Farouki. On the stability of transformations between power and
Bernstein polynomial forms. Computer Aided Geometric Design, 8(1):29–
36, 1991.

[4] R. T. Farouki and T. N. T. Goodman. On the optimal stability of the
bernstein basis. Mathematics of Computation, 65(216):1553–1566, October
1996.

[5] R. T. Farouki and V. T. Rajan. On the numerical condition of poly-
nomials in Berstein form. Computer Aided Geometric Design, 4(3):191–216,
1987.

[6] J. Gallier. Curves and Surfaces in Geometric Modeling: Theory and Al-

gorithms. Morgan Kaufmann, 1999.

[7] M. T. Heath. Scientific Computing: An Introductory Survey. McGraw-Hill,
2005.

[8] T. Hickey, Q. Ju, and M. H. Van Emden. Interval arithmetic: From
principles to implementation. J. ACM, 48(5):1038–1068, 2001.



Bounding Sets of Polynomial Functions 191

[9] J. Hoschek and D. Lasser. Fundamentals of Computer Aided Geometric

Design. A. K. Peters, Wellesley, MA, 1993. Translated by L. L. Schumaker.

[10] E. G. Houghton, R. F. Emnett, J. D. Factor, and C. L. Sabhar-

wal. Implementation of a divide-and-conquer method for intersection of
parametric surfaces. Computer Aided Geometric Design, 2(1–3):173–183,
1985.

[11] P. Koparkar. Surface intersection by switching from recursive subdivision
to iterative refinement. The Visual Computer, 8:47–63, 1991.

[12] R. E. Moore. Interval Analysis. Prentice Hall, 1966.

[13] M. E. Mortenson. Geometric Modeling. John Wiley and Sons, New York,
1985.

[14] N. M. Patrikalakis. Surface-to-surface intersections. IEEE Computer

Graphics and Applications, 13(1):89–95, 1993.

[15] N. M. Patrikalakis and T. Maekawa. Shape Interrogation for Com-

puter Aided Design and Manufacturing. Springer-Verlag Berlin Heidelberg,
Germany, 2002.

[16] Steven M. Rubin and Turner Whitted. A 3-dimensional represen-
tation for fast rendering of complex scenes. SIGGRAPH Comput. Graph.,
14(3):110–116, 1980.

[17] G. Srijuntongsiri and S. A. Vavasis. A condition number analysis of a
line-surface intersection algorithm. SIAM Journal on Scientific Computing,
30(2):1064–1081, 2007.

[18] G. Srijuntongsiri and S. A. Vavasis. Properties of polynomial bases
used in a line-surface intersection algorithm. In Parallel Processing and

Applied Mathematics, 2009.

[19] D. L. Toth. On ray tracing parametric surfaces. SIGGRAPH Comput.

Graph., 19(3):171–179, 1985.

[20] T. Whitted. An improved illumination model for shaded display. Commu-

nications of the ACM, 23(6):343–349, 1980.

Received: 12.07.2010,
Accepted: 02.01.2011.

Sirindhorn International Institute of Technology,
Thammasat University, Thailand

E-mail: gun@siit.tu.ac.th


