Bull. Math. Soc. Sci. Math. Roumanie Tome 53(101) No. 3, 2010, 293–301

On the \mathbb{C}_p -Banach algebra of the *r*-Lipschitz functions by MARIAN VÂJÂITU

Dedicated to the memory of Laurențiu Panaitopol (1940-2008) on the occasion of his 70th anniversary

Abstract

Given a prime number p, we study the \mathbb{C}_p -Banach algebra of the r-Lipschitz functions defined on compact subsets of \mathbb{C}_p by introducing a new seminorm on this space. Also, we give an estimation of the integral of a r-Lipschitz function with respect to a s-distribution and then we obtain a analogous of Hölder's inequality.

Key Words: Lipschitz functions, local fields, distributions. 2000 Mathematics Subject Classification: Primary 11S99; Secondary 11S80.

1 Introduction

Let p be a prime number, \mathbb{Z}_p the ring of p-adic integers, \mathbb{Q}_p the field of p-adic numbers and let $|\cdot|$ be the usual p-adic module. This module can be uniquely extended to a module (denoted also by $|\cdot|$) on $\overline{\mathbb{Q}}_p$, a fixed algebraic closure of \mathbb{Q}_p . Further, denote by \mathbb{C}_p , which is called the Tate field, the completion of $(\overline{\mathbb{Q}}_p, |\cdot|)$, and we use the same notation $|\cdot|$ for the unique p-adic module that extends the p-adic module $|\cdot|$ on $\overline{\mathbb{Q}}_p$. Denote $G = Gal(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)$, which is the absolute Galois group, and topologise it with the so called Krull topology. Then G acts continuously on $\overline{\mathbb{Q}}_p$ and, it is easy to see that G is canonically isomorphic with the group $Gal_{cont}(\mathbb{C}_p/\mathbb{Q}_p)$ of all continuous automorphisms of \mathbb{C}_p over \mathbb{Q}_p . Let O(T) be the orbit of an element T of \mathbb{C}_p with respect to the Galois group G.

The paper consists of two sections. The first section contains some basic results and preliminaries. In the second section we study the \mathbb{C}_p -Banach algebra of the *r*-Lipschitz functions defined on *G*-equivariant compacts of \mathbb{C}_p by introducing a new seminorm on this space, see Proposition 1. Here, by *G*-equivariant compacts of \mathbb{C}_p we mean compacts of \mathbb{C}_p which are equivariant with respect to the absolute Galois group G, like finite union of orbits of elements of \mathbb{C}_p . We have a few estimations for p-adic integrals, see Theorem 2 and Theorem 3 where we obtain a analogous of Hölder's inequality. An estimation for the norm of a Lipschitz function is also given in Theorem 4 for compacts like orbits of elements of \mathbb{C}_p .

2 Background material

Let p be a prime number and \mathbb{Q}_p the field of p-adic numbers endowed with the p-adic absolute value $|\cdot|$, normalized such that |p| = 1/p. Let $\overline{\mathbb{Q}}_p$ be a fixed algebraic closure of \mathbb{Q}_p and denote by the same symbol $|\cdot|$ the unique extension of $|\cdot|$ to $\overline{\mathbb{Q}}_p$. Further, denote by $(\mathbb{C}_p, |\cdot|)$ the completion of $(\overline{\mathbb{Q}}_p, |\cdot|)$ (see [1], [3]). Let $G = Gal(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)$ endowed with the Krull topology. The group G is canonically isomorphic with the group $Gal_{cont}(\mathbb{C}_p/\mathbb{Q}_p)$, of all continuous automorphisms of \mathbb{C}_p over \mathbb{Q}_p . We shall identify these two groups. For any $T \in \mathbb{C}_p$ denote $O(T) = \{\sigma(T) : \sigma \in G\}$ the orbit of T, and let $\widehat{\mathbb{Q}_p}[T]$ be the closure of the ring $\mathbb{Q}_p[T]$ in \mathbb{C}_p .

