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1 Introduction

The Ramanujan sum ¢, (k) is defined as the sum of kth powers (k € Z) of the
primitive nth roots of unity, that is,

calk) =Y nf, (1)

JEAR

where n; = exp(2mij/n) and 4, = {j e N : 1 < j < n,(j,n) = 1}. Here
cn(k) is an n-periodic function of k, i.e., ¢, (k) = ¢,(¢) for any k = £ (mod n).
Note that for n | k, ¢, (k) = ¢,(0) = ¢(n) is Euler’s function and for (k,n) = 1,
en(k) = ¢n(1) = p(n) is the Mobius function.

The nth cyclotomic polynomial ®,,(x) is the monic polynomial whose roots
are the primitive nth roots of unity, i.e.,

O, (z) =[] (@—m)- (2)

JEAL
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The following representations are well known:

Cn(k): Z d:u(n/d)’ (3)

d|(n,k)
O, (x) = [J (2 — 1)/, (4)
d|n

Cyclotomic polynomials and Ramanujan sums are closely related as it is shown
by the following theorem.

Theorem 1. i) For anyn > 1,

() k-1
" —1)-2 = cn (k)" 7, 5
@ =g = Le® )
where @) (x) is the derivative of D, (x).
it) For anyn > 1 and |z| < 1,
®,,(z) = exp (— Z Cnlik)xk> . (6)
k=1

These formulae are not widely known and were first derived by Nicol [7, Th.
3.1, Cor. 3.2]. In that paper formula (5) was deduced by differentiating (4), which
gives

(n>1) (7)

and then using (3), while (6) was obtained as a corollary of (5).

Formula (7) was given also by Motose [6, Th. 1], without referring to the
paper of Nicol [7]. The following result was obtained by Motose [6, Lemma 1,
Th. 1] in the same paper.

Theorem 2. For anyn > 1,

1

x®,(1/z) 1—zn P T 1—axd

Note that (8) is a simple consequence of formulae (5) and (7) by putting
x:=1/x.

In this paper we first give new direct proofs of (5) and (6) which use only the
definitions of the Ramanujan sums and of the cyclotomic polynomials (Section
2).

Then in Section 3 we investigate the polynomials with integer coeflicients

R, (x) := cn(k)z® (9)
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appearing in (8). We deduce for R, (z) formulas which are similar to the fol-
lowing well known formulas valid for the cyclotomic polynomials: ®,(z) =
@, () (/7)) where y(n) = [] pin P is the squarefree kernel of n, ®,,(z) =
®,,(2P) for any prime p | n, Ppp(z) = Pp(2?)/Pp(x) for any prime p { n,
Dy, () = P,(—x) for any n odd, see for ex. [8]. We also derive certain di-
visibility properties of the polynomials Ry, (z).

In Section 4 we consider the polynomials

= feah)le (10)
k=0

and compare their properties to those of the polynomials R,,(z).

We show — among others — that Ro,(z) = (1 — 2™)R,(—x), Ton(z) = (1 +
2™)T,(x) for any n > 1 odd, and that the cyclotomic polynomial ®,,(x) divides
T, (z) for any n > 2 even.

Section 5 contains tables of the polynomials R, (x) and T, (z) for 1 < n < 20.

For material concerning Ramanujan sums we refer to the books [3, 4, 5].

2 Proof of Theorem 1

Proof: i) First note that for the generating function of the sequence (¢, (k))g>1
we have by using the periodicity of the Ramanujan sums,

icn(kz ich (In+j)x nty —Zaﬁé”ch ={—an i
k=1 £=0 j=1 j= j=1

Now let |z| < 1. Applying the power series (1 —¢)™t = 1+ ¢+ > + ... for
t = x/n;, where [t| = |z] < 1,

@ (2) _ LN N5 IRV SR N B e

Tp(z) jezA:n T =1 j;:n i T—a/n; jezA:n =y

=— Zac Z k-1l Zaz en(=k—1) icn(—kz)xk_l
k=0 JEA, k=1

1 .
= ch(k)xkfl = ch(j)ajjfl,
k=1 o3

where we have used that ¢, (—k) = ¢, (k) for any k. Justification: if in (1) j runs
through a reduced residue system (mod n), then so does —j. Hence the given
polynomial identity holds, which finishes the proof of i).

ii) We use that for n > 1,

®,(2) = [] (1 - x) (11)

Nj
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This follows from (2) by [];c4, n; = 1, valid for n > 2. Note that (11) holds
also for n = 2. We have, using the power series log(1 —t) = —t —t2/2—13/3 — ...
for t = x/n;, where |t| = |z| < 1,

log ®,, ( Zlog(l—)z—Zi n}“ ki > oy

jEA, JEA, k=1 JEA,

X L.k k

=— kzzl —en(=k) ==Y F-ea(k).

