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Abstract

Given a prime number p, we study the Cp-Banach algebra of the r-

Lipschitz functions defined on compact subsets of Cp by introducing a new

seminorm on this space. Also, we give an estimation of the integral of a

r-Lipschitz function with respect to a s-distribution and then we obtain a

analogous of Hölder’s inequality.
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1 Introduction

Let p be a prime number, Zp the ring of p-adic integers, Qp the field of p-adic
numbers and let | · | be the usual p-adic module. This module can be uniquely
extended to a module (denoted also by | · |) on Qp, a fixed algebraic closure of Qp.

Further, denote by Cp, which is called the Tate field, the completion of (Qp, | · |),
and we use the same notation | · | for the unique p-adic module that extends
the p-adic module | · | on Qp. Denote G = Gal(Qp/Qp), which is the absolute
Galois group, and topologise it with the so called Krull topology. Then G acts
continuously on Qp and, it is easy to see that G is canonically isomorphic with
the group Galcont(Cp/Qp) of all continuous automorphisms of Cp over Qp. Let
O(T ) be the orbit of an element T of Cp with respect to the Galois group G.

The paper consists of two sections. The first section contains some basic re-
sults and preliminaries. In the second section we study the Cp-Banach algebra
of the r-Lipschitz functions defined on G-equivariant compacts of Cp by intro-
ducing a new seminorm on this space, see Proposition 1. Here, by G-equivariant
compacts of Cp we mean compacts of Cp which are equivariant with respect to
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the absolute Galois group G, like finite union of orbits of elements of Cp. We
have a few estimations for p-adic integrals, see Theorem 2 and Theorem 3 where
we obtain a analogous of Hölder’s inequality. An estimation for the norm of a
Lipschitz function is also given in Theorem 4 for compacts like orbits of elements
of Cp.

2 Background material

Let p be a prime number and Qp the field of p-adic numbers endowed with the
p-adic absolute value | · |, normalized such that |p| = 1/p. Let Qp be a fixed
algebraic closure of Qp and denote by the same symbol | · | the unique extension
of | · | to Qp. Further, denote by (Cp, | · |) the completion of (Qp, | · |) (see

[1], [3]). Let G = Gal(Qp/Qp) endowed with the Krull topology. The group
G is canonically isomorphic with the group Galcont(Cp/Qp), of all continuous
automorphisms of Cp over Qp. We shall identify these two groups. For any

T ∈ Cp denote O(T ) = {σ(T ) : σ ∈ G} the orbit of T , and let Q̃p[T ] be the
closure of the ring Qp[T ] in Cp.

For any closed subgroup H of G denote Fix(H) = {x ∈ Cp : σ(x) =
x for all σ ∈ H}. Then Fix(H) is a closed subfield of Cp. Denote H(T ) =

{σ ∈ G : σ(T ) = T}. Then H(T ) is a subgroup of G, and Fix(H(T )) = Q̃p[T ].
Moreover, for any ε > 0 and T ∈ Cp denote H(T, ε) = {σ ∈ G : |σ(T ) − T | < ε}.
Let Sε be a complete system of representatives for the left cosets of G with respect
to H(T, ε).

The map σ Ã σ(T ) from G to O(T ) is continuous, and it defines a homeo-
morphism from G/H(T ) (endowed with the quotient topology) to O(T ) (endowed
with the induced topology from Cp) (see [2]). In such a way O(T ) is a closed com-
pact and totally disconnected subspace of Cp, and the group G acts continuously
on O(T ): if σ ∈ G and τ(T ) ∈ O(T ) then σ ⋆ τ(T ) := (στ)(T ).

Now, if X is a compact subset of Cp then by an open ball in X we means a
subset of the form B(x, ε) ∩ X where x ∈ Cp and ε > 0. Let us denote by Ω(X )
the set of subsets of X which are open and compact. It is easy to see that any
D ∈ Ω(X ) can be written as a finite union of open balls in X , any two disjoint.

Definition 1. By a distribution on X with values in Cp we mean a map µ :
Ω(X ) → Cp which is finitely additive, that is, if D = ∪n

i=1Di with Di ∈ Ω(X ) for
1 ≤ i ≤ n and Di ∩ Dj = ∅ for 1 ≤ i 6= j ≤ n, then µ(D) =

∑n
i=1 µ(Di). The

space D(X , Cp) of all distributions on X with values in Cp becomes naturally a
Cp-vector space (See [4]).

