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2 Applications to Grothendieck categories and torsion theories

In this section we apply the lattice-theoretical results established in the previ-
ous sections to Grothendieck categories and module categories equipped with a
hereditary torsion theory.

Throughout this section G will denote a fixed Grothendieck category, that is,
an Abelian category with exact direct limits and with a generator. For any object
X ∈ G, L(X) will denote the lattice of all subobjects of X. It is well-known that
L(X) is an upper continuous modular lattice (see e.g., Stenström [19, Chapter
4, Proposition 5.3, and Chapter 5, Section 1]). For all undefined notation and
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terminology on Abelian categories the reader is referred to Albu and Năstăsescu
[3] and/or Stenström [19].

We say that an object X ∈ G is subdirectly irreducible, abbreviated SI, if
the lattice L(X) is subdirectly irreducible. More generally, if P is any property
on lattices, we say that an object X ∈ G is/has P if the lattice L(X) is/has
P. Thus, we obtain the concepts of coirreducible (uniform) object, completely
coirreducible object, irreducible subobject of an object, completely irreducible (CI)
subobject of an object, object rich in completely irreducibles (RCI), object rich
in coirreducibles (RC), etc. Similarly, a subobject Y of an object X ∈ G is/has
P if the element Y of the lattice L(X) is/has P.

If we specialize Corollary 0.6, Theorems 1.16, and Proposition 1.23 (of the
first part of this paper) for L = L(X), we obtain at once.

Proposition 2.1. If X is a semi-Artinian object of a Grothendieck category G,
then any irreducible subobject of X is CI. ¤

Theorem 2.2. The following assertions are equivalent for a nonzero object X
of a Grothendieck category G.

(1) X is RC.

(2) X is an essential extension of a direct sum of coirreducible subobjects of X.

(3) The injective hull E(X) of X is an essential extension of a direct sum of
indecomposable injective objects.

(4) 0 has an irredundant irreducible decomposition in every nonzero subobjects
of X. ¤

Theorem 2.3. The following statements are equivalent for a nonzero object X
of a Grothendieck category G.

(1) X is RCC.

(2) Every subobject of X contains a simple subobject.

(3) The socle Soc(X) of X is essential in X.

(4) For every nonzero subobject Y of X there exists a nonempty set IY such
that 0 can be written as an irredundant intersection

0 =
⋂

i∈IY

Xi

of maximal subobjects Xi of Y , i ∈ IY , in other words, the Jacobson
radical J(Y ) of Y is zero and an irredundant intersection of maximal
subobjects. ¤
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As in Năstăsescu and Popescu [17], a Grothendieck category G is said to be an
L.C.-category if each nonzero object X of G contains a coirreducible subobject,
in other words, if the lattice L(X) is RC for each 0 6= X ∈ G. The next result
is a very particular case of Theorem 2.2.

Corollary 2.4. The following statements are equivalent for a Grothendieck cat-
egory G.

(1) G is an L.C.-category.

(2) Every nonzero object X of G is an essential extension of a direct sum of
coirreducible subobjects of X.

(3) For every nonzero object X of G, the injective hull E(X) of X is an
essential extension of a direct sum of indecomposable injective objects.

(4) For every nonzero object X of G, 0 has an irredundant irreducible decom-
position in every nonzero subobjects of X. ¤

Remarks 2.5. The equivalencies (1) ⇐⇒ (2) ⇐⇒ (3) in Corollary 2.4 are pre-
cisely the contents of Năstăsescu and Popescu [17, Proposition 1]. ¤

Proposition 2.6. An object X of a Grothendieck category G is semi-Artinian
if and only if every subobject X has an irredundant completely irreducible decom-
position in X. ¤

Proposition 2.7. Let G be a Grothendieck category, and let X ∈ G. If X has
Gabriel dimension, then X is RC.

Proof: Apply Examples 1.3 (3) to the lattice L = L(X).

Recall that the concept of Gabriel dimension of an Abelian category A, due to
Gabriel [11], has been originally defined using a transfinite sequence of localizing
subcategories of A. For a Grothendieck category G, the fact that G has Gabriel
dimension can be equivalently expressed by saying that G possess a generator G
having Gabriel dimension, that is, the lattice L(G) of all subobjects of G has
Gabriel dimension.