For any closed subgroup H of G denote $Fix(H) = \{x \in \mathbb{C}_p : \sigma(x) = x \text{ for all } \sigma \in H\}$. Then Fix(H) is a closed subfield of \mathbb{C}_p . Denote $H(T) = \{\sigma \in G : \sigma(T) = T\}$. Then H(T) is a subgroup of G, and $Fix(H(T)) = \widetilde{\mathbb{Q}_p[T]}$. Moreover, for any $\varepsilon > 0$ and $T \in \mathbb{C}_p$ denote $H(T, \varepsilon) = \{\sigma \in G : |\sigma(T) - T| < \varepsilon\}$. Let S_{ε} be a complete system of representatives for the left cosets of G with respect to $H(T, \varepsilon)$.

The map $\sigma \rightsquigarrow \sigma(T)$ from G to O(T) is continuous, and it defines a homeomorphism from G/H(T) (endowed with the quotient topology) to O(T) (endowed with the induced topology from \mathbb{C}_p) (see [2]). In such a way O(T) is a closed compact and totally disconnected subspace of \mathbb{C}_p , and the group G acts continuously on O(T): if $\sigma \in G$ and $\tau(T) \in O(T)$ then $\sigma \star \tau(T) := (\sigma \tau)(T)$.

Now, if \mathcal{X} is a compact subset of \mathbb{C}_p then by an open ball in \mathcal{X} we means a subset of the form $B(x,\varepsilon) \cap \mathcal{X}$ where $x \in \mathbb{C}_p$ and $\varepsilon > 0$. Let us denote by $\Omega(\mathcal{X})$ the set of subsets of \mathcal{X} which are open and compact. It is easy to see that any $D \in \Omega(\mathcal{X})$ can be written as a finite union of open balls in \mathcal{X} , any two disjoint.

Definition 1. By a distribution on \mathcal{X} with values in \mathbb{C}_p we mean a map μ : $\Omega(\mathcal{X}) \to \mathbb{C}_p$ which is finitely additive, that is, if $D = \bigcup_{i=1}^n D_i$ with $D_i \in \Omega(\mathcal{X})$ for $1 \leq i \leq n$ and $D_i \cap D_j = \emptyset$ for $1 \leq i \neq j \leq n$, then $\mu(D) = \sum_{i=1}^n \mu(D_i)$. The space $\mathcal{D}(\mathcal{X}, \mathbb{C}_p)$ of all distributions on \mathcal{X} with values in \mathbb{C}_p becomes naturally a \mathbb{C}_p -vector space (See [4]).

The norm of μ is defined by $\|\mu\| := \sup\{|\mu(D)| : D \in \Omega(\mathcal{X})\}$. If $\|\mu\| < \infty$ we say that μ is a measure on \mathcal{X} . With this norm, the space $\mathcal{M}(\mathcal{X}, \mathbb{C}_p)$ of all measures on \mathcal{X} with values in \mathbb{C}_p becomes a \mathbb{C}_p -Banach space.

The set $\mathcal{X} \subset \mathbb{C}_p$ is said *G*-equivariant provided that $\sigma(x) \in \mathcal{X}$ for any $x \in \mathcal{X}$ and any $\sigma \in G$. ($\mathcal{X} = O(T)$ is such an example.) On the \mathbb{C}_p -Banach algebra of the r-Lipschitz functions

Definition 2. Let \mathcal{X} be a G-equivariant compact subset of \mathbb{C}_p and μ a distribution on \mathcal{X} with values in \mathbb{C}_p . We say that μ is G-equivariant if $\mu(\sigma(B)) = \sigma(\mu(B))$ for any ball B in \mathcal{X} and any $\sigma \in G$. Denote by $\mathcal{D}^G(\mathcal{X}, \mathbb{C}_p)$ the set of G-equivariant distributions on \mathcal{X} .

Remark. On a Galois orbit O(T) there exists a unique *G*-equivariant probability distribution (with values in \mathbb{Q}_p), namely the Haar distribution π_T .

Definition 3. Let s be a positive real number. We say that a distribution $\mu \in \mathcal{D}(\mathcal{X}, \mathbb{C}_p)$ is s-boundedly increasing distribution (or simply a s-distribution) if

$$\lim_{\varepsilon \to 0} \varepsilon^s \max |\mu(B(a,\varepsilon))| = 0$$

(Here the "max" is taken over all the balls $B(a, \varepsilon)$ from $\Omega(\mathcal{X})$, the set of all open compact subsets of \mathcal{X} .) The space $\mathcal{D}_s(\mathcal{X}, \mathbb{C}_p)$ of all s-distributions becomes \mathbb{C}_p -vector space. When \mathcal{X} is G-equivariant denote by $\mathcal{D}_s^G(\mathcal{X}, \mathbb{C}_p)$ the subspace of G-equivariant distributions.