=1

k
Alternatively, one can apply that for n > 1,

O (x) = [J(1 = ahy/D, (12)

dln

which follows at once by (4) and by >, u(n/d) =0 (n > 1). We deduce

log @, ( Zun/d )log(1 — z%) Z'“n/d f:‘rj

dln j=1

dln
— XS g =3 e

m=1 dl(n m) m=1

using (3). This approach was given and applied by Erdés and Vaughan [2, Proof
of Th. 1]. O

3 The polynomials R, (z)

In this section we investigate properties of the polynomials R, (x) defined by (9).

Note that the polynomials appearing in (5) are given by Py, (z) := Y _, ¢, (k)z* 1.

The connection between the polynomials R, (x) and P, () is given by P, (z) =

R, (z) + ¢(n)(z™ — 1). Hence it is sufficient to study the polynomials R, (z).
According to (8) for any n > 1,

R.(z)=(1 —x")Z%. (13)

d|n

Theorem 3. Letn > 1.

i) The number of nonzero coefficients of R, (x) is y(n).

ii) The degree of Ry(x) is n —n/y(n).

i11) Ry (x) has coefficients +1 if and only if n is squarefree and in this case
the number of coefficients £1 of R, (x) is p(n) for n odd and is 2p(n/2) for n
even.
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Proof: For n =1 the assertions hold true. Let n = p{* ---p% > 1.
i) We use that ¢, (k) is multiplicative in n and for any prime power p®,

p*—pt if p* |k,
cp" (k) = 7pa71’ lf pa71 ‘ kapa*kv
0, if p*~ltk.

Therefore, c,(k) # 0 if and only if p*~* | k, .., p&~' | k, ie., k =
]3'1“_1 cop®~lm with 0 < m < py---p, = v(n). Hence the number of nonzero
values of ¢, (k) is y(n).

ii) By the proof of i) the largest k such that ¢, (k) # 0 is

alfl .

k=pP~ "t pt(prp — 1) =n—n/y(n),

and this is the degree of R, ().

iii) cn (k) = £1 if and only if ¢, (k) = £1 for any i € {1,...,r}, thatisa; =1
for any 4 (n is squarefree) and either p; 1 k or p; = 2 | k for any i.

Suppose that n = p; - - - p, (squarefree). If n is odd, then by condition p; 1 k
for any ¢ we have (n, k) = 1, hence the number of such values of k is ¢(n). For n
even either (k,n) = 1 or k = 2¢ with (¢,n/2) = 1. We obtain that the number of
such values of k is p(n) + ¢(n/2) = 2¢(n/2). 0

We have for any n > 1, R,,(0) = ¢,,(0) = ¢(n) and R, (1) = Z;& cn(k) =0,
as it is well known. Hence 1 — z divides R,,(z) for any n > 1. Now a look at
the polynomials R, (z), see Section 5, suggests that 1 + x divides R, (z) for any
n > 2 even. This is confirmed by the next result.

Theorem 4. We have Ra(—1) =2 and

i) Rp(—1) = p(n) for anyn > 1 odd,

it) Rn(—1) =0 for any n > 2 even,

ii1) the cyclotomic polynomial @, (x) divides the polynomial R, (x) —n for any
n>1.

Proof: i) Consider also the polynomials Q,(z) = Y.;_,cn(k)z* = R,(z) +
p(n)z™, which are symmetric for any n > 1 since ¢, (k) = ¢,(n — k) (0 < k < n).
Hence, for any n odd, @,(—1) =0 and R,(—1) = ¢(n).

i) Now use (13), which can be written as

Ry(z) =Y du(n/d)(@"~* + 2" 2 4+ .+ 2% +1). (14)
d|n
We obtain that for any n = 2k > 2 even,
Ro(=1) = Y dun/d)5 =n Y pln/d)=nd_ u(k/3) = 0.

d|n d|n S|k
d even d even
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iii) If 7 is any primitive nth root of unity, then R, (n) = n. This follows from
(13):

Rafa) =n+ (1—am) Y2 WD,
d|n
d<n

where n¢ # 1 for any d | n, d < n. 0

If p is a prime, then it follows from (13) that
Ry(x)=(p—1)—z—2*—.. . —aP L. (15)
Also, if p, ¢ are distinct primes, then
Rpg(x) = (p—=1)(g— 1) +z+a®+.. +aP! (16)

—p(aP + 2% + . 4 2TV (a4 2% 4 4 PV,

Next we show that R, (z) have some properties which are similar to those of
the cyclotomic polynomials @,,(z).