Corollary 2.8. (Năstăsescu and Popescu [17, Remarques 1]). Any Grothendieck
category having Gabriel dimension is an L.C.-category.

We end this paper by presenting some applications of our lattice theoretical
results to module categories equipped with a hereditary torsion theory.

Throughout the remainder of the paper τ = (T ,F) will be a fixed hereditary
torsion theory on Mod-R, and τ(M) will denote the τ -torsion submodule of a
right R-module M . The set Fτ := { I 6 RR | R/I ∈ T } is called the Gabriel
topology associated with τ .
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For any MR we denote Satτ (M) = {N |N 6 M, M/N ∈ F }, and for any
N 6 M we denote by N =

⋂

{C |N 6 C 6 M, M/C ∈ F } the τ -closure (or
τ -saturation, or τ -purification) of N in M ; N is called τ -closed (or τ -saturated ,
or τ -pure) if N = N . Note that N/N = τ(M/N) and

Satτ (M) = {N |N 6 M, N = N }.

It is known that Satτ (M) is an upper continuous modular lattice for any MR

(see Stenström [19, Chapter 9, Proposition 4.1]).
Recall that a module MR is said to be τ -simple if the lattice Satτ (M) has

exactly two elements; i.e., Satτ (M) = {τ(M), M} and M 6∈ T . A τ -simple
τ -torsionfree module is called τ -cocritical . Note that the atoms of the lattice
Satτ (M) are exactly the τ -closed τ -simple submodules of M . A right ideal I of
R is called τ -critical if the right R-module R/I is τ -cocritical. The τ -socle of M
is defined by Socτ (M) =

∑

{C |C 6 M, C is τ -cocritical}. Note that, by Albu
[1, Proposition 1.15], Socτ (M) is exactly the socle of the lattice Satτ (M). A
submodule N of M is said to be τ -maximal if the module M/N is τ -cocritical.
The meet of all τ -maximal submodules is called the τ -Jacobson radical of M
and denoted by Jτ (M); if M fails to have any τ -maximal submodules then we
set Jτ (M) = M .

For all undefined notation and terminology on torsion theories the reader is
referred to Albu and Năstăsescu [3], Golan [12], and/or Stenström [19].

As in Albu, Iosif, and Teply [2], a module MR is said to be τ -subdirectly
irreducible, abbreviated τ -SI, if the lattice Satτ (M) is subdirectly irreducible.
More generally, if P is any property on lattices, we say that a module MR

is/has τ - P if the lattice Satτ (M) is/has P. Since the lattices Satτ (M) and
Satτ (M/τ(M)) are canonically isomorphic, we deduce that MR is τ - P if and
only if M/τ(M) is τ - P. Thus, we obtain the concepts of a τ -Artinian module,
τ -Noetherian module, τ -semi-Artinian module, τ -coirreducible (uniform) mod-
ule, τ -completely coirreducible module, module rich in τ -coirreducibles, abbre-
viated τ -RC, module rich in τ -completely coirreducibles, abbreviated τ -RCC,
module rich in τ -completely irreducibles, abbreviated τ -RCI, etc. We say that
a submodule N of MR is/has τ - P if its closure N , which is an element of
Satτ (M), is/has P. Thus, we obtain the concepts of a τ -irreducible submodule
of a module, τ -completely irreducible submodule of a module, abbreviated τ -CI,

etc. Since N = N , it follows that N is/has τ - P if and only if N is/has τ - P.
Before giving specializations of the latticial results from the previous section

to the lattice Satτ (M) we will present some intrinsic characterizations, that
is, without explicitly referring to the lattice Satτ (M), of τ -irreducible and τ -
completely irreducible submodules of a module.

Proposition 2.9. The following assertions are equivalent for a submodule N of
a module MR.

(1) N is τ -irreducible.
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(2) M/N 6∈ T and for any submodules P and Q of M with N ⊆ P ∩Q and
(P ∩ Q)/N ∈ T one has P/N ∈ T or Q/N ∈ T .

(3) M/N 6∈ T and for any submodules P and Q of M with N = P ∩Q one
has P/N ∈ T or Q/N ∈ T .

