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Abstract

We give strong bounds for putative counterexamples to a conjecture
of Terai (1994) asserting that if a, b, c are fixed coprime integers with
min(a, b, c) > 1 such that a2 + b2 = cr for a certain odd integer r > 1, then
the equation ax + by = cz has only one solution in positive integers with
min(x, y, z) > 1. Moreover, we confirm the conjecture in case z is multiple
of 3.
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1 The results

The statement that for any coprime integers a, b, c with min(a, b, c) > 1 there
exists at most one solution (x, y, z) in integers greater than 1 to the equation

ax + by = cz (1)

is nowadays referred to as Terai’s conjecture. It is still open in full generality,
only particular instances have been confirmed (see, e.g., [14]). Recent results have
been established in the case

a ≡ 2 (mod 4), b ≡ 3 (mod 4), gcd(a, b) = 1, r > 1 odd, a2 + b2 = cr. (2)

In this case it is known that (2, 2, r) is the only solution to the equation (1) if a
single one of the following additional conditions holds:

(α) (Cao [2]) c is a prime power,
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(β) (Le [11]) c > 3 · 1027 and r > 7200,

(γ) (Cipu-Mignotte [5]) a or b is a prime power.

These papers contain references to the work of other authors who have pointed
out conditions under which the conjecture can be proved.

Bounds for the size of solutions can be derived from Yu’s work on linear forms
in p-adic logarithms. Hirata-Kohno [8] gives the following answer to the question:
How big can be the components of a solution to Eq. (1)?

Theorem 1.1. Suppose that c is odd and has the prime decomposition c =
pe1

1
pe2

2
· · · pes

s . Assume moreover that there exists an integer g ≥ 2 coprime with
c such that

vpi
(ag − 1) ≥ ei and vpi

(bg − 1) ≥ 1, i = 1, 2, . . . , s.

Then we have
max{|x|, |y|, |z|} ≤ 2288

√
abc

(

log(abc)
)3

.

The main result of [5] is that there are at most finitely many values (c, r) as
above for which Terai’s conjecture can be refuted.

Theorem 1.2. There are at most finitely many quadruples (a, b, c, r) for which (2)
holds and the equation (1) has more than one solution in integers x, y, z > 1.
For all of these quadruples, we have r < 770.

In order to prove this result, the authors study the positive solutions (r, y, z)
to the system of Diophantine equations

a2 + b2 = cr, a2 + by = cz, (3)

where

r, z > 1 are odd, a ≡ 2 (mod 4), b ≡ 3 (mod 4), and gcd(a, b) = 1. (4)

It can be shown that it necessarily holds y ≡ 2 (mod 4), so that y ≥ 6. Com-
bining the study of arithmetical properties of hypothetic solutions with extensive
computations, in [5] it is established that the existence of at least one solution to
the system (3) entails the following bounds:

c > 4 · 1010, y ≤ 634, r ≤ 769, z ≤ 983.

The aim of this note is to improve this by pointing out stronger necessary
conditions that must be satisfied by hypothetic solutions of the system under
investigation.

Theorem 1.3. If the system (3) has solutions subject to restrictions from (4)
then:
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a) c > 1024000, a > 1077.668 b, b > 1038.83 z,

b) y ≤ 2z − 4, y ≤ 618,

c) for y = y0 one has r ≤ r0, with y0, r0 given as in Table 1, and

d) for r ≤ r0 one has z ≤ z0, where r0 and z0 are given in Table 2.

y0 6 10 14 18 22 30 50 70 310
r0 387 259 219 197 185 173 159 153 141

Table 1: Bounds for r

r0 3 5 7 9 11 21 31 167
z0 147 157 167 175 185 197 205 375

Table 2: Bounds for z

In a different vein, we can confirm Terai’s conjecture under an extra mild
assumption.

Theorem 1.4. The system (3) has no solutions subject to restrictions from (4)
in which z is divisible by 3.

It is possible to prove further necessary conditions for hypothetical solutions.
For instance, the next result helps to shrink the search space for any instance of
the system of interest.

Theorem 1.5. Let (x, y, z) be a solution to (3) satisfying the hypotheses from
Eq. (4). If y has a prime factor greater than 17 which is congruent to 1 modulo
4 then z is not divisible by 5.

In the next section we will describe the method used to establish such results.
We largely follow [5] and therefore do not write down here all the details. However,
we strive to provide enough explanations, so that the reader understand and
possibly replicate what we have done.

