
Bull. Math. Soc. Sci. Math. Roumanie
Tome 53(101) No. 3, 2010, 225–230

Version of block Lanczos-type algorithm for solving sparse

linear systems

by
M.A. Cherepniov

Dedicated to the memory of Laurenţiu Panaitopol (1940-2008)
on the occasion of his 70th anniversary

Abstract

A new version of block algorithm for solving sparse systems of linear
equations over GF (2) is described in the talk. The algorithm involves block
Pade approximations. The running time of the algorithm can be made less
then running time of the known Wiedemann-Coppersmith algorithm by
selection larger value of block factor with fixed RAM volume.

Key Words: Linear sparse systems over GF(2), Padé approxima-
tions, Lanczos-type algorithm, Integer factorization.
2010 Mathematics Subject Classification: Primary 11Y05; Se-
condary 11-02.

1 Introduction

Solving large sparse linear systems is usually utilized in modern algorithms of
integer factorization. Frequently Wiedemann-Coppersmith algorithm [5] is used
for this purpose because of the possibility utilization of different calculation sites
without commutation links between them. Algorithm divides into three parts:

• Calculation of coefficients of series.

• Calculation of the approximation for the series.

• Calculation of the solution with the help of coefficients of this approxima-
tion.

Time, needed for the steps 1 and 3, much more than for the step 2. To the
other hand step 2 demands utilization of the cluster with big RAM volume. In

226 M.A. Cherepniov

this paper we propose some knew version of the algorithm, described in [1], that
requires less RAM memory volume for the step 2 than Wiedemann-Coppersmith
algorithm with Thomé [7] proposal. If we select block factor bigger to stay RAM
volume on the original level we obtain better upper bounds for running time of
the steps 1 and 3.

2 Definitions and utilized results

Let F = GF (2), and d denote upper bound of number of nonzero elements in
every row of linear system matrix, s - block factor. So ns - number of vectors in
X and in right hand side of linear system:

DX = B,D ∈ F
M×N ,M ≤ N ;B,X ∈ F

N×ns. (1)

As in [2] we denote c ratio between runtime of one machine word’s passing
between nods and runtime of one arithmetic operation with machine words. As
was described there running time for one double matrix multiplication bounded
with value 4Nc with number of required such multiplications 2 N

ns
for the step 1

, and N
ns

for the step 3 (Wiedemann-Coppersmith algorithm have no more than

2 N
ns

single matrix multiplications in the step 3). Since in algorithms [1] and [4]
we use double multiplication with matrixes D and DT (see [2])- optimal number
of calculation nods, that makes time for arithmetic equal to time for sending, will
be sd

c
.

Time for only arithmetic operations in the step 2 of Wiedemann-Coppersmith-
Thomé algorithm bounded in [7] with value

O(Nns(ns + log2N)log2Nlog2log2N)

that for parallel implementation on the cluster with required RAM volume about
1 TB, when N ≈ 1, 9 · 108, s = 8, n = 64, was approximately 17,3 hours.

3 The algorithm

We construct our algorithm according to [1]. On the step 1 we calculate approx-
imately 2 N

ns
coefficients of the series

α =

∞
∑

i=0

αiλ
−i, αi = BT AiB,A = DT D. (2)

On the step 2 we calculate approximations of the series (2). At the beginning
for some t0, which chouse we describe below, for every t ∈ {1, . . . , t0} we calculate
Q(t)(λ) such that

α(λ)Q(t)(λ) − P (t)(λ) =

∞
∑

i=t+1

ρ
(t)
i λ−i, degQ(t)(λ) ≤ t, degP (t)(λ) ≤ t,

Lanczos-type algorithm 227

with the help of the matrix

αt+1 . . . α2 α1

αt+2 . . . α3 α2

.

α2t . . . αt+1 αt

λtQ(0) . . . λQ(0) Q(0)

In . . . On On

.

On . . . In On

On . . . On In

υt

.

.

.

υ1

υ0

=

On

.

.

On

Q(t)

Q
(t)
t+1

.

.

Q
(t)
0

. (3)

The upper part of the left matrix has a size of t by t+1 blocks from F
ns×ns. There-

fore, corresponding homogeneous system has a full-rank solution v̄ ∈ F
(t+1)ns×ns,

and the resulting matrix approximation Q(t)(λ) has a full rank over the field F.

For every Q(i)(λ) we obtain Q̃(i)(λ) =
∑i

j=0 Q̃
(i)
j λj , Q̃

(i)
j ∈ F

ns×ns, where

Q̃
(i)
i - nonsingular and

α(λ)Q̃(t)(λ) − P̃ (t)(λ) =

∞
∑

i=t+1−ζ(t)

ρ̃
(t)
i λ−i, degQ̃(t)(λ) ≤ t, degP̃ (t)(λ) ≤ t,

for not very big ζ(t) as was described in [1]. Then according to the same work we
obtain Q(t)(λ), Q̃(t)(λ)t > t0 with the help of Q(i)(λ), Q̃(i)(λ), i ∈ {t − 1, . . . , t −
θ(t)}. An upper bound for θ(t) that makes success finish of our algorithm with
probability not less than 0, 99, obtained in [3]

θ(t) ≤ 2, 7 · log2
N

ns
+ 19. (4)

So t0 we must take near this bound.
If we denote

Ui = Q̃(i)(A,B) =

i
∑

j=0

AjBQ̃
(i)
j ∈ F

N×ns. (5)

we obtain according to [1]

UT
i AUt =

∑

j

Q̃
(i)T
j ρ̃

(t)
j+1. (6)