Proof: (1) =⇒ (2): First, note that since N is τ -irreducible, N 6= M , i.e.,
M/N 6∈ T . If N ⊆ P ∩Q and (P ∩Q)/N ∈ T , then N = P ∩ Q = P ∩Q, hence
N = P or N = Q because N is τ -irreducible, i.e., N is an irreducible element of
the lattice Satτ (M). Thus P/N ⊆ P/N = N/N ∈ T or Q/N ⊆ Q/N = N/N ∈
T , and so, P/N ∈ T or Q/N ∈ T , as desired.

(2) =⇒ (3): Let P, Q 6 M with N = P ∩Q. Then N/N = (P ∩Q)/N ∈ T ,
so P/N ∈ T or Q/N ∈ T .

(3) =⇒ (1): If N = X ∩ Y with X, Y ∈ Satτ (M), then X/N ∈ T or
Y/N ∈ T by hypothesis, and so N = X = X or N = Y = Y . Now observe
that N 6= M since M/N 6∈ T . Consequently N is an irreducible element of the
lattice Satτ (M), in other words, N is τ -irreducible.

Corollary 2.10. The following assertions are equivalent for a module MR.

(1) M is τ -coirreducible.

(2) M 6∈ T and for every A, B 6 M with A∩B ∈ T one has A ∈ T or B ∈ T .

In particular, if M ∈ F , then M is τ -coirreducible ⇐⇒ M is coirreducible.

Proof: M is τ -coirreducible if and only if 0 is a τ -irreducible submodule of M ,
so apply Proposition 2.9 for N = 0.

Remarks 2.11. A module M ∈ F which is τ -completely coirreducible is not
necessarily completely coirreducible. Indeed, consider the torsion theory τ0 =
(T0,F0) on the ring R = Z associated with the Gabriel topology F0 on Z

consisted of all nonzero ideals of Z. Note that this is the “localization at 0”
Gabriel topology F0 defined by the prime ideal 0 of Z, T0 is the class of all
usual torsion Abelian groups, and F0 is the class of all usual torsionfree Abelian
groups. Observe that the lattice Satτ0

(Z) = { 0, Z} has a unique atom Z, so Z

is τ0-SI, i.e., τ0-completely coirreducible, but it is not completely coirreducible
because

⋂

n∈N∗ nZ = 0 and nZ 6= 0 for all n ∈ N
∗. ¤

In order to extend the characterization of τ -irreducible submodules in Propo-
sition 2.9 to τ -completely irreducible submodules, we introduce below the follow-
ing definition.

Definition 2.12. Let MR be a module. We say that a hereditary torsion theory
τ on Mod-R satisfies the condition (†M ) if the closure operator on the lattice
of all submodules L(M) of M commutes with arbitrary intersections, i.e.,
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(†M )
⋂

i∈I Xi =
⋂

i∈I Xi for any family (Xi)i∈I of submodules of M . ¤

Note that in condition (†M ) only the inclusion “⊇ ” is necessary since “⊆ ”
always holds.

For a module MR we set

F (M) := {N 6 M |M/N ∈ T }.

Observe that for N 6 M , one has N ∈ F (M) ⇐⇒ N = M . Clearly, F (RR) is
exactly the Gabriel topology Fτ associated with τ .

Lemma 2.13. If the condition (†M ) is satisfied for a module MR, then
⋂

N∈F (M) N ∈ F (M).

Proof: If we consider the family (N)N∈F (M) of all elements of F (M), by con-
dition (†M ) we have

M =
⋂

N∈F (M)

N ⊆
⋂

N∈F (M)

N,

so
⋂

N∈F (M)

N = M , i.e.,
⋂

N∈F (M) N ∈ F (M), as desired.

Remarks 2.14. We do not know whether
⋂

N∈F (M) N ∈ F (M) implies the

condition (†M ), but we suspect no. ¤

Recall that the torsion theory τ = (T ,F) is called Jansian (see Golan [12])
if the Gabriel topology Fτ associated with τ has a basis consisting of an idem-

potent two-sided ideal, or equivalently, if
⋂

D∈Fτ

D ∈ Fτ .

Proposition 2.15. (Golan [12, Proposition 6.6]). A hereditary torsion theory
τ = (T ,F) on Mod-R is Jansian if and only if τ satisfies the condition (†M )
for any module MR.