Theorem 5. i) If n > 1, then

n

y(n)

it) Let n > 1 and p be a prime. If p | n, then R,p(xz) = pRy(2?). Ifp{n,
then

Rn(z) = Ry (27, (17)

Rup(z) = pRu(2P) — (1 + 2™ + 2™ + ... + 2P~ U R, (). (18)
i) If n > 1, p is a prime and p{n, then (1 —zP) | Ry, (x).

Proof: i) From (13) again,

n qe
dn dly(n)

and by this representation of R, (z),

n . ‘u(d)’v(n)
R’Y(n)(x /M )):(l_x ) Z 17xnd/d

d|y(n)

T aid = R, (x).

(- 5 MO

dlv(n)
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ii) For p | n this follows at once from i) by vy(np) = v(n). Now let p f n. Then
by (13),
dp(np/d)
11—z

Rup() = (1—a"™) )

d|np

=1y D delne/d) g dpn))

1—zd 1— %
dln d=ép, d|n

=(1—a2") |- Z dp(n/d) +pz dp(n/o)

1—ad 1— %
d|n §n
1—2z"?
= Py _
PR, («P) = R, (z).
iii) Using that = 1 is a root of R, (x) for n > 1 we deduce that (1 — z?) |
R, (2?) and by the formula (18) we obtain (1 — 2P) | Ry, (x). O

In particular, for any prime power p* (k > 1),

Ri(x) = pkflRp(a:pkfl) =p" 1 p—1- oo x(pfl)pkfl) (19)
and for p = 2,
Ron(z) =281 (1 — 22 ). (20)
Theorem 6. i) For anyn > 1 odd,
Ron(7) = (1 —2")Rn(—x), (21)

it) More generally, for any n > 1 odd and any k > 1,
Roen () = 287 1(1 — 2"
Proof: i) By (18) we have

Ron(z) = 2R, (2%) — (1 + 2™) R, ()

1— g2 1—zd
d|n d|n
n du(n/d "
= () Y B (e (),
d|n

hence (21) holds.
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ii) By (17) and (21) we obtain

2k—1p

R -2 "R 25" n/~(n)
2kn (x) ’y(n) 2’\/(71) (Z‘ )

2k=1p k=1, k=1, /n(n
= iy (1= Ry (=),
Here by (17) again,
k—1 n k=1, n
R,(—z* )= WRV( (=),
ending the proof. D

Theorem 7. i) If n = p*, p prime, k > 1, then
(1—2” ") | Ry(2). (23)
i) If n = 2Fm, k > 1, m > 1 odd, then
(1—a"?) 1 42" ™) | R, (). (24)
i) If n = pFm, p > 2 prime, k > 1, m > 1 odd, p{m, then
(1—a?"7My | Ry (). (25)

w) If n = 2"m, k > 1, m > 1 odd, m has at least two prime divisors, p prime,

p | m, then
(1 —2™2)(1 4 2zP"7™) | R, (). (26)

Proof: i) R (x) = pF 1R, (zP" ") by (19), and use that = 1 is a root of R,,(z).
ii) For n = 2¥m, k > 1, m > 1 odd we have

2k71

m ok—1

m/v(m))’

R, (z) = (1 — xzk_lm) Rym) (=2

~(m)

see the proof of Theorem 6/ii), and use that x = 1 is a root of R ()().
iii) Now

n

Ry (x) = WRM(M) (z

where (1 —2P) | Ryy(m)(2) with y(m) > 1, cf. Theorem 5/iii).
iv) By combining the above results. 0

p’“*lm/v(m))7

As examples, Theorem 7 gives that (1 —2°)(1+23) | Ris(z) and (1 —2'%)(1+
23) | Rgo(x). Tt is possible to deduce from Theorem 7 other divisibility properties
for the polynomials R, (z), e.g. the next one.
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Theorem 8. For any k> 1 and m > 1,