So, when i + 1 < t + 1 − ζ(t), this equals to zero. As we can obtain from [3],
the mean value of ζ(t) is no more than 2. So we can sequentially orthogonalize
blocks Ui and form blocks Wi, i = 1, . . . ,m−1, from their columns, with transfer
some of them to the next steps. Then

228 M.A. Cherepniov

X =

m−1
∑

i=0

Wi(W
T
i AWi)

−1WT
i B, (7)

that gives solution of the system like in the algorithm of P.Montgomery [4]. Scalar
products WT

i AWi we will obtain from (6). We have (see [1])

Ui = AUi−1Ci−1 + Ui−1ci−1 + · · · + Ui−θ(i)+1ci−θ(i)+1 + Vi−θ(i)ci−θ(i),

for some Ci, ci ∈ F
ns×ns, where Vk = Q(k)(A,B), and Wi =

∑∆(i)
k=0 Ui−kδk, δk ∈

F
ns×ns,∆(i) ≈ ζ(i), B = U0. So elements WT

i B may be obtain by the recurrence

UT
i B = CT

i−1U
T
i−1AB +

θ(i)−1
∑

k=1

cT
i−kUT

i−kB + cT
i−θ(i)V

T
i−θ(i)B.

On the step 2 of our algorithm we will replace vectors Ui from (5) with the

set of their coefficients Q̃
(i)
j in the bases AjB, where j = 0, 1, . . . , i. We can

done analogous replacement with vectors Wi and X. If we denote corresponding
coefficients of X as Xi, on the step 3 of our algorithm we obtain

X =

j0
∑

j=0

AjBXj , j0 ≈
N

ns
,

from AjB, that we must calculate for the second time. Note, that in correspond-
ing place in Wiedemann-Coppersmith algorithm we have j0 ≤ 2 N

ns
.

Estimation time for the 1 and the step 3 of our algorithm is approximately
the same to Wiedemann-Coppersmith algorithm. These steps can be made on
s non linked clusters, that have RAM volume suffice to store matrix A. The
step 2 demand much more RAM volume. In method, described in [6], it was
approximately 1TB for N ≈ 1, 9 · 108, s = 8. In our algorithm from (4) we have
upper bound

N

ns
(ns)2(2, 7 · log2

N

ns
+ 21) = Nns(2, 7 · log2

N

ns
+ 21),

and for such N, s this upper bound approximately equals to 500 GB. Running
time of the step 2 of our algorithm may be approximately bounded with the value
of number of arithmetic operations by formula

O(

N

ns
∑

i=1

i · ns · ns · s) = O(N2s). (8)

This calculations have no recursive components and no matrix polynomial
multiplications. They are linear combinations of blocks from F

ins×ns with the

Lanczos-type algorithm 229

coefficients in F
ns×ns, multiplying of blocks from F

ins×ns and some other rela-
tively fast operations like multiplications and additions of matrixes from F

ns×ns.
In [3] was calculated that value of θ is approximately 3, 67. So constant in formula
(8) is not big (approximately 5) and with the help of not very hard parallelization
with not heavy commutation, we can effectively divide bound (8) to the number
of calculation nods, that have common RAM memory volume as was mentioned
above. As was described in [2], optimal value of calculation nodes for 1 and step

3 is O(s2), when s = O(N
1

3). Utilization of such quantity of calculation nodes
in the step 2 makes its running time asymptotically equal to the running time of
steps 1 and 3.

4 Conclusions

Proposed version is similar to original Wiedemann-Coppersmith algorithm, de-
scribed in [5]. Same techniques gives in [1] an algorithm that is similar to original
Montgomery algorithm [4]. Because of the simplicity of step 2 of described ver-
sion it may be simply reconstructed [8] to obtain smaller runtime and to avoid
demands of big RAM volume and big number of cores in step 2 when using ad-
ditional nodes in the steps 1 and 3 . So we can avoid utilization of strong cluster
for step 2 .

References

[1] Cherepniov M.A. Block Lanczos-type algorithm for solving sparse linear
systems. Diskr. Math. (in Russian), V.20, n.1, 2008, p.145-150.

[2] Cherepniov M.A. Some estimations of performance of parallel algorithms
for solving large systems over GF(2). IEEE Tran. Proc. of the conference
PARCa 2010 (Tambov) (to appear).

[3] Astakhov V. Estimates of the rutime and memory requirements of the new
algorithm of solving large sparse linear systems over field with two elements.
IEEE Tran. Proc. of the conference PARCa 2010 (Tambov) (to appear).

[4] Montgomery P.L. A Block Lanczos Algorithm for Finding Dependencies
over GF(2). EUROCRYPT’95, LNCS Vol. 921 (1995), p.106-120

[5] Coppersmith D. Solving Homogeneous Linear Equations Over GF(2) via
Block Wiedemann Algorithm. Mathematics of Computation, Vol. 62, No.
205, (Jan. 1994), p.333-350.

[6] Kleinjung T., Aoki K., Franke J., Lenstra A.K., Thomé E., Bos
J.W., Gaudry P., Kruppa A., Montgomery P.L., Osvik D.A., Riele H., Tim-
ofeev A., Zimmermann P. Factorization of a 768-bit RSA modulus. version
1.0, January 7, 2010. http://eprint.iacr.org/2010/006.pdf

230 M.A. Cherepniov

[7] ThomÉ E, Subquadratic computation of vector generating polynomials and
improvement of the block Wiedemann algorithm. Journal of Symbolic Com-
putation. (to appear)

[8] Optimized algorithm for solving sparse linear systems over GF (2) with the
help of Pade approximations. Nauchno-tekhnicheskiy sbornik ACRF N.572
(2009.)(in Russian), p.290-315.

Received: 20 May 2010.

Moscow State University, Russia

E-mail: cherepniov@gmail.com