Proof: For the reader’s convenience we include the proof. Assume that τ is
Jansian. Let MR be a module, let (Xi)i∈I be a family of submodules of M , and
let x ∈

⋂

i∈I Xi. For each i ∈ I there exists Di ∈ Fτ such that xDi ⊆ Xi.
If we set D :=

⋂

i∈I Di, then D ∈ Fτ since τ is Jansian, so xD ⊆ Xi for

all i ∈ I. This shows that xD ∈
⋂

i∈I Xi, and so, x ∈
⋂

i∈I Xi. Therefore,
⋂

i∈I Xi ⊆
⋂

i∈I Xi, in other words, τ satisfies the condition (†M ).

Conversely, if τ satisfies the condition (†M ) for any module MR, then,
in particular (†R) is satisfied, so

⋂

D∈F (RR) D ∈ F (RR) by Lemma 2.13, i.e.,
⋂

D∈Fτ
D ∈ Fτ , which means exactly that τ is Jansian.
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Proposition 2.16. Let N be a submodule of a module MR, and consider the
following assertions:

(1) N is τ -CI.

(2) M/N 6∈ T and for any family (Pi)i∈I of submodules of M such that N ⊆
⋂

i∈I

Pi and
(

⋂

i∈I

Pi

)

/N ∈ T , one has Pi/N ∈ T for some i ∈ I.

(3) M/N 6∈ T and for any family (Pi)i∈I of submodules of M such that N =
⋂

i∈I

Pi, one has Pi/N ∈ T for some i ∈ I.

Then (2) =⇒ (3) =⇒ (1), and (1) =⇒ (2) if the torsion theory τ satisfies the
condition (†M ).

Proof: (2) =⇒ (3) =⇒ (1): Proceed as in the proof of Proposition 2.9.

(1) =⇒ (2): Assume that τ satisfies the condition (†M ), and let N be as in
(2). Then

N =
⋂

i∈I

Pi =
⋂

i∈I

Pi,

so N = Pi for some i ∈ I because N is a CI element of the lattice Satτ (M).
Thus Pi/N ⊆ Pi/N = N/N ∈ T , and then Pi/N ∈ T , as desired.

Definition 2.17. A submodule N of a module M is called strongly τ -completely
irreducible, abbreviated strongly τ -CI, if M/N 6∈ T and for any family (Pi)i∈I of

submodules of M such that N ⊆
⋂

i∈I

Pi and
(

⋂

i∈I

Pi

)

/N ∈ T , one has Pi/N ∈ T

for some i ∈ I. ¤

Remarks 2.18. (1) Let τ0 = (T0,F0) be the torsion theory on the ring R = Z

associated with the Gabriel topology F0 considered in Remark 2.11. Then it is
easy to see that 0 is a τ0-CI submodule of M = Z which is not strongly τ0-CI.

(2) Any strongly τ -CI submodule N of M , with N ∈ Satτ (M) is a CI
submodule of M . Indeed, if (Xi)i∈I is a family of submodules of M with N =
⋂

i∈I Xi, then
(
⋂

i∈I Xi

)

/N = 0 ∈ T , so Xi/N ∈ T for some i ∈ I. On the
other hand Xi/N 6 M/N ∈ F , so Xi/N = 0, i.e., N = Xi, which shows that N
is a CI submodule of M .

(3) By Proposition 2.6, any τ -CI-submodule of MR is strongly τ -CI in the
presence of condition (†M ). ¤

We are now going to specialize the latticial results obtained for an arbitrary
upper continuous modular lattice to the particular case of the lattice Satτ (M).
We will present only two such specializations. To do that, we need some prepara-
tory results.
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Lemma 2.19. The following assertions hold for a module MR ∈ F and a sub-
module N 6 M .

(1) If M/N ∈ T , then N is an essential submodule of M .

(2) N is an essential submodule of N .

(3) If N ∈ Satτ (M), then N is an essential submodule of M if and only if
N is an essential element of the lattice Satτ (M).

Proof: (1) Let 0 6= x ∈ M . Since M/N ∈ T , there exists I ∈ Fτ such that
xI ⊆ N . But xI 6= 0 because M ∈ F , so there exists r ∈ R with 0 6= xr ∈ N ,
which shows that N is essential in M .

(2) Since N/N ∈ T , we can apply (1) by taking N as M .

(3) See the proof of Albu [1, Corollary 1.3].