Remark 1) Any measure on \mathcal{X} is s-boundedly increasing distribution.

2) There is no other distribution, except for the identically zero distribution with the property that

$$\lim_{\varepsilon \to 0} \max_{B(a,\varepsilon) \subset \mathcal{X}} |\mu(B(a,\varepsilon))| = 0.$$

Indeed, every $A \in \Omega(\mathcal{X})$, which is open compact set, is a union of sets of the form $B(a, \varepsilon)$ with ε arbitrarily small. Clearly,

$$|\mu(A)| \le \max_{B(a,\varepsilon) \subset \mathcal{X}} |\mu(B(a,\varepsilon))| \to 0,$$

which implies $\mu(A) = 0$.

3) The s-boundedly increasing distributions increase strictly slower than the Haar distribution.

4) An element $T \in \mathbb{C}_p$ is called *s*-boundedly iff the Haar distribution π_T is *s*-distribution, which means $\lim_{\varepsilon \to o} \frac{\varepsilon^s}{|N(T,\varepsilon)|} = 0$, where $N(T,\varepsilon)$ is the number of balls of radius ε that cover the orbit of T.

5) An element $T \in \mathbb{C}_p$ is called *p*-bounded if there exists a positive integer k such that for any $\varepsilon > 0$ one has p^k is not a divisor of $N(T, \varepsilon)$. In this situation the Haar distribution π_T is a measure.

We have $\mathcal{M}(\mathcal{X}, \mathbb{C}_p) \subset \mathcal{D}_s(\mathcal{X}, \mathbb{C}_p) \subset \mathcal{D}(\mathcal{X}, \mathbb{C}_p)$. In the case when s = 1, we have 1-distributions $\mathcal{D}_1(\mathcal{X}, \mathbb{C}_p)$ that are called *Lipschitz* distributions, and these distributions play an important role in nonarchimedean integration theory, see [6].

Definition 4. Let \mathcal{X} be a compact subset of \mathbb{C}_p and let r be a positive real number. A function $f : \mathcal{X} \to \mathbb{C}_p$ is called of type r, or r-Lipschitz function, iff there exists a positive constant c such that

$$|f(x) - f(y)| \le c|x - y|^r,$$
 (1)

for any $x, y \in \mathcal{X}$.

Now, for a r-Lipschitz function f as above, the best constant in (1) is

$$c_f = \sup_{\substack{x, y \in \mathcal{X} \\ x \neq y}} \frac{|f(x) - f(y)|}{|x - y|^r}.$$
 (2)

Denote $||f||_r := \max\{c_f, ||f||\}$, where $||f|| = \sup_{x \in \mathcal{X}} |f(x)|$.

Finally, if $Lip_r(\mathcal{X}, \mathbb{C}_p)$ is the set of *r*-Lipschitz functions as above, then it becomes naturally a \mathbb{C}_p -Banach algebra with the norm $\|\cdot\|_r$ defined above.

3 Main results

In what follows we keep the same notations and definitions as in the previous paragraph. Here and henceforth we suppose that \mathcal{X} is an open compact of \mathbb{C}_p . Let us recall the following theorem.

Theorem 1. (See [6]) Let \mathcal{X} be a compact subset of \mathbb{C}_p . Then any function $f : \mathcal{X} \to \mathbb{C}_p$ of type r > 0 is integrable with respect to any s-distribution $\mu : \Omega(\mathcal{X}) \to \mathbb{C}_p$, whenever $0 < s \leq r$.

We use this theorem to prove the following result.

