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Abstract

We prove that some bounds for positive roots of univariate polynomials

with real coefficients are absolute positiveness bounds. It is also proved

that there exist positiveness bounds which are not absolute.
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1 Introduction

The computation of bounds for positive roots of univariate polynomials with
real coefficients is connected to many other problems in mathematics and related
fields. For example it is important for some algorithms for real root isolation
and for the problem of testing positiveness of polynomials. This last problem is
decidable (see A. Tarski [14]).

H. Hoon and D. Jakus introduced [5] the bound for absolute positiveness of
a polynomial with real coefficients. They proved that some bounds for positive
roots of univariate polynomials are also bounds for absolute positiveness. How-
ever, absolute positiveness needs to be checked for any particular bound.

In this paper we observe that there exist upper bounds for positive roots that are
not absolute positiveness bounds. Than we prove that some known bounds for
positive roots of univariate polynomials are also bounds for absolute positiveness.
We also discuss some cases where extensions of these results can be applied.
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2 Bounds for Positive Roots

Several bounds are known for the absolute values of the roots of univariate
polynomials with complex coefficients (see M. Marden [7] and M. Mignotte–D.
Ştefănescu [8]). They are expressed as functions of the degree and of he coef-
ficients, and naturally they can be used also for the roots (real or complex) of
polynomials with real coefficients. In the case of univariate polynomials with real
coefficients these bounds are also upper bounds for the real roots, if any.

On the other hand, some specific bounds for real positive roots also exist (see.
Akritas [2], D. Ştefănescu [13]). They are more accurate than those obtained for
the absolute values of complex roots, but despite the case of complex roots there
is no general result that assure the absolute positiveness. It is desirable to prove
that a bound for positive roots is also a bound for the absolute positiveness.

3 Bounds for Absolute Positiveness

We remind that a number B > 0 is an absolute positiveness bound of the univariate
polynomial P ∈ R[X] if, for any t ∈ N, we have

P (t)(x) > 0 for all x ≥ B .

That means that B is an upper bound for the positive roots of P and for the
positive roots of all its derivatives.

Remark: As H. Hoon noticed [6], the bounds for complex roots of univariate
polynomials over the reals are also bounds for absolute positiveness, due to the
theorem of Guaß–Lucas (s. M. Marden [7]). In fact, if P is univariate with
real coefficients, the convex hull K(P ) of its zeros contains also the zeros of its
derivative P ′. Its trace on the real line contains the real zeros of P and also all
zeros of P ′.

Remark: A natural question is whether an arbitrary positive bound of a uni-
variate polynomial over the real numbers is also a positive absoluteness bound.
As noticed by H. Hoon [6], almost all known upper bounds for positive roots are
bounds for absolute positiveness. The next example shows that a bound for the
positive roots is not necessarily an absolute positiveness bound.

Example 1. Let P (X) = X5 − 10X4 + 40X3 − 80X2 + 80X − 31 .

We observe that 1 is the largest (in fact the unique) positive root of P , so it is a
bound for the positive roots.

However, the derivative P ′(X) = 5(X4 − 8X3 + 24X2 − 32X + 16) = 5(X − 2)4

has the positive root 2 .

So B(P ) = 1 is an upper bound for the positive roots which is not a bound for
the roots of the derivative P ′, hence it is not an absolute positiveness bound.
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We remind that a hyperbolic polynomial is a polynomial from R[X] which
has only real roots. The following result is a corollary to known facts.

Proposition 1. Let P ∈ R[X] be a hyperbolic polynomial and let (α, β) be an
interval including its roots. The roots of the derivative are also included in (α, β).

This can be proved in at least two ways, using as previously the Gauß–Lucas
theorem or through the interlacing of roots of the polynomial and of its derivative.

Notation: Let P ∈ R[X]\R be such that it has an even number of sign variations
and can be represented as

P (X) = c1X
d1 − b1X

m1 + c2X
d2 − b2X

m2 + · · · + ckXdk − bkXmk + g(X) ,

with g ∈ R+ , d1 > d2, . . . , dk, ci > 0, bi > 0 and di > mi for all i.

Denote

S1(P ) = max

{

(

b1

c1

)1/(d1−m1)

, . . . ,

(

bk

ck

)1/(dk−mk)
}

.

Proposition 2. Let P ∈ R[X] \ R be such that it has an even number of sign
variations and can be represented as

P (X) = c1X
d1 − b1X

m1 + c2X
d2 − b2X

m2 + · · · + ckXdk − bkXmk + g(X) ,

with g ∈ R+ , d1 > d2, . . . , dk, ci > 0, bi > 0 and di > mi for all i.

