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Abstract
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1 Introduction

This paper is concerned with the following differential inclusion

x′(t) ∈ A(t)x(t) +

∫ t

0

K(t, s)F (s, x(s), H(s, x(s)))ds, x(0) = x0, (1.1)

where F : [0, T ]×X ×X → P(X), H : [0, T ]×X → P(X) are set-valued maps,
X is a separable Banach space, A(t) is the infinitesimal generator of a strongly
continuous evolution system of a two parameter family {G(t, τ), t ≥ 0, τ ≥ 0}
of bounded linear operators of X into X, D = {(t, s) ∈ [0, T ] × [0, T ]; t ≥ s},
K(., .) : D → R is continuous and x0 ∈ X.

When F does not depend on the last variable (1.1) reduces to

x′(t) ∈ A(t)x(t) +

∫ t

0

K(t, s)F (s, x(s))ds, x(0) = x0, (1.2)

Existence results and qualitative properties of the mild solutions of problem
(1.2) may be found in [1-7] etc. In all these papers the set-valued map F is
assumed to be at least closed-valued. Such an assumption is quite natural in order
to obtain good properties of the solution set, but it is interesting to investigate
the problem when the right-hand side of the multivalued equation may have
nonclosed values.
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Following the approach in [13] we consider problem (1.1), where F and H

are closed-valued multifunctions Lipschitzian with respect to the second variable
and F is contractive in the third variable. Obviously, the right-hand side of the
differential inclusion in (1.1) is in general neither convex nor closed. We prove
the arcwise connectedness of the solution set to (1.1). The main tool is a result
([11,12]) concerning the arcwise connectedness of the fixed point set of a class of
nonconvex nonclosed set-valued contractions. We note that this idea was already
used for similar results concerning other classes of differential inclusions ([8-10]).

The paper is organized as follows: in Section 2 we recall some preliminary
results that we use in the sequel and in Section 3 we prove our main result.

2 Preliminaries

Let Z be a metric space with the distance dZ and let 2Z be the family of all
nonempty closed subsets of Z. For a ∈ Z and A,B ∈ 2Z set dZ(a,B) =
infb∈B dZ(a, b) and d∗Z(A,B) = supa∈A dZ(a,B). Denote by DZ the Pompeiu-
Hausdorff generalized metric on 2Z defined by

DZ(A,B) = max{d∗Z(A,B), d∗Z(B,A)}, A,B ∈ 2Z .

In what follows, when the product Z = Z1 × Z2 of metric spaces Zi, i = 1, 2,
is considered, it is assumed that Z is equipped with the distance
dZ((z1, z2), (z

′
1, z

′
2)) =

∑2
i=1 dZi

(zi, z
′
i).

Let X be a nonempty set and let F : X → 2Z be a set-valued map from X

to Z. The range of F is the set F (X) = ∪x∈XF (x). Let (X,F) be a measurable
space. The multifunction F : X → 2Z is called measurable if F−1(Ω) ∈ F for
any open set Ω ⊂ Z, where F−1(Ω) = {x ∈ X;F (x) ∩ Ω 6= ∅}. Let (X, dX) be
a metric space. The multifunction F is called Hausdorff continuous if for any
x0 ∈ X and every ǫ > 0 there exists δ > 0 such that x ∈ X, dX(x, x0) < δ implies
DZ(F (x), F (x0)) < ǫ.

Let (P,F , µ) be a finite, positive, nonatomic measure space and let (X, |.|X)
be a Banach space. We denote by L1(P,X) the Banach space of all (equivalence
classes of) Bochner integrable functions u : P → X endowed with the norm

|u|L1(P,X) =

∫
P

|u(t)|Xdµ

A nonempty set K ⊂ L1(P,X) is called decomposable if, for every u, v ∈ K

and every A ∈ F , one has

χA.u+ χP\A.v ∈ K

where χB , B ∈ F indicates the characteristic function of B.
A metric space Z is called an absolute retract if, for any metric space X and

any nonempty closed set X0 ⊂ X, every continuous function g : X0 → Z has
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a continuous extension g : X → Z over X. It is obvious that every continuous
image of an absolute retract is an arcwise connected space.