2 The approach

As is well-known, the equation

a2 + b2 = cr (5)

implies that c is a sum of two squares, which are coprime if a and b are sup-
posed so. All such decompositions for a given value of c can be obtained by
using Cornacchia’s algorithm (see, for instance, [1]). Knowing the structure of



234 Mihai Cipu and Maurice Mignotte

integer solutions to (5) (cf. [12, pp.122–123]), we then obtain the values of a
and b corresponding to each decomposition c = u2 + v2, with u even, v odd and
gcd(u, v) = 1. The pairwise comparison of y, r, z is possible thanks to the next
result, proved in [5, Lemma 3.4].

Lemma 2.1. Assume all conditions (3)–(4) are fulfilled. Then:

a) If for some µ > 0 one has a ≥ cz/µ then 2z < µr.

b) If for some λ > 0 one has b ≥ cr/λ then yr < λz.

c) If µ1 > 0, µ2 > 0 are such that µ1µ2 ≤ 2y then a ≥ cz/µ1 and b ≥ cr/µ2

cannot simultaneously hold.

Another key ingredient of our procedure is a very recent version of Laurent [9]
for the main theorem of Laurent-Mignotte-Nesterenko [10]. The novelty is the
appearance of an extra parameter on which the lower bound for a linear form in
logarithms

Λ = b1 log α1 − b2 log α2,

depends. Here, α1 and α2 are nonzero algebraic numbers, both different from
1, and b1 and b2 are positive integers. By carefully exploiting the additional
degree of liberty thus gained, it is possible to provide improved lower bounds
for |Λ|. These in turn imply inequalities of the type taken care of by part c)
of Lemma 2.1. In this way one can bound from above r. A similar technique,
combining Laurent’s theorem with part a) of Lemma 2.1, allows us to derive
bounds for z.

Essentially the same arguments have been employed in [5, Prop. 5.5] to prove
that one always has y ≤ 2z +4 and even better y ≤ 2z − 4 for y ≥ 34. Therefore,
an upper bound on z readily yields an upper bound on y.

In the proofs of results from our previous work [5], we have applied Cornac-
chia’s algorithm for all c < 4 · 1010. To obtain the upper bounds for y, r and z
reported in this paper we extended the computations for c < 1011. Going beyond
this threshold is extremely time consuming in the computational environment
we have access to. In order to improve the value of c for which the system (3)
is solvable under the conditions stated in (4), we have made extensive use of
Laurent’s theorem. Namely, we made further computations using the already
obtained bounds on r and z and studied suitable linear forms in the logarithms
of algebraic numbers numerically. After about one week (and in several steps) we
could verify that the conditions (3)–(4) do not simultaneously hold if c < 1024000.

We resume our computations by incorporating the piece of information just
gained c > 1024000. Since we already know that y ≤ 634, it readily follows

c > 1024000 y/634 > 1037.854 y. (6)

Put µ = b2/cr. As cz > by, we have

µy/2 < cz−ry/2 ≤ c−2 < 10−75.708 y,
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and therefore

a = b
√

µ−1 − 1 > b
√

10151.416 − 1 > 1075.7 b. (7)

Since a2 < cz−2 and c > 1024000, we have by > (1 − 10−48000)cz, and the
inequality (6) yields

b > 1037.85 z. (8)

This together with r < 770 and the upper bound

y < z

(

2 +
log

(

1 + (r + 1)2/π2
)

log b

)

obtained in the proof of Lemma 3.7 from [5] give at once

y < 2z +
log

(

1 + 7702/π2
)

37.85 log 10
< 2z + 1,

so that y ≤ 2z. The equality can not hold in this relation because Darmon and
Merel [7] have proved that the equation Xn+Y n = Z2 has no solutions in nonzero
integers when n ≥ 4. We thus obtained the first inequality stated in part b) of
Theorem 1.3. In order to prove the second inequality in part b) and the remaining
claims, we apply again Laurent’s result and get z ≤ 311 as soon as y ≥ 602.

The stronger lower bounds for a and b stated in part a) are derived by iterating
the above reasoning, after replacing (6) by

c > 1024000 y/618 > 1038.834 y.

Now we come to the proof of Theorem 1.4. In [5, Prop. 5.4] the assertion
is established provided that y has a prime divisor p > 7, p 6= 31, by using a
theorem of Chen [3]. This hypothesis can be removed thanks to results brought
to our attention by M.A. Bennett. In [6], Dahmen shows that A2 +B62 = C3 and
A2 + B10 = C3 have no solutions in coprime nonzero integers. In the case when
7 divides y, the conclusion of our theorem follows from [13]. Since it is known
that 16 + 23 = 32 and permutations thereof are the only equations of the type
A2 + B6 = C3 solvable in coprime nonzero integers, the proof is complete.

Theorem 1.5 follows similarly from a difficult result of Chen [4] concerning
the Diophantine equation A2 + B2p = C5.
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