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Abstract

We first analyse the set of positive integers n > 5 for which n − a
2 is

four times a prime number for any positive odd integer a such that a
2
≤ n

and for which n − a
2 is a prime number for any positive even integer a

such that a
2
≤ n. There are only three numbers with these properties:

n = 21, 77, 437. The second aim is to show that there are only five prime
numbers p > 13 such that p− a

2 is four times a prime number for any odd
positive integer a > 1, a

2
≤ p ; namely p = 17, 37, 101, 197, 677. The third

purpose is to show that there are only four positive integers n ≡ 2 (mod 8)
such that n− a

2 is the double of a prime number for any nonnegative even
integer a such that a

2
≤ n; namely n = 10, 26, 62, 362. The tools for proving

these results belong to algebraic number theory. The key is to point out
some connections between these additive problems and the class numbers
for some quadratic real fields.
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1 Introduction

There are only nine principal quadratic imaginary fields Q(
√

d), namely for

−d = 1, 2, 3, 7, 11, 19, 43, 67, 163.

The statement goes back to Gauss; but this problem was posed in the language of
the quadratic forms. Heegner (see [11]) succeeded to solve this problem but there
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was a gap in his proof. Complete proofs were given by Stark (see [14]) and Baker
(see [2]). The similar problem of finding the principal quadratic real fields is still
an open problem. However, in the last years several progresses arose. A. Biró
(see [3] and [4]) proved in 2003 two important results: Yokoi’s conjecture which
asserts that h(m2 +4) = 1 only for six values of m = 1, 3, 5, 7, 13, 17 (in the above
result, m2 + 4 has to be a squarefree positive integer) and Chowla’s conjecture
which says that h(4m2 + 1) = 1 only for six values of m = 1, 2, 3, 5, 7, 13 (in
the above result, 4m2 + 1 has to be a squarefree positive integer). In the above
formulas h(d) is the class number for the quadratic field Q(

√
d) (d is a squarefree

integer). In 2007, Byeon, Kim and Lee proved (see [5]) Mollin’s conjecture which
says that h(m2 − 4) > 1 whenever m > 21 (in the above result, m2 − 4 has to be
a squarefree positive integer).

We will use these results to solve some additive problems.
In [9] the second author proved the following.

Theorem 1.1. Let p > 3 be a prime number such that p − a2 is four times a
prime number for any positive odd integer a such that a2 ≤ p. Then:

i) p = x2 + 4, where x is a prime number.

ii)
(

p

q

)

= −1, for any prime number q such that 2 < q < x.

iii) p−a2 is a prime number for any even nonnegative integer a 6= 2 such that
a2 < p.

iv) The ring Z[
1+

√
p

2
] is principal.

v) h(−4p) = x + 1 if x ≡ 1 (mod 4) and h(−4p) = x − 1 if x ≡ 3 (mod 4),
where h(−4p) is the class number of the quadratic imaginary field Q(i

√
p).

vi) There are only six prime numbers with the property asserted in the state-
ment of the theorem; namely 5, 13, 29, 53, 173, 293.

Remark: We have to mention that we considered in this theorem (as the
ancient scholars did) 1 as a prime number. From now on in this paper we will
not consider 1 as a prime number.

The key point of the proof of Theorem 1.1 was a result of Biró (see [3]).
In [7] and [8] the second author studied the following.

Problem: Which are the positive integers n such that n − a2 is a prime
number for any positive even integer a such that a2 ≤ n and that n − a2 is four
times a prime number for any positive odd integer a such that a2 ≤ n.

We proved the following.

Theorem 1.2. Let n > 5 be a positive integer such that n−a2 is a prime number
for any positive even integer a such that a2 ≤ n and four times a prime number
for any positive odd integer a such that a2 ≤ n. Then:

i) n = p(p + 4), where p and p + 4 are prime numbers, and

ii)
(

n

q

)

= −1 for any prime number q such that 2 < q < p.

iii) h(−4n) = p + 1, where h(−4n) is the class number of the quadratic imag-
inary field Q(i

√
n).
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2 21, 77, 437.

We prove in this section that there are only three numbers with the properties
stated in Theorem 1.2.

Theorem 2.1. Let n > 5 be a positive integer such that n−a2 is a prime number
for any positive even integer a such that a2 ≤ n and four times a prime number
for any positive odd integer a such that a2 ≤ n. Then n = 21, 77 or 437.