In what follows we recall some preliminary results that are the main tools in
the proof of our result.

Let (P,F , µ) be a finite, positive, nonatomic measure space, S a separable
Banach space and let (X, |.|X) be a real Banach space. To simplify the notation
we write E in place of L1(P,X).

Lemma 2.1 ([12]) Assume that φ : S×E → 2E and ψ : S×E×E → 2E are
Hausdorff continuous multifunctions with nonempty, closed, decomposable values,
satisfying the following conditions

a) There exists L ∈ [0, 1) such that, for every s ∈ S and every u, u′ ∈ E,

DE(φ(s, u), φ(s, u
′)) ≤ L|u− u′|E .

b) There exists M ∈ [0, 1) such that L+M < 1 and for every s ∈ S and every
(u, v), (u′, v′) ∈ E × E,

DE(ψ(s, u, v), ψ(s, u
′, v′)) ≤M(|u− u′|E + |v − v′|E).

Set Fix(Γ(s, .)) = {u ∈ E;u ∈ Γ(s, u)}, where Γ(s, u) = ψ(s, u, φ(s, u)),
(s, u) ∈ S × E. Then

1) For every s ∈ S the set Fix(Γ(s, .)) is nonempty and arcwise connected.
2) For any si ∈ S, and any ui ∈ Fix(Γ(s, .)), i = 1, ..., p there exists a con-

tinuous function γ : S → E such that γ(s) ∈ Fix(Γ(s, .)) for all s ∈ S and
γ(si) = ui, i = 1, ..., p.

Lemma 2.2 ([13]) Let U : P → 2X and V : P ×X → 2X be two nonempty
closed-valued multifunctions satisfying the following conditions

a) U is measurable and there exists r ∈ L1(P ) such that DX(U(t), {0}) ≤ r(t)
for almost all t ∈ P .

b) The multifunction t→ V (t, x) is measurable for every x ∈ X.
c) The multifunction x→ V (t, x) is Hausdorff continuous for all t ∈ P .
Let v : P → X be a measurable selection from t→ V (t, U(t)).
Then there exists a selection u ∈ L1(P,X) such that v(t) ∈ V (t, u(t)), t ∈ P .

In the sequel J = [0, T ], T > 0 and {A(t); t ∈ J} is the infinitesimal generator
of the strongly continuous evolution system G(t, s), 0 ≤ s ≤ t ≤ T .

Recall that a family of bounded linear operators G(t, s) on X, 0 ≤ s ≤ t ≤ T

depending on two parameters is said to be a strongly continuous evolution system
if there are fulfilled the following conditions: G(s, s) = I, G(t, r)G(r, s) = G(t, s)
for 0 ≤ s ≤ r ≤ t ≤ T and (t, s) → G(t, s) is strongly continuous for 0 ≤ s ≤ t ≤
T , i.e, limt→s,t>sG(t, s)x = x for all x ∈ X.

Consider the evolution inclusion

x′(t) ∈ A(t)x(t) +

∫ t

0

K(t, s)F (s, x(s))ds, x(0) = x0, (2.1)
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where F : J × X → P(X) is a set-valued map, X is a separable Banach space,
A(t) is the infinitesimal generator of a strongly continuous evolution system of
a two parameter family {G(t, τ), t ≥ 0, τ ≥ 0} of bounded linear operators of X
into X, D = {(t, s) ∈ J × J ; t ≥ s}, K(., .) : D → R is continuous and x0 ∈ X.