(1 n xQ’“) | Ry (). (27)

Proof: Follows from Theorem 7/ii). O

Another representation of the polynomials R,,(x) is given by

Theorem 9. For anyn > 1,

Ru() = p(n) [1-2"+ 3 Z%md(m"/% 7 (28)
d|n

where U, (z) =3

J
JEAR x
Proof: We use Holder’s formula

p(n)p(n/(n, k))

cn(k) = (29)
e(n/(n, k))
and by grouping the terms according to (n, k) = d, obtain
- — p(n)u(n/(n,k)) ok = M dj
2 )t =3 Z ¥
k=1 =1 n/ ™ k ) ]EAn/d
Z w( d (/)
d .

0

Remark 1. The polynomials ,,(z) = 37, 2/ are ¥ (z) = x, ¥s(z) = z,
Us(x) =+ 22, Uy(z) =+ 23, Us(x) =+ 22 +2° + 2, Ug(z) = 2+ 2°, etc.,
having the representations

p(d)z u

1—a2d
d|n d|n

>1,  (30)

the first one being valid for n > 1.

If i is any primitive nth root of unity, then ¥, (n) = u(n). Hence the cy-
clotomic polynomial ®,,(z) divides the polynomial ¥, (x) — u(n) for any n > 1.
For these properties see [9, p. 71]. Furthermore, it is immediate from (30) that
U, (1) = p(n) for any n > 1 and ¥,,(—1) = —p(n) for any n > 2 even. Also,
Uy(—-1) = —1 and ¥, (—1) = 0 for any n > 1 odd, since by (30), ¥, (—1) =

( ( )n) Ed\n 1 #(di)d = Zdln M(d) =0.
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4 The polynomials T, (x)

We consider in what follows the polynomials T, (x) given by (10).
Theorem 3 holds for the polynomials T, (x), as well. Also, for any prime p,
Ty(x)=p—1+ax+2*+...+2P~ !, which follows at once from (15).

Theorem 10.
1,0 = plo) 1=+ 30w anr) ). (31)
d|n
Proof: Similar to the proof of Theorem 9, using Holder’s formula. 0

Note that for every n > 1, T,,(0) = |¢,(0)| = ¢(n) is Euler’s function. Also,
T,(1) = ZZ;& len (k)| = p(n)2¢™) | where w(n) denotes, as usual, the number of
distinct prime factors of n. This identity follows at once by (31) and is given in

[1].

Now we deduce for T, (z) a formula which is similar to (13).

Theorem 11. For anyn > 1,

r _ g d d n/d)
Tn( ) 1 dz:j <,0 d ( Qj”/d) (32)

where fr(n) denotes the multiplicative function in n given by

Note that fi(n) = 0 for any n even and k odd.

Proof: Formula (3) can not be used in this case and we start with (31). Using
also (30) we deduce

. ) (1 i) e 10)2"
To(z) — (1 - 2")p(n) = p(n) @M)O—w/%ﬂédyﬂmm
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2(b)x° 1)
(a3 KT Y A

be=n ad=n

where the inner sum is f;(c) and the given formula follows by writing % =

-1+ ﬁ and using that >, _ “2(2)(7{3’(6) = 1, which can be checked easily by

the multiplicativity of the involved functions. 0

In particular, if p, ¢ are distinct primes, then by (32) we obtain
Tpg(x) = (p=D(g = 1)+ +a®+.. +aP! (34)

+(p—2)(@P + 2% + .. 4+ 2 IP) 4 (g —2)(2? + 22T 4 .. 4 2PV,
which follows also from (16).

Theorem 12. We have

i) T, (—1) = p(n) for any n > 1 odd,

it) To(—=1) =0 for anyn =4k +2, k > 0,

i) Ty, (—1) = @(n)2°") for any n = 4k, k > 1,

) Th(n) =n Hp‘n(l—%) for any primitive nth root of unity . The cyclotomic
polynomial @, (x) divides the polynomial Ty, (x) for any n > 2 even.