Theorem 2. Let \mathcal{X} be a compact subset of \mathbb{C}_p and let s be a fixed positive real number. Then, for any $r \geq s$ any $f \in Lip_r(\mathcal{X}, \mathbb{C}_p)$ and any $\mu \in \mathcal{D}_s(\mathcal{X}, \mathbb{C}_p)$, there exists a positive real number A, which is independent of f, such that

$$\left| \int_{\mathcal{X}} f \mathrm{d}\mu \right| \le A \cdot \|f\|_r \,. \tag{3}$$

Proof: From Theorem 1, any function $f: \mathcal{X} \to A$ of type r is integrable with respect to any s-distribution $\mu: \Omega(X) \to \mathbb{C}_p$, whenever $r \geq s$. We first construct a sequence $(S_m)_{m \in \mathbb{N}}$ of Riemann sums as follows. For each positive integer m, write \mathcal{X} as a finite union of open balls of radius $\frac{1}{2^m}$, any two disjoint, denote them by $B_{m,1}, B_{m,2}, \ldots, B_{m,N_m}$. Next, choose points $x_{m,j} \in B_{m,j}$, for $1 \leq j \leq N_m$, and denote by S_m the corresponding Riemann sums, $S_m =$ $S(\mu, f, B_{m,1}, \ldots, B_{m,N_m}, x_{m,1}, \ldots, x_{m,N_m})$. We know that $(S_m)_{m \in \mathbb{N}}$ is a Cauchy sequence in \mathbb{C}_p that converges to $\int_{\mathcal{X}} f d\mu$. Each open ball of radius $\frac{1}{2^m}$ in \mathcal{X} can be written as a finite union of open balls of radius $\frac{1}{2^{m+1}}$, any two disjoint. Therefore there are disjoint nonempty sets J_1, \ldots, J_{N_m} , with $J_1 \cup \cdots \cup J_{N_m} =$ $\{1, 2, \ldots, N_{m+1}\}$, such that for any $i \in \{1, 2, \ldots, N_m\}, B_{m,i} = \bigcup_{j \in J_i} B_{m+1,j}$. We now put $S_m - S_{m+1}$ in the form

$$S_m - S_{m+1} = \sum_{i=1}^{N_m} \mu(B_{m,i}) f(x_{m,i}) - \sum_{i=1}^{N_{m+1}} \mu(B_{m+1,i}) f(x_{m+1,i})$$
$$= \sum_{i=1}^{N_m} \left(\mu(B_{m,i}) f(x_{m,i}) - \sum_{j \in J_i} \mu(B_{m+1,j}) f(x_{m+1,j}) \right).$$

296

On the \mathbb{C}_p -Banach algebra of the *r*-Lipschitz functions

Here we may rewrite $\mu(B_{m,i})$ as $\sum_{j \in J_i} \mu(B_{m+1,j})$ by the additivity of μ . Hence

$$S_m - S_{m+1} = \sum_{i=1}^{N_m} \sum_{j \in J_i} \mu(B_{m+1,j}) \big(f(x_{m,i}) - f(x_{m+1,j}) \big).$$

It follows that

$$|S_m - S_{m+1}| \le \max_{1 \le i \le N_m} \max_{j \in J_i} |\mu(B_{m+1,j})| \cdot |f(x_{m,i}) - f(x_{m+1,j})|.$$

Since f is of type r for some r > 0, we derive

$$|S_m - S_{m+1}| \le c_f \max_{1 \le i \le N_m} \max_{j \in J_i} |\mu(B_{m+1,j})| \cdot |x_{m,i} - x_{m+1,j})|^r,$$

where c_f is a constant that depends only on f. Here both $x_{m,i}$ and $x_{m+1,j}$ belong to the open ball $B_{m,i}$ of radius $\frac{1}{2^m}$, so

$$S_m - S_{m+1} \leq \frac{c_f}{2^{rm}} \max_{1 \leq i \leq N_m} \max_{j \in J_i} |\mu(B_{m+1,j})|$$

$$\leq 2^r c_f \max_{1 \leq i \leq N_m} \max_{j \in J_i} \frac{|\mu(B_{m+1,j})|}{2^{s(m+1)}}.$$