We have
S1(P ) > S1(P

′) .

Proof: By Theorem 2 in [11] we know that S1(P ) is a bound for the positive
roots of P , so we have

P (X) > 0 for all x ≥ B1 .

Let’s look to the corresponding bound for the derivative of P . We have

P ′(X) = d1c1X
d1−1 − m1b1X

m1−1 + · · · + dkckXdk−1 − mkbkXmk−1 + g(X)

= c′1X
d′

1 − b′1X
m′

1 + · · · + a′
kXd′

k − b′kXm′

k .

We have
a′

i = d1ai, b′i = m′
ibi, d′i = di − 1, e′i = ei − 1 .

Therefore d′i − e′i = di − ei and

b′i
e′i

=
mibi

diai
<

bi

ai
,
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since mi < di .
We obtain that

S1(P
′) ≤ max

{

(

b′1
c′1

)1/(d1−m1)

, . . . ,

(

b,k
c′k

)1/(dk−mk)
}

< max

{

(

b1

c1

)1/(d1−m1)

, . . . ,

(

bk

ck

)1/(dk−mk)
}

= S1(P ) .

Corollary 3. The following inequalities hold

S1(P ) > S1(P
′) > . . . > S1(P

d1−1) > 0 .

Theorem 4. The number S1(P ) is an absolute positiveness bound for the poly-
nomial P .

Proposition 5. Let

P (X) = a0X
d + a1X

d−1 + · · · + amXd−m − am+1X
d−m−1 ± · · · ± ad ∈ R[X]

with all ai ≥ 0 , a0 > 0,, am+1 > 0 . Let A be the largest absoulute value of the
negative coefficients of P . The bound of Lagrange

L(P ) = 1 +

(

A

a0

)
1

m+1

is an absolute positiveness bound for P .

Proof: We remind that L(P ) is an upper bound for the positive roots by a known
theorem of Lagrange ...

We have

P ′(X) = da0X
d−1+· · ·+(d−m)amXd−m−(d−m−i)am+1X

d−m−2±· · ·±ad−1 .

If m = d − 1 we have no negative coefficient in P ′, so P ′ has no positive roots
because all its coefficients are positive. So L(P ) is an absolute positiveness bound.

If m < d − 1 we have d − m − 2 ≥ 0, so the derivative P ′ has also negative
coefficients. We denote by A′ the absolute value of the largest negative coefficient
of P ′. We observe that

A′ = max
0≤j≤m+1

{(d − m − j − 1)aj ; coeff(Xd−m−j) < 0}

≤ A · max
0≤j≤m+1

{(d − m − j − 1)}

= A(d − m − 1) .
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It follows that

L(P ′) = 1 +

(

d − m − 1

d
·
A

d

)1/(m+1)

≤ 1 +

(

A

d

)1/(m+1)

= L(P ) .

From this we deduce that L(P ) is a bound for absolute positiveness.

Theorem 6. Let

P (X) = Xd − b1X
d−m1 − · · · − bkXd−mk + g(X) ,

where b1, . . . , bk > 0 and g ∈ R+[X] .
The number

S2(P ) = max{(kb1)
(1/m1), . . . , (kbk)(1/mk)}

is an aboslute positiveness bound for P .

Proof: We put Q(X) = 1
d

P ′(X) and we have

Q(X) = Xd−1 −
d − m1

d
b1X

d−m1−1 − · · · −
d − mk

d
bkXd−mk−1 + g′(X) .

We observe that g′ ∈ R+[X] and

d − mj

d
bj < bj .

We conclude, as in Proposition 2, that S2(P ) > S2(P
′) .

Remark: The bound in Theorem 4 can be extended to polynomials having at
least one sign variation. Most of such results are summarized in A. Akritas [2]
and D. Ştefănescu [13]. These extensions are based on the formula in Theorem 4
and the proof of Theorem 6. It can be proved that they also are absolute.

Applications and Computational Aspects

Because classical orthogonal polynomials have real coefficients and all their ze-
ros are real, any upper bound for the positive roots is a bound for abosolute
positiveness.