Proof: For i)-iii) we use formula (31) and the properties of the polynomials
U, (z), mentioned in Remark 1.
i) For any n > 1 odd,

T(-1) = plo) (24 01D +pn) 3 L ((j)’wd<—1> — ().
dln,d>1

ii) For any n =4k + 2, k > 0,

2
To(-1) = p(n) 3" & g)) Wa((~1)"%)

d|n ¥

= ¢(n) Z /;((Lj))llld(l) + ¢(n) Z K (225) Was(—1)

d|2k+1 d=26, 5|2k+1 #(20)
=p(n) > pPd)—e(n) > u’(6)=0.
d|2k+1 S§|2k+1

iii) For any n = 4k, k > 1,
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where for any d with 4 | d, u?(d) = 0. Hence

T DD “ =pn) Y H2(d)

d| ata ¥ d|n, 4td

1) 37 (d) = p(n)2).

d|n

iv) Now we use (32). The property follows from

d
To(x) = p(n) fa(n) + (1 —a") Y “ fi Zi/i)
d|n, d>1
where 0¥ # 1 for any k | n, k < n and ¢(n) fi(n n) =n][,,(1-2/p). O
Theorem 13. i) If n > 1, then
Ta(@) = —o5 oo (@ 7). (35)

ii) Let n > 1 and p be a prime. If p | n, then T,,(z) = pT,,(zP). If p{n, then
Top(x) = (p — 2)0(n) T, (aP) + (1 4+ 2" + 22" + ... 4+ 2P~I™)T, ().

Proof: i) This follows at once from Theorem 5/1) and from the definitions of the
polynomials T, (z) and R, (z).
ii) For p | n this follows from i) by vy(np) = v(n). For p1n by (32),

np/d
Tople) = 1= )l 3 i o
_ np /’L d n/d fd( ) M2(6p)f§p(n/6)
e (1 - (dlzn :L.np/d) + d_(spz)é'n <p(5p)(1 _ xn/é))
_ d) fa(n/d) 12 (3) f5p(n/8)
=(1—-a" ( -2) dlzn@d 1 zn/d) ; l—x”/‘s))
= (0= e T(e?) + T To(e),

where fs,(n/d0) = fs(n/d) for any § | n, ptn. O



Ramanujan sums and cyclotomic polynomials 289

Theorem 14. i) For any n > 1 odd, Ten(z) = (1 + ™) T, (z).
it) For anyn > 1 odd and any k > 1,

gk—1 ok—1

Typ (z) = 271 (1+x ")Tn(g; ). (36)

iii) For any even n, (1+2"/?) | T,(z).

Proof: i) This follows at once from Theorem 13/ii) by p = 2.
i), iii) The same proof as for the polynomials R, (x). O

Remark 2. Consider the polynomials

n—1

Vo(z) = (cn(k))?z". (37)

k=0

For every n > 1, V(0) = (ca(0))? = (p(n))? and Vo(1) = Y32 (ealk))? =
np(n), as it is known. For the polynomials V,,(z) similar properties can be derived
as for T,,(z).

5 Tables of R,(z) and T, (z)
The next two tables were produced using Maple. The polynomials R, (z) were
generated by the following procedure (similar for T, (z)):

with(numtheory): Ramanujanpol:= proc(n,x) local a, k: a:= 0: for k
from 0 to n-1 do a:=a+phi(n)*mobius(n/gcd(n,k))/phi(n/gecd(n,k))
*x"k: od: RETURN(R[n] (x)=a) end;

Table of R, (z) for 1 <n <20

R, (x)
1
1—=x

2—r—22=(1-2)2+02)
2-222=2(1-2)(1+x)
471'—1:2—:v3—z4*(lfx)(4+3x+2x2+z3)
2+ — 2% —22% — 2t + 2

— (L-0)2- )1+ 2)(1+ 2 +27)
76—z —2% 232t — 25 —2af

= (1 —2)(6 + 52 + 422 + 323 + 22* + 2°)

8 [4—42" =41 —2)(1 + 2)(1 + 2?)

9 [6—32°-32°=3(1—2)2+ 231 +z+2?
10 [44+ 2 -2+ 2% — 2% — 42 — 28 427 — 2%+ 2°
=(1-2)(1+2)(4—-3x+22% —23)(1 + 2+ 22 + 23 + 2*)

S| o x| W o~ 3
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n | Ry(x)

11 [10—z—2?—a3—at -2 2% — 27 — 2% — 29 — 210
= (1 —2)(10 4+ 9z + 822 + 723 + 62" + 5a® + 42 + 327 + 228 + 29)

12 [4+ 227 — 227 — 425 — 225 + 2270
=21-2)1+z)2—-2*)(1+2*)1 -2+ 2*)(1 + 2 + 2?)