As we already have indicated, a module MR is said to be rich in τ -coirredu-
cibles, abbreviated τ -RC (resp. rich in τ -completely coirreducibles, abbreviated
τ -RCC) if the lattice Satτ (M) is RC (resp. RCC). Also, a module MR is said
to be τ -atomic if the lattice Satτ (M) is atomic. Note that, by Examples 1.3 (1),
MR is τ -RCC if and only if it is τ -atomic.

Proposition 2.20. A module MR ∈ F is τ -RC (resp. τ -RCC) if and only if
M 6= 0 and for every 0 6= X 6 M there exists C 6 X which is τ -coirreducible
(resp. τ -cocritical).

Proof: One implication is clear. For the other one, assume that M is τ -RC (resp.
τ -RCC), and let 0 6= X 6 M . Then 0 6= X ∈ Satτ (M), so, by definition, there
exists D ∈ Satτ (M) such that D 6 X and D is a coirreducible element (resp.
atom) of the lattice Satτ (M), that is, D is τ -coirreducible (resp. τ -cocritical).
Now, observe that D ∩ X is also τ -coirreducible (resp. τ -cocritical) because X
is an essential submodule of X by Lemma 2.19 (2).

Corollary 2.21. Let MR ∈ F . Then M is τ -RC ⇐⇒ M is RC.

Proof: Apply Proposition 2.20 and Corollary 2.10.

Lemma 2.22. Let MR ∈ F be a module, and let (Ni)i∈I be a family of sub-
modules of M . Then (Ni)i∈I is an independent family of submodules of M if
and only if (Ni)i∈I is an independent family of elements of the lattice Satτ (M).
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Proof: The implication ⇐= is clear. Conversely, let (Ni)i∈I be an independent
family of submodules of M . In order to prove that (Ni)i∈I is an independent
family of elements of the lattice Satτ (M), it is sufficient to assume that I is
the finite set {1, . . . , n} for some n ∈ N, n > 2, because the independence is a
property of finitary character in any upper continuous lattice, as Satτ (M) is.
Denote by

∨

and
∧

the join and meet, respectively, in the lattice Satτ (M).
Then, for each 1 6 k < n, we have:

(

∨

16i6k

Ni

)

∧

Nk+1 =

(

∑

16i6k

Ni

)

⋂

Nk+1 =

(

∑

16i6k

Ni

)

⋂

Nk+1 = 0 = 0.

This proves that (Ni)16i6n is an independent family of Satτ (M), as desired.

Remarks 2.23. The results of Lemma 2.19, Corollary 2.21, and Lemma 2.22
may fail in the absence of the condition “M ∈ F”. To see that, let R be any
ring, let χ = (Mod-R, {0}) be the improper torsion theory on Mod-R, let M be
any nonzero module, and let N be any submodule of M which is not essential in
M . Then Lemma 2.19 fails in this case. An example of a proper torsion theory
enjoying the same property is provided by Albu [1, Examples 1.16].

For the failure of Corollary 2.21, consider the same torsion theory χ and a
module M which is not RC. Since Satχ(M) = {M}, M is vacuously χ-RC, but
it is not RC.

Finally, for the failure of Lemma 2.22, let M be a (direct sum) decomposable
module: M = N1 + N2, N1 6= 0, N2 6= 0, N1 ∩ N2 = 0. Then (Ni)i=1, 2 is an
independent family of submodules of M , but N1 = N2 = M in Satχ(M) = {M},
where χ is the torsion theory considered above. ¤

Lemma 2.24. The following statements are equivalent for a module MR ∈ F .

(1) M is τ -coirreducible (resp. τ -completely coirreducible).

(2) ER(M) is an indecomposable module (resp. ER(M) ≃ ER(C) for some
τ -cocritical module C).

(3) ER(M) ≃ ER(R/I) where I is an irreducible (resp. τ -critical) right ideal
of R.

Proof: For τ -coirreducibles use Corollary 2.10 and a well known characterization
of coirreducible modules via injective hulls, and for τ -completely coirreducibles
use Albu, Iosif, and Teply [2, Proposition 2.2].

If we specialize Theorem 1.16 characterizing RC and RCC lattices L for
L = Satτ (M), we obtain at once the following characterizations of τ -RC and
τ -RCC modules M .
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Theorem 2.25. The following statements are equivalent for a module MR 6∈ T .