A continuous mapping x(.) ∈ C(J,X) is called a mild solution of problem
(2.1) if there exists a (Bochner) integrable function f(.) ∈ L1(J,X) such that

f(t) ∈ F (t, x(t)) a.e. (J) (2.2)

x(t) = G(t, 0)x0 +

∫ t

0

G(t, τ)

∫ τ

0

K(τ, s)f(s)dsdτ ∀t ∈ J. (2.3)

In this case we shall call (x(.), f(.)) a trajectory-selection pair of (2.1).
We note that condition (2.3) can be rewritten as

x(t) = G(t, 0)x0 +

∫ t

0

U(t, s)f(s)ds ∀t ∈ J, (2.4)

where U(t, s) =
∫ t

s
G(t, τ)K(τ, s)dτ .

DenoteM := supt,s∈J |G(t, s)| andM0 := sup(t,s)∈D |K(t, s)| and remark that
|U(t, s)| ≤MM0(t− s) ≤MM0T .

We shall use the following notations for the solution sets of problem (1.1).

S(x0) = {x(.); x(.) is a mild solution of (1.1)}. (2.5)

In order to study problem (1.1) we introduce the following hypothesis.

Hypothesis 2.3 F : J ×X ×X → P(X) and H : J ×X → P(X) are two
set-valued maps with nonempty closed values, satisfying

i) The set-valued maps t → F (t, u, v) and t → H(t, u) are measurable for all
u, v ∈ X.

ii) There exist l(.) ∈ L1(J,R) such that, for every u, u′ ∈ X,

D(H(t, u), H(t, u′)) ≤ l(t)|u− u′| a.e. (J).

iii) There exist m(.) ∈ L1(J,R) and θ ∈ [0, 1) such that, for every u, v, u′, v′ ∈
X,

D(F (t, u, v), F (t, u′, v′)) ≤ m(t)|u− u′|+ θ|v − v′| a.e. (J).

iv) There exist f, g ∈ L1(J,R) such that

d(0, F (t, 0, 0)) ≤ f(t), d(0, H(t, 0)) ≤ g(t) a.e. (J).

In what follows N(t) = max{l(t),m(t)}, t ∈ J and N∗(t) =
∫ t

0
N(s)ds.

Given α ∈ R we denote by L1 the Banach space of all (equivalence classes of)
Lebesgue measurable functions σ : J → X endowed with the norm

|σ|1 =

∫ T

0

e−αN∗(t)|σ(t)|dt.
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3 The main result

Even if the multifunction from the right-hand side of (1.1) has, in general, non-
closed nonconvex values, the solution set S(x0) defined in (2.5) has some mean-
ingful properties, stated in theorems below.

Theorem 3.1 Consider {A(t); t ∈ J} the infinitesimal generator of the strongly
continuous evolution system G(t, s), 0 ≤ s ≤ t ≤ T , assume that F and H satisfy
Hypothesis 2.3 and let α > 2MM0T

1−θ
. Then

1) For every x0 ∈ X, the solution set S(x0) of (1.1) is nonempty and arcwise
connected in the space C(J,X).

2) For any ξi ∈ X and any xi ∈ S(ξi), i = 1, ..., p, there exists a continuous
function s : X → C(J,X) such that s(ξ) ∈ S(ξ) for any ξ ∈ X and s(ξi) = xi, i =
1, ..., p.

3) The set S = ∪ξ∈XS(ξ) is arcwise connected in C(J,X).

Proof. 1) For ξ ∈ X and v ∈ L1, set

xξ(t) = G(t)ξ +

∫ t

0

U(t, s)v(s)ds, t ∈ J, (3.1)

where U(t, s) =
∫ t

s
G(t, τ)K(τ, s)dτ and consider P : X → C(J,X) defined by

P (ξ)(t) = G(t, 0)ξ.