Here on the far right side $B_{m+1,j}$ is an open ball of radius $\frac{1}{2^{m+1}}$, therefore the ratio $\frac{|\mu(B_{m+1,j})|}{2^{s(m+1)}}$ goes to zero as $m \to \infty$, uniformly for $j \in J_i$, $1 \le i \le N_m$. Precisely, for any $\varepsilon > 0$ there is a $\delta_{\varepsilon} > 0$ such that for any $0 < \delta \le \delta_{\varepsilon}$ and any open ball B of radius δ one has $\delta^s |\mu(B)| \leq \varepsilon$. Then for any $m \geq [\log_2(1/\delta_{\varepsilon})]$, we have $\frac{|\mu(B_{m+1,j})|}{2^{s(m+1)}} \leq \varepsilon$ for any j, and so $|S_m - S_{m+1}| \leq 2^r c_f \varepsilon$. Let m be large enough such that

$$\begin{split} \left| \int_{\mathcal{X}} f(x) \mathrm{d}\mu(x) \right| &= |S_{m+1}| \\ &= |S_{m+1} - S_m + S_m - S_{m-1} + \dots + S_2 - S_1 + S_1| \\ &\leq \max_{1 \leq i \leq m} \{ |S_1|, |S_{i+1} - S_i| \} \leq A \cdot \|f\|_r \,, \end{split}$$

where

$$A = \max\{2^r \sup_{m \ge 1} \max_{1 \le i \le N_m} \max_{j \in J_i} \max_{j \in J_i} \frac{|\mu(B_{m+1,j})|}{2^{s(m+1)}}, \max_{1 \le i \le N_1}\{|\mu(B_{1,i})|\}\}$$

and the proof is done.

Now let $f, g \in Lip_r(\mathcal{X}, \mathbb{C}_p)$ and c_f, c_g defined as above. One has

$$\begin{split} |f(x)g(x) - f(y)g(y)| &= |f(x)g(x) - f(y)g(x) + f(y)g(x) - f(y)g(y)| \\ &= |(f(x) - f(y))g(x) + f(y)(g(x) - g(y))| \\ &\leq \max\{\|g\|\,c_f|x - y|^r, \|f\|\,c_g|x - y|^r\} \\ &= \max\{\|g\|\,c_f, \|f\|\,c_g\}|x - y|^r, \end{split}$$

so we have $fg \in Lip_r(\mathcal{X}, \mathbb{C}_p)$ and

$$c_{fg} \le \max\{\|g\|\,c_f, \|f\|\,c_g\}.$$
(4)

Moreover, if $f \in Lip_r(\mathcal{X}, \mathbb{C}_p)$ and $g \in Lip_s(\mathcal{X}, \mathbb{C}_p)$ then $fg \in Lip_{\min\{r,s\}}(\mathcal{X}, \mathbb{C}_p)$. In the same manner it is easy to see that $f + g \in Lip_r(\mathcal{X}, \mathbb{C}_p)$ and

$$c_{f+g} \le \max\{c_f, c_g\}. \tag{5}$$

From Theorem 2, if $f, g \in Lip_r(\mathcal{X}, \mathbb{C}_p)$ we infer

$$\left| \int_{\mathcal{X}} f(t)g(t) \mathrm{d}\mu(t) \right| \le A \|fg\|_{r} \le A \max\{\|g\| c_{f}, \|f\| c_{g}, \|f\| \|g\|\}.$$
(6)

By (6) one can define

$$\|f\|_{\mu} := \sup_{\substack{g \in Lip_r(\mathcal{X}, \mathbb{C}_p)\\ g \neq 0}} \frac{\left| \int_{\mathcal{X}} f(t)g(t) \mathrm{d}\mu(t) \right|}{\|g\|_r} < \infty.$$

$$\tag{7}$$

It is easy to see that $||f||_{\mu} \ge 0$ and $||\lambda f||_{\mu} = |\lambda| ||f||_{\mu}$, for any $f \in Lip_r(\mathcal{X}, \mathbb{C}_p)$ and any $\lambda \in \mathbb{C}_p$. If $f_1, f_2 \in Lip_r(\mathcal{X}, \mathbb{C}_p)$ we have $||f_1 + f_2||_{\mu} \le \max\{||f_1||_{\mu}, ||f_2||_{\mu}\}$. Because of μ -neglected functions from $||f||_{\mu} = 0$ we do not have f = 0. We collect the above result in the following

Proposition 1. Let \mathcal{X} be a compact subset of \mathbb{C}_p and let s be a positive real number. Then, for any $r \geq s$ and any $\mu \in \mathcal{D}_s(\mathcal{X}, \mathbb{C}_p)$, one has that $\|\cdot\|_{\mu}$ is a seminorm on $Lip_r(\mathcal{X}, \mathbb{C}_p)$.

We have the following result.