The norm of µ is defined by ||µ|| := sup{|µ(D)| : D ∈ Ω(X )}. If ||µ|| < ∞
we say that µ is a measure on X . With this norm, the space M(X , Cp) of all
measures on X with values in Cp becomes a Cp-Banach space.

The set X ⊂ Cp is said G-equivariant provided that σ(x) ∈ X for any x ∈ X
and any σ ∈ G. (X = O(T ) is such an example.)
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Definition 2. Let X be a G-equivariant compact subset of Cp and µ a distribution
on X with values in Cp. We say that µ is G-equivariant if µ(σ(B)) = σ(µ(B)) for
any ball B in X and any σ ∈ G. Denote by DG(X , Cp) the set of G-equivariant
distributions on X .

Remark. On a Galois orbit O(T ) there exists a unique G-equivariant prob-
ability distribution (with values in Qp), namely the Haar distribution πT .

Definition 3. Let s be a positive real number. We say that a distribution µ ∈
D(X , Cp) is s-boundedly increasing distribution (or simply a s-distribution) if

lim
ε→0

εs max |µ(B(a, ε))| = 0.

(Here the “max” is taken over all the balls B(a, ε) from Ω(X ), the set of all
open compact subsets of X .) The space Ds(X , Cp) of all s-distributions becomes
Cp-vector space. When X is G-equivariant denote by DG

s (X , Cp) the subspace of
G-equivariant distributions.

Remark 1) Any measure on X is s-boundedly increasing distribution.
2) There is no other distribution, except for the identically zero distribution

with the property that

lim
ε→0

max
B(a,ε)⊂X

|µ(B(a, ε)| = 0.

Indeed, every A ∈ Ω(X ), which is open compact set, is a union of sets of the form
B(a, ε) with ε arbitrarily small. Clearly,

|µ(A)| ≤ max
B(a,ε)⊂X

|µ(B(a, ε))| → 0,

which implies µ(A) = 0.
3) The s-boundedly increasing distributions increase strictly slower than the

Haar distribution.
4) An element T ∈ Cp is called s-boundedly iff the Haar distribution πT is

s-distribution, which means limε→o
εs

|N(T,ε)| = 0, where N(T, ε) is the number of

balls of radius ε that cover the orbit of T .
5) An element T ∈ Cp is called p-bounded if there exists a positive integer k

such that for any ε > 0 one has pk is not a divisor of N(T, ε). In this situation
the Haar distribution πT is a measure.

We have M(X , Cp) ⊂ Ds(X , Cp) ⊂ D(X , Cp). In the case when s = 1, we
have 1-distributions D1(X , Cp) that are called Lipschitz distributions, and these
distributions play an important role in nonarchimedean integration theory, see
[6].

Definition 4. Let X be a compact subset of Cp and let r be a positive real number.
A function f : X → Cp is called of type r, or r-Lipschitz function, iff there exists
a positive constant c such that

|f(x) − f(y)| ≤ c|x − y|r, (1)
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for any x, y ∈ X .

Now, for a r-Lipschitz function f as above, the best constant in (1) is

cf = sup
x,y∈X
x6=y

|f(x) − f(y)|

|x − y|r
. (2)

Denote ||f ||r := max{cf , ||f ||}, where ||f || = supx∈X |f(x)|.
Finally, if Lipr(X , Cp) is the set of r-Lipschitz functions as above, then it

becomes naturally a Cp-Banach algebra with the norm ||·||r defined above.

3 Main results

In what follows we keep the same notations and definitions as in the previous
paragraph. Here and henceforth we suppose that X is an open compact of Cp.
Let us recall the following theorem.

Theorem 1. (See [6]) Let X be a compact subset of Cp. Then any function
f : X → Cp of type r > 0 is integrable with respect to any s-distribution µ :
Ω(X ) → Cp, whenever 0 < s ≤ r.

We use this theorem to prove the following result.

Theorem 2. Let X be a compact subset of Cp and let s be a fixed positive real
number. Then, for any r ≥ s any f ∈ Lipr(X , Cp) and any µ ∈ Ds(X , Cp), there
exists a positive real number A, which is independent of f , such that

∣

∣

∣

∣

∣

∫

X

fdµ

∣

∣

∣

∣

∣

≤ A · ||f ||r . (3)

Proof: From Theorem 1, any function f : X → A of type r is integrable with
respect to any s-distribution µ : Ω(X) → Cp, whenever r ≥ s. We first con-
struct a sequence (Sm)m∈N of Riemann sums as follows. For each positive in-
teger m, write X as a finite union of open balls of radius 1

2m , any two dis-
joint, denote them by Bm,1, Bm,2, . . . , Bm,Nm

. Next, choose points xm,j ∈ Bm,j ,
for 1 ≤ j ≤ Nm, and denote by Sm the corresponding Riemann sums, Sm =
S(µ, f,Bm,1, . . . , Bm,Nm

, xm,1, . . . , xm,Nm
). We know that (Sm)m∈N is a Cauchy

sequence in Cp that converges to
∫

X
fdµ. Each open ball of radius 1

2m in X

can be written as a finite union of open balls of radius 1
2m+1 , any two disjoint.