,We consider the polynomials

Pn(X) =

⌊n/2⌋
∑

k=0

(−1)k (2n − 2k)!

k!(n − k)!(n − 2k)!
Xn−2k, Legendre

Ln(X) =

n
∑

k=0

(

n

n − k

)

(−1)k

k!
Xk, Laguerre
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and the bounds Nw(P ) =
√

a2
1 − 2a2a0 (Newton, see [9]) and S1(P ) (Theorem

4). They give the followinf bounds for absolute positiveness:

Proposition 7. Let Pn, respectively Ln be the orthogonal polynomials of degree
n of Legendre, respectively Laguerre.

i. The numbers

S1(Pn) =

√

n(n − 1)

2(2n − 1)
and Nw(Pn) =

√

2(2n − 2)!

(n − 1)!(n − 2)!

are bounds for the absolute positiveness Pn .

ii. The numbers

S1(Ln) = n2 and Nw(Ln) =
√

n4 − n2(n − 1)2

are bounds for the absolute positiveness Ln .

Proof: We use Theorem 4 and the bound of Newton. For Legendre polynomials
we have the bound

max

{

(n − 2k + 1)(n − 2k + 2)

k(2n − 2k + 1)
; 1 ≤ k ≤ ⌊n/2⌋

}

which gives S1(Pn) =

√

n(n − 1)

2(2n − 1)
.

We note that S1(Ln) < Nw(Ln). Much better bounds can be obtained using
specific properties of orthogonal polynomials, see W. H. Foster–I. Krasikov [4]
and D. Ştefănescu [12].

Refinements of the Bounds for Absolute Positiveness

Upper bounds for positive roots can be used for computing refined absolute posi-
tiveness bounds. A fruitful method is to express the bounds as quotients between
absolute values of negative and positive coefficients, as in Theorem 4.

A. Akritas, A. Strzeboński and P. Vigklas [1], [2], for example, consider a poly-
nomial

P (X) = αnXn + αn−1X
n−1 + · · · + α0 ∈ R[X] , αn > 0

and represents it as

P (X) = q1(X)−q2(X)+q3(X)−q4(X)+ · · ·+q2m−1(X)−q2m(X)+g(X) , (1)

where all polynomials qi and g have positive coefficients.
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This extends the proof of Theorem 6 in [11]. There we represented the poly-
nomial

Xd − b1X
d−m1 − · · · − bkXd−mk

as
1

k

(

Xd − kb1X
d−m1

)

+ · · · +
1

k

(

Xd − kbkXd−mk

)

, (2)

which allows using the same device as in Theorem 4.

In fact, A. Akritas a.o [1] use the same bound as in Theorem 6 for a polynomial
q2i−1 − q2i , as we did for Xd − biX

d−mi .

In his Theorem 5 from [2], A. Akritas considers the concepts of matching (or
pairing, introduced in [11]) of a positive coefficient with a convenient negative
one, and that of breaking up a positive coefficient into several parts to be paired
with negative coefficients of lower order terms.

In fact, breaking up proved to be useful for pairing positive and negative coeff-
cients. It was used also by D. Ştefănescu [11] for proving that the number S2(P )
is an upper bound for positive roots. In (2) (cf. [11]), the leading coefficient 1
is broken into k equal parts. A. Akritas [2] called this device ”Cauchy’s leading–
coefficient implementation” of his Theorem 5.

Remark: In the Theorem of Akritas [2] it is assumed that P (X) has the rep-
resentation (1), where all polynomials qi and g have positive coefficients. This
can be realised for any polynomial with real coefficients having at least one sign
variation, as proved by D. Ştefănescu [13]:

Lemma 8. Any polynomial P ∈ R[X] having at least one sign variation can be
represented as

P (X) = c1X
d1 − b1X

m1 + c2X
d2 − b2X

m2 + · · ·+ ckXdk − bkXmk + g(X) , (3)

with g ∈ R+ , d1 > d2, . . . , dk, ci > 0, bi > 0 , di > mi for all i.

Note that the representation (3) is not unique. A. Akritas [2] used in [2]
several representations of P . His main implementations, ”first–λ” and ”local–
max” are based on the breaking of a coefficient into equal parts, respectively by
powers of 2 .

Extending the proof of Theorem 6 from [11], we have obtained in [13] a more
general ound that involves two families of parameters (γij) and (betai). A related
procedure was used by P. Batra–V. Sharma [3] for multivariate polynomials,
starting with the matrix of pounds (δij) while in [13] we used a matrix (γij) and
a vector (βj) .
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References
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[10] G. Szegö: Orthogonal Polynomials, Proc. Amer. Math. Soc. Colloq. Publ.,
vol. 23, Providence, RI (2003).
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