Proposition 2. For any $D \in \Omega(\mathcal{X})$, $\emptyset \neq D \neq \mathcal{X}$ we have $d(D, \mathcal{X} \setminus D) > 0$, so the characteristic function χ_D of D is an element of $Lip_r(\mathcal{X}, \mathbb{C}_p)$ for any r > 0.

Proof: It is enough to prove the proposition for $D = B(a, \varepsilon) \in \Omega(\mathcal{X}), \varepsilon > 0$. Then we cover \mathcal{X} with balls of radius ε and it is easy to see that $d(D, \mathcal{X} \setminus D) = \inf_{x \in D, y \in \mathcal{X} \setminus D} |x - y| = \varepsilon > 0$. By a simple computation one has $c_{\chi_D} = \frac{1}{\varepsilon^r}$ so $\chi_D \in Lip_r(\mathcal{X}, \mathbb{C}_p)$. For more details see Proposition 19.2, page 51 from [5].

Remark 1) For any $D \in \Omega(\mathcal{X})$ we have $\|\chi_D\|_{\mu}$ is well defined and $\|\chi_D\|_{\mu} \ge |\mu(D)|$.

2) Let $\{B_n\}_{n\geq 0}$ be a sequence of balls of radius ε_n such that $\lim_{n\to\infty} \varepsilon_n = 0$ and let $\{a_n\}_{n\geq 0}$ be a sequence of elements of \mathbb{C}_p such that $\sup_{n\geq 0} \frac{|a_n|}{\varepsilon_n^r} < \infty$. Then $f = \sum_{n>0} a_n \chi_{B_n} \in Lip_r(\mathcal{X}, \mathbb{C}_p)$. Indeed, one has

$$|f(x) - f(y)| = \left| \sum_{n \ge 0} a_n [\chi_{B_n}(x) - \chi_{B_n}(y)] \right| \le \sup_{n \ge 0} |a_n| |\chi_{B_n}(x) - \chi_{B_n}(y)| \le |a_n| |\chi_{B_n}(y)| = |A_n| |\chi_{B_n}(y)| \le |X_n| |\chi_{B_n}(y)| \le |X_n| |\chi_{B_$$

298

On the \mathbb{C}_p -Banach algebra of the *r*-Lipschitz functions

$$\leq \sup_{n\geq 0} \frac{|a_n|}{\varepsilon_n^r} |x-y|^r$$

by Proposition 2.

Theorem 3. Let \mathcal{X} be a compact subset of \mathbb{C}_p and let s be a positive real number. Then, for any $r \geq s$ any $f, g \in Lip_r(\mathcal{X}, \mathbb{C}_p)$ and any $\mu \in \mathcal{D}_s(\mathcal{X}, \mathbb{C}_p)$, we have $\left| \int_{\mathcal{X}} f d\mu \right| \leq \|f\|_{\mu}$ and $\|fg\|_{\mu} \leq \|f\|_{\mu} \|g\|_r$ (Hölder's inequality).

Proof: The first inequality is clear from definition definition of $||f||_{\mu}$ by taking g = 1. For the second, we have $||gh||_r \le ||g||_r ||h||_r$ so

$$\|f\|_{\mu} \geq \frac{\left|\int_{\mathcal{X}} fgh \mathrm{d}\mu\right|}{\|gh\|_{r}} \geq \frac{\left|\int_{\mathcal{X}} fgh \mathrm{d}\mu\right|}{\|g\|_{r} \|h\|_{r}}.$$

We infer that

$$\|g\|_r \|f\|_\mu \geq \frac{\left|\int_{\mathcal{X}} fgh \mathrm{d}\mu\right|}{\|h\|_r}$$

for any $h \in Lip_r(\mathcal{X}, \mathbb{C}_p), h \neq 0$ so by definition of $||fg||_{\mu}$ one has the Hölder's inequality.

Let us define $||U||_{\mu} := ||\chi_U||_{\mu}$, for any $U \in \Omega(\mathcal{X})$. By a simple calculation we have $||B_1 \cup B_2||_{\mu} \leq \max\{||B_1||_{\mu}, ||B_2||_{\mu}\}$ for any balls $B_1, B_2 \in \Omega(\mathcal{X})$ with $B_1 \cap B_2 = \emptyset$.