We prove that the multifunctions φ : X×L1 → 2L
1

and ψ : X×L1×L1 → 2L
1

given by
φ(ξ, u) = {v ∈ L1; v(t) ∈ H(t, xξ(t)) a.e.(J)},

ψ(ξ, u, v) = {w ∈ L1; w(t) ∈ F (t, xξ(t), v(t)) a.e.(J)},

ξ ∈ X, u, v ∈ L1 satisfy the hypotheses of Lemma 2.1.
Since xξ(.) is measurable and H satisfies Hypothesis 2.3 i) and ii), the mul-

tifunction t → H(t, xξ(t)) is measurable and nonempty closed-valued, it has a
measurable selection. Therefore due to Hypothesis 2.3 iv), the set φ(ξ, u) is
nonempty. The fact that the set φ(ξ, u) is closed and decomposable follows by
a simple computation. In the same way we obtain that ψ(ξ, u, v) is a nonempty
closed decomposable set.

Pick (ξ, u), (ξ1, u1) ∈ X × L1 and choose v ∈ φ(ξ, u). For each ε > 0 there
exists v1 ∈ φ(ξ1, u1) such that, for every t ∈ J , one has

|v(t)− v1(t)| ≤ D(H(t, xξ(t)), H(t, xξ1(t))) + ε ≤

l(t)[M |ξ − ξ1|+MM0T

∫ t

0

|u(s)− u1(s)|ds] + ε.

Hence

|v − v1|1 ≤M |ξ − ξ1|

∫ T

0

e−αN∗(t)l(t)dt+MM0T

∫ T

0

e−αN∗(t)l(t)(

∫ t

0

|u(s)
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−u1(s)|ds)dt+ εT ≤
M

α
|ξ − ξ1|+

MM0T

α
|u− u1|1 + εT

for any ε > 0.
This implies

dL1(v, φ(ξ1, u1)) ≤
M

α
|ξ − ξ1|+

MM0T

α
|u− u1|1

for all v ∈ φ(ξ, u). Therefore,

d∗L1(φ(ξ, u), φ(ξ1, u1)) ≤
M

α
|ξ − ξ1|+

MM0T

α
|u− u1|1.

Consequently,

DL1(φ(ξ, u), φ(ξ1, u1)) ≤
M

α
|ξ − ξ1|+

MM0T

α
|u− u1|1.

which shows that φ is Hausdorff continuous and satisfies the assumptions of
Lemma 2.1.

Pick (ξ, u, v), (ξ1, u1, v1) ∈ X × L1 × L1 and choose w ∈ ψ(ξ, u, v). Then, as
before, for each ε > 0 there exists w1 ∈ ψ(ξ1, u1, v1) such that for every t ∈ J

|w(t)− w1(t)| ≤ D(F (t, xξ(t), v(t)), F (t, xξ1(t), v1(t))) + ε ≤

m(t)[M |ξ − ξ1|+MMOT

∫ t

0

|u(s)− u1(s)|ds] + θ|v(t)− v1(t)|+ ε.

Hence

|w − w1|1 ≤
M

α
|ξ − ξ1|+

MM0T

α
|u− u1|1 + θ|v − v1|1 + εT

≤
M

α
|ξ − ξ1|+ (

MM0T

α
+ θ)(|u− u1|1 + |v − v1|1) + εT

≤
M

α
|ξ − ξ1|+ (

MM0T

α
+ θ)dL1×L1((u, v), (u1, v1)) + εT.

As above, we deduce that

DL1(ψ(ξ, u, v), ψ(ξ1, u1, v1)) ≤
M
α
|ξ − ξ1|+ (MM0T

α
+ θ)dL1×L1((u, v), (u1, v1)).

namely, the multifunction ψ is Hausdorff continuous and satisfies the hypothesis
of Lemma 2.1.