Proof: Let us first prove that the ring R = Z[1+
√

n

2
] is principal (that is, the

class number for the field Q(
√

n) is one). It is sufficient (see [1], Corolary 4.3.7.,

page 224) to show that any maximal ideal I of R with N(I) <
√

n

2
is principal

(
√

n

2
is Minkowski’s constant for the field Q(

√
n)). Since n ≡ 5 (mod 8), 2R is a

maximal ideal (see [1], Theorem 3.4.19., page 160). Let q > 2 be a prime number

which is smaller than the Minkowski’s constant
√

n

2
. Then

2 < q <

√
n

2
=

√

p2 + 4p

2
<

p + 2

2
< p.

Taking into account the inequalities 2 < q < p and the second statement of
Theorem 1.2, we get

(

n

q

)

= −1.

But this means that qR is a maximal ideal (see [1], Theorem 3.4.18., page 158).

We proved that any maximal ideal I of R with N(I) <
√

n

2
is principal, hence R =

Z[1+
√

n

2
] is principal. Byeon, Kim and Lee (see [5]) proved Mollin’s conjecture

which says that h(m2 − 4) > 1 whenever m > 21 (in the above result, m2 − 4 has

to be a squarefree positive integer). This implies in our case (since R = Z[1+
√

n

2
]

is principal and n = (p + 2)2 − 4) that p + 2 ≤ 21 and p ≤ 19. It is now
straightforward to check that only n = 21, 77, 437 are solutions for our problem
(221 = 13 · 17 is not a solution for our problem because 221 = 1 + 4 · 5 · 11).

3 17, 37, 101, 197, 677.

Theorem 3.1. Let p > 13 be a prime number such that p − a2 is four times a
prime number for any positive odd integer a > 1 such that a2 ≤ p. Then:

i) p = 4x2 + 1, where x is a prime number.

ii)
(

p

q

)

= −1, for any prime number q such that 2 < q < x.

iii) The ring Z[
1+

√
p

2
] is principal.

iv) There are only five prime numbers with the property asserted in the state-
ment of the theorem: 17, 37, 101, 197, 677.
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Remark: Theorem 1.1 and Theorem 3.1 look similar but they are different.
Let us remember that in Theorem 1.1 we consider 1 as a prime number which
is not the case in Theorem 3.1 where we consider that 1 is not a prime number.
There is also another difference. In Theorem 1.1 a is a positive odd integer
whereas in Theorem 3.1 a is an odd integer, a ≥ 3.

Proof: Let p be a prime number with the properties asserted in the theorem.
Since p − 9 = 4r where r is a prime number, we get p ≡ 1 (mod 4). If p ≡ 1
(mod 8), then 4r = p−9 ≡ 0 (mod 8), hence r = 2, p = 17. We may now suppose
that p ≡ 5 (mod 8). According to Fermat, we find a positive integer x and an
odd positive integer b such that p = 4x2 + b2. If b 6= 1 then we arrive to a
contradiction since 4x2 = p− b2 should be four times a prime number. Therefore
p = 4x2 + 1, where x is an odd integer with x > 1. Let us suppose that x is
not a prime number. Then x = qa, where q is a prime number and a is an odd
positive integer with a > 1. We have 1 < 2q−1 < 2q < x and (2q−1)2 < x2 < p.
Therefore, according to the hypothesis, p− (2q−1)2 has to be four times a prime
number. But p − (2q − 1)2 ≡ p − 1 ≡ 0 (mod q) and the only possibility is that
p − (2q − 1)2 = 4q and we obtain the contradiction

p = (2q − 1)2 + 4q = 4q2 + 1 < 4x2 + 1 = p.

Therefore x should be a prime number and we proved the first statement of the
theorem. As for the second statement, let us suppose that there exists a prime

number q such that 2 < q < x and
(

p

q

)

= 1. Therefore there exists an odd

positive integer c < q such that p ≡ c2 (mod q). We have c2 < q2 < x2 <

4x2 + 1 = p and we deduce that p = c2 + 4q if c 6= 1. But in this case we get a
contradiction since

p = c2 + 4q < q2 + 4q < x2 + 4x < 4x2 + 1 = p.

The only possibility left is c = 1 and q divides p− 1 = 4x2. Because q > 2 and x

is a prime number we get q = x. This is a contradiction since q < x.

Let us now prove that the ring R = Z[
1+

√
p

2
] is principal (that is, the class

number for the field Q(
√

p) is one). It is sufficient (see [1], Corolary 4.3.7., page

224) to show that any maximal ideal I of R with N(I) <
√

p

2
is principal (

√
p

2
is

Minkowski’s constant for the field Q(
√

p)). Since p ≡ 5 (mod 8), we get that 2R
is a maximal ideal (see [1], Theorem 3.4.19., page 160). Let q > 2 be a prime

number which is smaller than the Minkowski’s constant
√

p

2
. Then

2 < q <

√
p

2
=

√
4x2 + 1

2
<

2x + 1

2
< x + 1.