Now, let us suppose that \mathcal{X} is *G*-equivariant and $\mu \in \mathcal{D}_s^G(\mathcal{X}, \mathbb{C}_p)$. For any $\sigma \in G$ we have

$$\|B\|_{\mu} = \|B^{\sigma}\|_{\mu} \,, \tag{8}$$

where $B = B(x,\varepsilon) \in \Omega(\mathcal{X})$ and $B^{\sigma} = B(\sigma(x),\varepsilon)$. Indeed, let $g \in Lip_r(\mathcal{X}, \mathbb{C}_p)$ be a Lipschitz function of type r such that $g \neq 0$ and let $\sigma \in G$ be a continuous automorphism. Denote $h := \sigma \circ g \circ \sigma^{-1}$. Then $|h(x) - h(y)| = |g \circ \sigma^{-1}(x) - g \circ \sigma^{-1}(y)| \leq c_g |\sigma^{-1}(x) - \sigma^{-1}(y)|^r = c_g |x - y|^r$, so $h \in Lip_r(\mathcal{X}, \mathbb{C}_p)$, $c_h = c_g$ and ||g|| = ||h||. Moreover, if $B = \bigcup_{i=1}^{N(\delta)} B_i$ is a decomposition of B in balls of radius $\delta, 0 < \delta < \varepsilon$, where $B_i = B(x_i, \delta)$ then

$$\int_{B^{\sigma}} h d\mu = \lim_{\delta \to 0} \sum_{i=1}^{N(\delta)} \mu(B_i^{\sigma}) h(\sigma x_i)$$

$$= \lim_{\delta \to 0} \sum_{i=1}^{N(\delta)} \sigma \mu(B_i) \sigma g(x_i) = \sigma \Big(\int_B g d\mu \Big).$$
(9)

By (9) we infer that

$$\left\|B_{\sigma}\right\|_{\mu} \geq \frac{\left|\int_{B^{\sigma}} h \mathrm{d}\mu\right|}{\left\|h\right\|_{r}} = \frac{\left|\int_{B} g \mathrm{d}\mu\right|}{\left\|g\right\|_{r}}$$

so $||B||_{\mu} \leq ||B_{\sigma}||_{\mu}$. Now, if we consider $h \in Lip_r(\mathcal{X}, \mathbb{C}_p)$, $h \neq 0, \sigma \in G$, then by defining $g = \sigma^{-1} \circ h \circ \sigma$ the reverse inequality goes in the same way as above. One has the following result.

Proposition 3. Let \mathcal{X} be a *G*-equivariant compact of \mathbb{C}_p and let μ be a *G*-equivariant distribution on \mathcal{X} with values in \mathbb{C}_p . Then, for any $B \in \Omega(\mathcal{X})$ and any $\sigma \in G$, we have

$$||B||_{\mu} = ||B^{\sigma}||_{\mu}.$$

In what follows let $\mathcal{X} = O(T)$ be the orbit of a *p*-bounded element *T* of \mathbb{C}_p . We consider $r \geq s > 0$ two positive real numbers. Let $\mu \in D_s^G(\mathcal{X}, \mathbb{Q}_p)$ be a *s*-distribution with values in \mathbb{Q}_p that is *G*-equivariant. For any $\varepsilon > \varepsilon' > 0$ one considers $B(\varepsilon) = B(T, \varepsilon) = \bigcup_{i=1}^N B(\sigma_i(T), \varepsilon')$ be a decomposition of the ball $B(\varepsilon)$ in balls of radius ε' . One has $N = \frac{N(T,\varepsilon')}{N(T,\varepsilon)}$ and, because *T* is *p*-bounded *p* is not a divisor of *N* for any $\varepsilon > \varepsilon' > 0$, with ε small enough. Now, for any $g \in Lip_r(\mathcal{X}, \mathbb{C}_p)$ one defines $h \in Lip_r(\mathcal{X}, \mathbb{C}_p)$ as follows:

$$h(x) = (g \circ \sigma^{-1})(x), \text{ when } x \in B(\sigma(T), \varepsilon'), \ \sigma \in \mathcal{S}_{\varepsilon'}.$$
 (10)