Therefore there are disjoint nonempty sets J1, . . . , JNm
, with J1 ∪ · · · ∪ JNm

=
{1, 2, . . . , Nm+1}, such that for any i ∈ {1, 2, . . . , Nm}, Bm,i =

⋃

j∈Ji
Bm+1,j . We

now put Sm − Sm+1 in the form

Sm − Sm+1 =

Nm
∑

i=1

µ(Bm,i)f(xm,i) −

Nm+1
∑

i=1

µ(Bm+1,i)f(xm+1,i)

=

Nm
∑

i=1

(

µ(Bm,i)f(xm,i) −
∑

j∈Ji

µ(Bm+1,j)f(xm+1,j)
)

.
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Here we may rewrite µ(Bm,i) as
∑

j∈Ji
µ(Bm+1,j) by the additivity of µ. Hence

Sm − Sm+1 =

Nm
∑

i=1

∑

j∈Ji

µ(Bm+1,j)
(

f(xm,i) − f(xm+1,j)
)

.

It follows that

|Sm − Sm+1| ≤ max
1≤i≤Nm

max
j∈Ji

|µ(Bm+1,j)| · |f(xm,i) − f(xm+1,j)|.

Since f is of type r for some r > 0, we derive

|Sm − Sm+1| ≤ cf max
1≤i≤Nm

max
j∈Ji

|µ(Bm+1,j)| · |xm,i − xm+1,j)|
r,

where cf is a constant that depends only on f . Here both xm,i and xm+1,j belong
to the open ball Bm,i of radius 1

2m , so

|Sm − Sm+1| ≤
cf

2rm
max

1≤i≤Nm

max
j∈Ji

|µ(Bm+1,j)|

≤ 2rcf max
1≤i≤Nm

max
j∈Ji

|µ(Bm+1,j)|

2s(m+1)
.

Here on the far right side Bm+1,j is an open ball of radius 1
2m+1 , therefore the

ratio
|µ(Bm+1,j)|

2s(m+1) goes to zero as m → ∞, uniformly for j ∈ Ji, 1 ≤ i ≤ Nm.
Precisely, for any ε > 0 there is a δε > 0 such that for any 0 < δ ≤ δε and any
open ball B of radius δ one has δs|µ(B)| ≤ ε. Then for any m ≥ [log2(1/δε)], we

have
|µ(Bm+1,j)|

2s(m+1) ≤ ε for any j, and so |Sm − Sm+1| ≤ 2rcfε.
Let m be large enough such that

∣

∣

∣

∫

X

f(x)dµ(x)
∣

∣

∣
= |Sm+1|

= |Sm+1 − Sm + Sm − Sm−1 + · · · + S2 − S1 + S1|

≤ max
1≤i≤m

{|S1|, |Si+1 − Si|} ≤ A · ||f ||r ,

where

A = max{2r sup
m≥1

max
1≤i≤Nm

max
j∈Ji

|µ(Bm+1,j)|

2s(m+1)
, max
1≤i≤N1

{|µ(B1,i)|}}

and the proof is done.

Now let f, g ∈ Lipr(X , Cp) and cf , cg defined as above. One has

|f(x)g(x) − f(y)g(y)| = |f(x)g(x) − f(y)g(x) + f(y)g(x) − f(y)g(y)|

= |(f(x) − f(y))g(x) + f(y)(g(x) − g(y))|

≤ max{||g|| cf |x − y|r, ||f || cg|x − y|r}

= max{||g|| cf , ||f || cg}|x − y|r,
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so we have fg ∈ Lipr(X , Cp) and

cfg ≤ max{||g|| cf , ||f || cg}. (4)

Moreover, if f ∈ Lipr(X , Cp) and g ∈ Lips(X , Cp) then fg ∈ Lipmin{r,s}(X , Cp).
In the same manner it is easy to see that f + g ∈ Lipr(X , Cp) and

cf+g ≤ max{cf , cg}. (5)

From Theorem 2, if f, g ∈ Lipr(X , Cp) we infer
∣

∣

∣

∣

∣

∫

X

f(t)g(t)dµ(t)