Define Γ(ξ, u) = ψ(ξ, u, φ(ξ, u)), (ξ, u) ∈ X × L1. According to Lemma 2.1,
the set Fix(Γ(ξ, .)) = {u ∈ L1;u ∈ Γ(ξ, u)} is nonempty and arcwise connected
in L1(J,X). Moreover, for fixed ξi ∈ X and ui ∈ Fix(Γ(ξi, .)), i = 1, ..., p, there
exists a continuous function γ : X → L1 such that

γ(ξ) ∈ Fix(Γ(ξ, .)), ∀ξ ∈ X, (3.2)
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γ(ξi) = ui, i = 1, ..., p. (3.3)

We shall prove that

Fix(Γ(ξ, .)) = {u ∈ L1; u(t) ∈ F (t, xξ(t), H(t, xξ(t))) a.e. (J)}. (3.4)

Denote by A(ξ) the right-hand side of (3.4). If u ∈ Fix(Γ(ξ, .)) then there is
v ∈ φ(ξ, v) such that u ∈ ψ(ξ, u, v). Therefore, v(t) ∈ H(t, xξ(t)) and

u(t) ∈ F (t, xξ(t), v(t)) ⊂ F (t, xξ(t), H(t, xξ(t))) a.e. (J),

so that Fix(Γ(ξ, .)) ⊂ A(ξ).
Let now u ∈ A(ξ). By Lemma 2.2, there exists a selection v ∈ L1 of the

multifunction t→ H(t, xξ(t)) satisfying

u(t) ∈ F (t, xξ(t), v(t)) a.e. (J).

Hence, v ∈ φ(ξ, v), u ∈ ψ(ξ, u, v) and thus u ∈ Γ(ξ, u), which completes the proof
of (3.4).

We next note that the function W : L1 → C(J,X),

W (v)(t) :=

∫ t

0

U(t, s)v(s)ds

is continuous and one has

S(ξ) = P (ξ) +W (Fix(Γ(ξ, .))), ξ ∈ X. (3.5)

Since Fix(Γ(ξ, .)) is nonempty and arcwise connected in L1(J,X), the set
S(ξ) has the same properties in C(J,X).

2) Let ξi ∈ X and let xi ∈ S(ξi), i = 1, ..., p be fixed. By (3.5) there exists
vi ∈ Fix(Γ(ξi, .)) such that

xi = P (ξi) +W (vi), i = 1, ..., p.

If γ : X → L1 is a continuous function satisfying (3.2) and (3.3) we define, for
every ξ ∈ X,

s(ξ) = P (ξ) +W (γ(ξ)).

Obviously, the function s : X → C(J,X) is continuous, s(ξ) ∈ S(ξ) for all ξ ∈ X

and
s(ξi) = P (ξi) +W (γ(ξi)) = P (ξi) +W (vi) = xi, i = 1, ..., p.

3) Let x1, x2 ∈ S = ∪ξ∈XS(ξ) and choose ξi ∈ X, i = 1, 2 such that xi ∈ S(ξi),
i = 1, 2. From the conclusion of 2) we deduce the existence of a continuous
function s : X → C(J,X) satisfying s(ξi) = xi, i = 1, 2 and s(ξ) ∈ S(ξ), ξ ∈ X.
Let h : [0, 1] → X be a continuous mapping such that h(0) = ξ1 and h(1) = ξ2.
Then the function s ◦ h : [0, 1] → C(J,X) is continuous and verifies

s ◦ h(0) = x1, s ◦ h(1) = x2, s ◦ h(τ) ∈ S(h(τ)) ⊂ S, τ ∈ [0, 1].
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Remark 3.2 If A(t) ≡ A and A is the infinitesimal generator of a strongly
continuous semigroup of bounded linear operators {G(t); t ≥ 0} from X to X
then problem (1.1) reduces to the problem

x′(t) ∈ Ax(t) +

∫ t

0

K(t, s)F (s, x(s), H(s, x(s)))ds, x(0) = x0. (3.6)

Qualitative properties of the solution set of problem (3.6) may be found in [1-7,11]
etc.

Obviously, a similar result to the one in Theorem 3.1 may be obtained for
problem (3.6).
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