By a simple computation we infer that $h \in Lip_r(\mathcal{X}, \mathbb{C}_p)$ and $\|h\|_r \leq \|g\|_r$. Moreover $\int_{B(\varepsilon)} h d\mu = N \int_{B(\varepsilon')} g d\mu$ and then $\left| \int_{B(\varepsilon)} h d\mu \right| = \left| \int_{B(\varepsilon')} g d\mu \right|$. By this one has

$$\frac{\left|\int_{B(\varepsilon')} g \mathrm{d}\mu\right|}{\left\|g\right\|_{r}} \le \frac{\left|\int_{B(\varepsilon)} h \mathrm{d}\mu\right|}{\left\|h\right\|_{r}},\tag{11}$$

so $||B(\varepsilon')||_{\mu} \le ||B(\varepsilon)||_{\mu}$ for any $\varepsilon > \varepsilon' > 0$, with ε small enough. In such a way if we define

$$\|T\|_{\mu} = \inf_{\varepsilon > 0} \|B(T, \varepsilon)\|_{\mu}$$

the following result holds.

Theorem 4. Let T be a p-bounded element of \mathbb{C}_p and let G be the absolute Galois group. Let s be positive real number and let $\mu \in D_s^G(O(T), \mathbb{Q}_p)$ be a s-distribution that is G-equivariant. Then, for any $r \geq s$ and any $f \in Lip_r(O(T), \mathbb{C}_p)$, one has

$$||f||_{\mu} \leq ||T||_{\mu} \cdot ||f||_{r}$$

Proof: Let $O(T) = \bigcup_{\sigma \in S_{\varepsilon}} B(\sigma(T), \varepsilon)$ be a decomposition of the orbit of T in balls of radius ε . Then we decompose $f = \sum_{\sigma \in S_{\varepsilon}} f\chi_{B(\sigma(T),\varepsilon)}$, where $\chi_{B(\sigma(T),\varepsilon)}$ is the characteristic function of $B(\sigma(T),\varepsilon)$. By Hölder's inequality and (8) we have

$$\|f\|_{\mu} \leq \max_{\sigma \in \mathcal{S}_{\varepsilon}} \left\| f\chi_{B(\sigma(T),\varepsilon)} \right\|_{\mu} \leq \|f\|_{r} \max_{\sigma \in \mathcal{S}_{\varepsilon}} \left\| \chi_{B(\sigma(T),\varepsilon)} \right\|_{\mu} = \|f\|_{r} \cdot \|B(T,\varepsilon)\|_{\mu}$$

for any $\varepsilon > 0$, so the proof is done.

Remark 1) Under the hypothesis of Theorem 4 it is clear that $||T||_{\mu} = 0$ if and only if $\mu = 0$.

2) If f, g are *r*-Lipschtz functions and *g* is neglected i.e. $||g||_{\mu} = 0$, then $||f + g||_{\mu} = ||f||_{\mu}$. Indeed, on one hand $||f + g||_{\mu} \le \max\{||f||_{\mu}, ||g||_{\mu}\} = ||f||_{\mu}$ and, on the other hand $||f||_{\mu} = ||f + g - g||_{\mu} \le \max\{||f + g||_{\mu}, ||g||_{\mu}\} = ||f + g||_{\mu}$.

References

- Y. AMICE, Les nombres *p*-adiques, Presse Univ. de France, Collection Sup. 1975.
- [2] V. ALEXANDRU, N. POPESCU, M. VAJAITU AND A. ZAHARESCU, The padic measure on the orbit of an element of \mathbb{C}_p , Rend. Sem. Mat. Univ. Padova, Vol. 118(2007), 197-216.
- [3] E. ARTIN, Algebraic Numbers and Algebraic Functions, Gordon and Breach, N.Y. 1967.
- [4] B. MAZUR, P. SWINNERTON-DYER, Arithmetic of Weil curves, Invent. Math. 25(1974), 1-61.
- [5] W. H. SCHIKHOF, Ultrametric calculus. An introduction to *p*-adic Analysis, Cambridge Univ. Press, Cambridge, U.K., 1984.
- [6] M. VÂJÂITU AND A. ZAHARESCU, Non-Archimedean Integration and Applications, The publishing house of the Romanian Academy, 2007.

Received: 19.05.2010

Institute of Mathematics "Simion Stoilow" of the Romanian Academy, P.O. Box 1-764, Bucharest 014700, E-mail: Marian.Vajaitu@imar.ro