∣

∣

∣

∣

∣

≤ A ||fg||r ≤ Amax{||g|| cf , ||f || cg, ||f || ||g||}. (6)

By (6) one can define

||f ||µ := sup
g∈Lipr(X ,Cp)

g 6=0

∣

∣

∣

∫

X
f(t)g(t)dµ(t)

∣

∣

∣

||g||r
< ∞. (7)

It is easy to see that ||f ||µ ≥ 0 and ||λf ||µ = |λ| ||f ||µ, for any f ∈ Lipr(X , Cp) and
any λ ∈ Cp. If f1, f2 ∈ Lipr(X , Cp) we have ||f1 + f2||µ ≤ max{||f1||µ , ||f2||µ}.
Because of µ-neglected functions from ||f ||µ = 0 we do not have f = 0. We collect
the above result in the following

Proposition 1. Let X be a compact subset of Cp and let s be a positive real
number. Then, for any r ≥ s and any µ ∈ Ds(X , Cp), one has that ||·||µ is a
seminorm on Lipr(X , Cp).

We have the following result.

Proposition 2. For any D ∈ Ω(X ), ∅ 6= D 6= X we have d(D,X \ D) > 0, so
the characteristic function χD of D is an element of Lipr(X , Cp) for any r > 0.

Proof: It is enough to prove the proposition for D = B(a, ε) ∈ Ω(X ), ε > 0.
Then we cover X with balls of radius ε and it is easy to see that d(D,X \ D) =
infx∈D, y∈X\D |x − y| = ε > 0. By a simple computation one has cχD

= 1
εr

so χD ∈ Lipr(X , Cp). For more details see Proposition 19.2, page 51 from [5].

Remark 1) For any D ∈ Ω(X ) we have ||χD||µ is well defined and ||χD||µ ≥
|µ(D)|.

2) Let {Bn}n≥0 be a sequence of balls of radius εn such that limn→∞ εn = 0

and let {an}n≥0 be a sequence of elements of Cp such that supn≥0
|an|
εr

n
< ∞.

Then f =
∑

n≥0 anχBn
∈ Lipr(X , Cp). Indeed, one has

|f(x) − f(y)| =
∣

∣

∣

∑

n≥0

an[χBn
(x) − χBn

(y)]
∣

∣

∣
≤ sup

n≥0
|an||χBn

(x) − χBn
(y)| ≤



On the Cp-Banach algebra of the r-Lipschitz functions 299

≤ sup
n≥0

|an|

εr
n

|x − y|r,

by Proposition 2.

Theorem 3. Let X be a compact subset of Cp and let s be a positive real number.
Then, for any r ≥ s any f, g ∈ Lipr(X , Cp) and any µ ∈ Ds(X , Cp), we have
∣

∣

∫

X
fdµ

∣

∣ ≤ ||f ||µ and ||fg||µ ≤ ||f ||µ ||g||r (Hölder’s inequality).

Proof: The first inequality is clear from definition definition of ||f ||µ by taking
g = 1. For the second, we have ||gh||r ≤ ||g||r ||h||r so

||f ||µ ≥

∣

∣

∣

∫

X
fghdµ

∣

∣

∣

||gh||r
≥

∣

∣

∣

∫

X
fghdµ

∣

∣

∣

||g||r ||h||r
.

We infer that

||g||r ||f ||µ ≥

∣

∣

∣

∫

X
fghdµ

∣

∣

∣

||h||r
,

for any h ∈ Lipr(X , Cp), h 6= 0 so by definition of ||fg||µ one has the Hölder’s
inequality.

Let us define ||U ||µ := ||χU ||µ, for any U ∈ Ω(X ). By a simple calculation
we have ||B1 ∪ B2||µ ≤ max{||B1||µ , ||B2||µ} for any balls B1, B2 ∈ Ω(X ) with
B1 ∩ B2 = ∅.

Now, let us suppose that X is G-equivariant and µ ∈ DG
s (X , Cp). For any

σ ∈ G we have
||B||µ = ||Bσ||µ , (8)

where B = B(x, ε) ∈ Ω(X ) and Bσ = B(σ(x), ε). Indeed, let g ∈ Lipr(X , Cp)
be a Lipschitz function of type r such that g 6= 0 and let σ ∈ G be a continuous
automorphism. Denote h := σ ◦ g ◦ σ−1. Then |h(x) − h(y)| = |g ◦ σ−1(x) − g ◦
σ−1(y)| ≤ cg|σ

−1(x) − σ−1(y)|r = cg|x − y|r, so h ∈ Lipr(X , Cp), ch = cg and

||g|| = ||h||. Moreover, if B = ∪
N(δ)
i=1 Bi is a decomposition of B in balls of radius

δ, 0 < δ < ε, where Bi = B(xi, δ) then

∫

Bσ

hdµ = lim
δ→0

N(δ)
∑

i=1

µ(Bσ
i )h(σxi)

= lim
δ→0

N(δ)
∑

i=1

σµ(Bi)σg(xi) = σ
(

∫

B

gdµ
)

.