1B12—z—22 232" —2° — 28 — 27 — 2% — 2% — 210 — 1T 212
=(1—2)(12 4 11z + 1022 + 923 + 8z* + 72° + 62° + 527 + 428
+329 4 2210 + 21

4 [6+r—2?+2° -2t +2° - 2% — 627 —2¥ + 2% — 210 4 21T — 212
413
=1-2)1+2)1+z+22+23+2* + 25+ 25)(6 — 52 + 422
—323 + 22% — 2%)

15 [8+x+a2 203+ 27 —42° — 228 + 27 + 28 — 229 — 4210 21T
912 4 18 4 14
=(1-2)(1+z+22+2°+2%)(8 - Tr + 52° — 4o + 32° — 27)
(14 z +2?)

16 [8 —828 =8(1 —z)(1+z)(1 + 2?)(1 + z7%)

17 16—z —2? -2 —a® — 2% — 2% — 27 — 2% — 29 — 210 —pTT 512
_p13 4 15 16
= (1 —2)(16 + 15z + 1422 + 132> + 122* + 1125 + 102° + 927
+828 + 722 + 6210 + 51t + 4212 4 3213 4 2214 4 215)

18 [ 6 + 323 — 32°% — 629 — 3212 + 321°
=31-2)1+2)1 -2+ 22) 1+ 2+ 22)(1+ 23+ 25)(2 — 23)

19 [18—z—a? -2 —af — 2% — 2% — 27 — 2% — 29 — 210 —pTT 512
13 14 15 16 17 I8
= (1—2)(18 + 17z + 1622 + 1523 + 142* + 132° + 1226 + 1127
+1028 + 92° + 8210 + T2t + 6212 4 5213 + 4at? 4 321° + 2216 4 217)

20 |8+ 222 — 22% + 220 — 228 — 8210 — 2212 4 221% — 2210 4 2218
=2(1—z)(1+2)(1 +2?)(4 — 322 + 22* —2%)(1 + 2 + 2% + 23
+at) (1 — 2 + 22 — 23 + 2?)
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Table of T, (z) for 1 <n <20

T, ()

1

1+

2+ + 22

2+ 222 =2(1 + 2?)

44z + 27+ 23+ 2t

24+ a2+ 225 + 2t + 2°

=(1+2)1—2+2%)(2+ 2+ 2?)
6+x+a22+a5+zr+2° 420

4442t =4(1 + 2%)

6 + 33 + 32°

10 [d+z+22+23+ 22+ 425+ 25+ 27+ 28 + 2°
=1+a)d+a+2?+23+a2?)(1—a+42%—2%+2?)

11 [10+z+22+ 25+ 2t + 25+ 25+ 27+ 25 + 2% + 210

12 [4+ 227 + 227 + 425 + 225 + 2210
=2(1+2?)(2+ 2% +2*) (1 — 22 + 2%)

13124+ +25 42+ 25 +a0+2"+ 28+ 2%+ 210+ 21T 4 212
M4 6+z+22+25+22+2°+25+627 + 28+ 27 + 210+ 21T 4 212
413
=(1+2)1—-x+2®—a3+a2 —2°+2°(6 +2+ 2% + 2% +2*
+x5 + 25)

15 |8 +x+ 22+ 223 + 2% +42° + 225 + 27 + 28 4+ 229 + 4210 4 21!
4912 4 18 4 14

16 |8 +82% =8(1 + 25)

17 [16+z+22+ 25+ 2t + 25+ a8 + 2"+ 28 + 2% + 210 + 2T 4 212
413 4 14 4 15 4 216

18 [ 6+ 323 + 328 + 62° + 321 + 3215
=3(1+2)1 -2+ 22+ 23+ 25 (1 — 23 + 25)

19 (184 +22+ 25+t + 2P + a8+ 27 + 28 + 29 + 210+ 21T 4 212
418 14 15 4 216 4 17 4 I8

20 |8+ 222 + 227 + 225 + 22% + 8210 4 2212 4 2214 4 2216 1 2218
=2(1+2?)(4+ 2%+ 2 + 26+ 2%)(1 — 2% + 2* — 20 4 2¥)

S| W~ 3
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