If 2 < q < x we take into account the second statement of the theorem and we
see that

(

p

q

)

= −1.
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But this means that qR is a maximal ideal (see [1], Theorem 3.4.18., page 158).

Next we analyse the case q = x. Since
(

p

q

)

= 1, we get that qR = Q1Q2, where

Q1, Q2 are different maximal ideals with N(Q1) = N(Q2) = q (see again [1],
Theorem 3.4.18., page 158). The polynomial f(z) = z2 − z + 1−p

4
modulo q is

z2 − z = z(z − 1) and therefore

Q1 = qR +
1 +

√
p

2
R =

2q + 1 +
√

p

2
R.

The last equality follows since
2q+1+

√
p

2
∈ Q1 and N(

2q+1+
√

p

2
) = N(Q1) = q.

Therefore Q1 and Q2 are principal ideals.

We proved that any maximal ideal I of R with N(I) <
√

p

2
is principal, hence

R = Z[
1+

√
p

2
] is principal. But Biró proved (see [4]) Chowla’s conjecture which

says that h(4m2 + 1) = 1 only for six values of m = 1, 2, 3, 5, 7, 13 (in the above
result, 4m2 + 1 has to be a squarefree positive integer). This implies in our case

(since R = Z[
1+

√
p

2
] is principal and p = 4x2 +1) that x = 2, 3, 5, 7, 13. Therefore

p = 17, 37, 101, 197, 677 are the only solutions for our problem. The solution
x = 1, p = 5 does not fit the statement of the theorem.

Remark: We will now use the Gauss’s formula (see the fifth section of the
celebrated book Disquisitiones Arithmeticae):

r3(p) = 12h(−4p),

where by h(−4p) we denote the cardinal of the ideal class group for the field
Q(i

√
p) and by r3(p) the number of ordered sets (x, y, z) such that x, y, z are

integers satisfying the equality p = x2 + y2 + z2. In the above formula p ≡ 1
(mod 4). If p has the properties stated in the theorem we can show (using the
above formula) that h(−4p) = 2x + 4 when x is a prime number such that x ≡ 1
(mod 4) and that h(−4p) = 2x − 4 when x is a prime number such that x ≡ 3
(mod 4). Of course, Biró’s result implies this statement but we want to notice
that the Gauss’s formula can also solve the problem of computing the above class
numbers.

4 10, 26, 122, 362.

Theorem 4.1. Let n ≡ 2 (mod 8) be a positive integer such that n − a2 is the
double of a prime number for any even nonnegative integer a such that a2 ≤ n.
Then:

i) n = x2 + 1, where x is a prime number.

ii)
(

n

q

)

= −1, for any prime number q such that 2 < q < x.

iii) The ring Z[
√

n] has class number two.
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iv) There are only four numbers with the property asserted in the statement
of the theorem: n = 10, 26, 122, 362.

Proof: Let n be a number with the properties asserted in the theorem. Since
n−0 = 2r where r is a prime number and n ≡ 2 (mod 8), we get r ≡ 1 (mod 4).
According to Fermat there exist positive odd integers x, y such that n = x2 + y2.
If x 6= 1 and y 6= 1, let p be an odd prime such that p divides y. Obviously,
p ≤ y =

√
n − x2 ≤

√
n − 9. We have n ≡ x2 (mod p) and therefore we can

find an even nonnegative integer a such that n ≡ a2 (mod p) and a < p <
√

n.
According to the properties of n, we have n = a2 + 2p. But we obtained a
contradiction since

n = a2 + 2p ≤ (p − 1)2 + 2p = p2 + 1 ≤ n − 8.

Therefore x or y should be equal to one. Let us suppose that y = 1.
Let us suppose that x is not a prime number. Then x = pa, where p is a

prime number and a is an odd positive integer, a > 1. Obviously, 3p <
√

n. We
have n ≡ 1 (mod p) and therefore we can find an even nonnegative integer a such
that n ≡ a2 (mod p) and a < p <

√
n. According to the properties of n, we have

n = a2 + 2p. But we obtained a contradiction since

n = a2 + 2p ≤ (p − 1)2 + 2p = p2 + 1 <
n

9
+ 1 < n.

Therefore x should be a prime number and we proved the first statement of
the theorem. As for the second statement, let us suppose that there exists a

prime number q such that 2 < q < x and
(

n

q

)

= 1. Therefore there exists an

even positive integer c < q such that n ≡ c2 (mod q). We have c2 < q2 < x2 <

x2 + 1 = n and we deduce that n = c2 + 2q. But in this case we also get a
contradiction since

n = c2 + 2q ≤ (q − 1)2 + 2q = q2 + 1 < x2 + 1 = n.