(9)

By (9) we infer that

||Bσ||µ ≥

∣

∣

∣

∫

Bσ hdµ
∣

∣

∣

||h||r
=

∣

∣

∣

∫

B
gdµ

∣

∣

∣

||g||r
,
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so ||B||µ ≤ ||Bσ||µ. Now, if we consider h ∈ Lipr(X , Cp), h 6= 0, σ ∈ G, then by

defining g = σ−1 ◦ h ◦ σ the reverse inequality goes in the same way as above.
One has the following result.

Proposition 3. Let X be a G-equivariant compact of Cp and let µ be a G-
equivariant distribution on X with values in Cp. Then, for any B ∈ Ω(X ) and
any σ ∈ G, we have

||B||µ = ||Bσ||µ .

In what follows let X = O(T ) be the orbit of a p-bounded element T of
Cp. We consider r ≥ s > 0 two positive real numbers. Let µ ∈ DG

s (X , Qp) be
a s-distribution with values in Qp that is G-equivariant. For any ε > ε′ > 0
one considers B(ε) = B(T, ε) = ∪N

i=1B(σi(T ), ε′) be a decomposition of the ball

B(ε) in balls of radius ε′. One has N = N(T,ε′)
N(T,ε) and, because T is p-bounded

p is not a divisor of N for any ε > ε′ > 0, with ε small enough. Now, for any
g ∈ Lipr(X , Cp) one defines h ∈ Lipr(X , Cp) as follows:

h(x) = (g ◦ σ−1)(x), when x ∈ B(σ(T ), ε′), σ ∈ Sε′ . (10)

By a simple computation we infer that h ∈ Lipr(X , Cp) and ||h||r ≤ ||g||r. More-
over

∫

B(ε)
hdµ = N

∫

B(ε′)
gdµ and then

∣

∣

∫

B(ε)
hdµ

∣

∣ =
∣

∣

∫

B(ε′)
gdµ

∣

∣. By this one

has
∣

∣

∫

B(ε′)
gdµ

∣

∣

||g||r
≤

∣

∣

∫

B(ε)
hdµ

∣

∣

||h||r
, (11)

so ||B(ε′)||µ ≤ ||B(ε)||µ for any ε > ε′ > 0, with ε small enough. In such a way if
we define

||T ||µ = inf
ε>0

||B(T, ε)||µ

the following result holds.

Theorem 4. Let T be a p-bounded element of Cp and let G be the absolute Galois
group. Let s be positive real number and let µ ∈ DG

s (O(T ), Qp) be a s-distribution
that is G-equivariant. Then, for any r ≥ s and any f ∈ Lipr(O(T ), Cp), one has

||f ||µ ≤ ||T ||µ · ||f ||r .

Proof: Let O(T ) = ∪σ∈Sε
B(σ(T ), ε) be a decomposition of the orbit of T in

balls of radius ε. Then we decompose f =
∑

σ∈Sε
fχB(σ(T ),ε), where χB(σ(T ),ε) is

the characteristic function of B(σ(T ), ε). By Hölder’s inequality and (8) we have

||f ||µ ≤ max
σ∈Sε

∣

∣

∣

∣fχB(σ(T ),ε)

∣

∣

∣

∣

µ
≤ ||f ||r max

σ∈Sε

∣

∣

∣

∣χB(σ(T ),ε)

∣

∣

∣

∣

µ
= ||f ||r · ||B(T, ε)||µ

for any ε > 0, so the proof is done.

Remark 1) Under the hypothesis of Theorem 4 it is clear that ||T ||µ = 0 if
and only if µ = 0.

2) If f, g are r-Lipschtz functions and g is neglected i.e. ||g||µ = 0, then
||f + g||µ = ||f ||µ. Indeed, on one hand ||f + g||µ ≤ max{||f ||µ , ||g||µ} = ||f ||µ
and, on the other hand ||f ||µ = ||f + g − g||µ ≤ max{||f + g||µ , ||g||µ} = ||f + g||µ.
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