(1) M is τ -RC (resp. τ -RCC).

(2) There exists in the lattice Satτ (M) an independent family (Ni)i∈I of
τ -coirreducible (resp. τ -completely coirreducible) submodules Ni of M ,
i ∈ I, such that

∑

i∈I Ni is an essential element in the lattice Satτ (M).

(3) For every τ(M) 6= N ∈ Satτ (M) there exists a nonempty set IN such that
τ(M) can be written as an irredundant intersection

τ(M) =
⋂

i∈IN

Ni

of τ -irreducible (resp. τ -completely irreducible) submodules Ni in N ,
Ni ∈ Satτ (M), i ∈ IN .

Moreover, the equivalent conditions (1) − (3) for a τ -RCC module can be refor-
mulated as follows:

(1)’ Any submodule N of M , τ(M) 6= N ∈ Satτ (M) contains a τ -simple sub-
module in Satτ (M).

(2)’ The τ -socle Socτ (M) of M is an essential element in the lattice Satτ (M).

(3)’ For every τ(M) 6= N ∈ Satτ (M) there exists a nonempty set IN such that
τ(M) can be written as an irredundant intersection

τ(M) =
⋂

i∈IN

Ni

of τ -maximal submodules Ni of N , i ∈ IN , in other words, the τ -Jacobson
radical Jτ (N) of N is τ(M) and an irredundant intersection of τ -maximal
submodules of N . ¤

In case the given module MR is τ -torsionfree, then characterizations in The-
orem 2.25 have the following more simple form, that involve essentiality and
independence in the very familiar lattice L(M) of all submodules of M instead
of the ones in the lattice Satτ (M) of all τ -closed submodules of M . In this way,
one can add, as in the original Fort [8, Théoréme 3], a new characterization in
terms of injective hulls.

Theorem 2.26. The following statements are equivalent for a nonzero module
MR ∈ F .

(1) M is τ -RC (resp. τ -RCC).

(2) There exists a sum of an independent family of coirreducible (resp. τ -
completely coirreducible) submodules of M that is essential in M .
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(3) The injective hull ER(M) of M is an essential extension of a direct sum
of (indecomposable) injective modules of type ER(C) where C are coirre-
ducible (resp. τ -completely coirreducible) modules.

(4) For every 0 6= N ∈ Satτ (M) there exists a nonempty set IN such that 0
can be written as an irredundant intersection

0 =
⋂

i∈IN

Ni

of τ -irreducible (resp. τ -completely irreducible) submodules Ni in N ,
Ni ∈ Satτ (M), i ∈ IN .

Moreover, the equivalent conditions (1) − (4) for a τ -RCC module can be refor-
mulated as follows:

(1)’ Any nonzero submodule of M contains a τ -cocritical submodule.

(2)’ The τ -socle Socτ (M) of M is essential in M .

(3)’ The injective hull ER(M) of M is an essential extension of a direct sum of
indecomposable injective modules of type ER(C) where C are τ -cocritical
modules.

(4)’ For every 0 6= N ∈ Satτ (M) there exists a nonempty set IN such that 0
can be written as an irredundant intersection

0 =
⋂

i∈IN

Ni

of τ -maximal submodules Ni of N , i ∈ IN , in other words, the τ -Jacobson
radical Jτ (N) of N is zero and an irredundant intersection of τ -maximal
submodules of N .

Proof: Apply Lemma 2.19 (3), Corollary 2.21, Lemma 2.22, Lemma 2.24, and
Theorem 2.25.

Since M is τ -RC (resp. τ -RCC) if and only if M/τ(M) is so, we can of
course formulate Theorem 2.25 in terms of essentiality and independence in the
lattice L(M/τ(M)) instead of the ones in the lattice Satτ (M). For instance,
the condition (2) can be expressed as: (2)” There exists an independent family
(Xi)i∈I of τ -coirreducible (resp. τ -completely coirreducible) submodules Xi of
M/τ(M), i ∈ I, such that

⊕

i∈I Xi is an essential submodule of M/τ(M).

Proposition 2.27. A module MR is τ -semi-Artinian if and only if every N ∈
Satτ (M) has an ICID in Satτ (M).
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Proof: Apply Proposition 1.23 to the lattice L = Satτ (M).
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