Let us now prove that the ring R = Z[
√

n] has class number two (that is,
the class number for the field Q(

√
n) is two). It is sufficient (see [1], Corolary

4.3.7., page 224) to analyse any maximal ideal I of R with N(I) <
√

n (
√

n is
Minkowski’s constant for the field Q(

√
n)). Since n ≡ 2 (mod 4) we get that

2R = Q2, where Q is a maximal ideal with N(Q) = 2. Let q > 2 be a prime
number which is smaller than Minkowski’s constant

√
n. If 2 < q < x, taking

into account the second statement of the theorem, we see that

(

n

q

)

= −1.

But this means that qR is a maximal ideal (see [1], Theorem 3.4.18., page 158).

Now we have to analyse the case q = x. Since
(

n

q

)

= 1, we have qR = Q1Q2,
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where Q1, Q2 are different maximal ideals with N(Q1) = N(Q2) = q. The
polynomial f(z) = z2 − (x2 +1) modulo q is z2 − 1 = (z +1)(z− 1) and therefore

Q1 = qR + (1 +
√

1 + q2)R.

We have QQ1 = (q + 1 +
√

1 + q2)R. The last equality follows since (q + 1 +
√

1 + q2) ∈ Q1 and N(q + 1 +
√

1 + q2) = 2q. To show that the ring Z[
√

n] has
class number two it is enough to prove that Q is not a principal ideal. Let us
suppose that Q is a principal ideal. Then Q = (a + b

√
x2 + 1)R, where a, b are

integers such that
a2 − nb2 = ±2.

The last equality holds since N(Q) = 2. We know that n = 2r, where r is a prime
number such that r ≡ 1 (mod 4). Let us suppose that r ≡ 1 (mod 8). We have
n = A2 + 2B2, where A,B are integers (see [10], Theorem 1, page 127). Since
n is even, we get that A is even and therefore n − A2 = 2B2 is the double of a
prime number which is obviously not true. Hence r ≡ 5 (mod 8). But we have
seen above that

a2 − nb2 = ±2.

Because n = 2r, we have a2 ≡ ±2 (mod r). But this is not true since r ≡ 5
(mod 8) and in this case

(±2

r

)

= −1. Therefore Q is not a principal ideal and we
get that the ring Z[

√
n] has class number two.

Byeon and Lee proved (see [6]) that h(x2 + 1) = 2 only for four values of
x = 3, 5, 11, 19 (in the above result, x is an odd positive integer and x2 + 1 has
to be a squarefree positive integer). Previously this was proved by R. A. Mollin
and H. C. Williams under the assumption of the generalized Riemann hypothesis
(see [13]). This implies in our case (since R = Z[

√
n] has class number two and

n = x2 + 1) that x = 3, 5, 11, 19. Therefore n = 10, 26, 122, 362 are the only
solutions for our problem.

Remark 1: We will use now the Gauss’s formula (see the fifth section of the
celebrated book Disquisitiones Arithmeticae)

r3(n) = 12h(−4n),

where by h(−4n) we denote the cardinal of the ideal class group for the field
Q(i

√
n) and by r3(n) the number of ordered sets (x, y, z) such that x, y, z are

integers satisfying the equality n = x2 + y2 + z2; in the above formula n ≡ 2
(mod 8). If n has the properties stated in the theorem we can show (using the
above formula) that h(−4n) = x + 1 when x is a prime number such that x ≡ 1
(mod 4) and that h(−4n) = x − 1 when x is a prime number such that x ≡ 3
(mod 4). Of course, Byeon’s and Lee’s result implies this statement but we want
to notice that the Gauss’s formula can also solve the problem of computing the
above class numbers.
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Remark 2: We can also consider the problem of finding the positive integers
n ≡ 6 (mod 8) such that n − a2 is the double of a prime number for any even
nonnegative integer a such that a2 ≤ n. Following the same path as above we
can prove that n = (4y)2−2, the ring Z[

√
n] is principal and h(−4n) = 4y, where

h(−4n) is the cardinal of the ideal class group for the field Q(i
√

n). A result of
Mollin and Williams (see [12]) ensures us that n = 14, 62, 398 with one possible
exception, but the existence of this possible exception has not been settled yet.
This remark and the above theorem is connected with the problem of finding all
the positive integers N such that N −2n2 is a prime for any nonnegative integers
n such that 2n2 ≤ N . Examples of such numbers are:

5, 7, 13, 31, 61, 181, 199.

From what we saw above it follows that besides these numbers it could only exist
one more number N with the afore-mentioned property.
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