
Bull. Math. Soc. Sci. Math. Roumanie

Tome 52(100) No. 3, 2009, 227–239

On the Classification of Randers Manifolds of Constant Curvature

by

Aurel Bejancu and Hani Reda Farran
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Abstract

The purpose of the present paper is to state a global classification theorem for a class

of proper Randers manifolds of positive constant flag curvature. The model for the classi-

fication is the unit sphere S2n+1 endowed with a Sasakian space form structure of constant

ϕ-sectional curvature c ∈ (−3, 1).
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Introduction

The classification problem for Randers manifolds of constant flag curvature was raised by Ingarden

[11] half of century ago. The first significant contribution, that actually stimulated the work on this

problem, was brought by Yasuda and Shimada [17]. Later on, Bao and Robles [3] proved that the

Yasuda-Shimada Theorem is true only for a special class of Randers manifolds of constant curvature.

Then Bao and Shen [5] constructed Randers metrics of positive constant flag curvature on the sphere S3

and Shen [13] investigated projectively flat Randers metrics with constant flag curvature. By using the

Sasakian space form structures on odd dimensional spheres, Bejancu and Farran [6] have constructed

Randers metrics of positive constant curvature on the sphere S2n+1, n ≥ 2. This result was used by

the authors to state the first classification theorem for a class of Randers manifolds of positive constant

flag curvature (cf. Bejancu-Farran [7]). Later on, Bao, Robles and Shen [4] have obtained a local

classification theorem of Randers manifolds of constant flag curvature.

The purpose of the present paper is to prove a global classification theorem for a class of proper

Randers manifolds of positive constant flag curvature. We claim that this is the only global classification

theorem in this theory, and hope that it will bring some insights for further research work on the field.

The main result (cf. Theorem 4.3) is based on our previous papers [6] and [7], but here we present

details on the geometric meaning of the whole study.

Now, we outline the content of the paper. In the first section we arrange some results from the theory

of Randers manifolds of positive constant flag curvature. Then, in Section 2 we recall some concepts and

results from the theory of Sasakian space forms. A surprising relationship between Randers manifolds

of positive constant flag curvature and Sasakian space forms has been discovered by us in the papers [6]

and [7]. Adding more geometrical meaning to the study, we present this interrelation in the following



228 Aurel Bejancu and Hani Reda Farran

two sections. First, in Section 3 we construct a family of proper Randers metrics of positive constant flag

curvature on the unit sphere S2n+1. Moreover, we show that these Randers metrics are not projectively

flat. Here we introduce the concept of Randers (c, K)-sphere, which is the sphere S2n+1 endowed with

the Sasakian space form structure of constant ϕ-sectional curvature c ∈ (−3, 1) and with a family of

Randers metrics of positive constant flag curvature K. Then, in Section 4 we prove that the Randers

(c, K)-spheres are models for a class of proper Randers manifolds of positive constant flag curvature.

More precisely, we prove that any Randers manifold from this class is Finsler isometric to a Randers

(c, K)-sphere (cf. Theorem 4.3).

1 Finsler Manifolds of Constant Flag

Curvature

Let M be an m-dimensional C∞ manifold. Throughout the paper we denote by F(M) the algebra of

C∞ functions on M and by Γ(E) the F(M)-module of C∞ sections of a vector bundle E over M . Also,

we make use of the Einstein convention, that is, repeated indices with one upper index and one lower

index denotes summation over their range.

Now, suppose that there exists a function F : TM → [0,∞) which vanishes only on the zero section

of TM and it is C∞ on the slit tangent bundle TM◦ = TM \ {0}. Moreover, we suppose that F

satisfies the following conditions:

(i) It is positively homogeneous of degree one with respect to the fibre coordinates, that is, we have

F (x, ky) = kF (x, y), for any x ∈ M, y ∈ TxM, and k > 0.

(ii) The m × m matrix

[gij(x, y)] =

»
1

2

∂2F 2

∂yi∂yj

–
, i, j ∈ {1, ..., m}, (1.1)

is positive definite at every point (x, y) of TM◦.

Then, F
m = (M, F ) is called a Finsler manifold with Finsler metric F . We denote by (xi, yi) the local

coordinates on TM◦, where (xi) are the local coordinates on M and (yi) are the coordinates on the

fibre at (xi). Then, the natural frame field on TM◦ is {∂/∂xi, ∂/∂yi}, i ∈ {1, ..., m}. The unit Liouville

vector field is a global section ℓ of the vertical vector bundle V TM◦ given by

ℓ =
yi

F

∂

∂yi
·

Thus, we have

gij(x, y)ℓiℓj = 1, where ℓi =
yi

F
·

The geometry of F
m is studied by using the canonical nonlinear connection GTM◦ on TM◦. This is a

complementary distribution to V TM◦ in TTM◦ whose local frame field is given by

δ

δxi
=

∂

∂xi
− Gj

i

∂

∂yj
,

where we put

Gj
i =

∂Gj

∂yi
, Gj =

1

4
gjh

„
∂2F 2

∂yh∂xk
yk − ∂F 2

∂xh

«
· (1.2)

The following Finsler tensor fields are useful for the study of the curvature of F
m:

(a) Rk
j = ℓh

(
δ

δxj

„
Gk

h

F

«
− δ

δxh

 
Gk

j

F

!)
, (b) Rij = gikRk

j . (1.3)
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Next, we consider a flag ℓ∧V at x ∈ M determined by ℓ and the tangent vector V = V i(∂/∂xi). Then

the flag curvature of F
m at the point x with respect to the flag ℓ ∧ V is the number

K(ℓ, V ) =
RijV

iV j

gijV iV j − (gijℓiV j)2
·

If K(ℓ, V ) has no dependence on (xi, yi, V i), i ∈ {1, ..., m}, that is, K(ℓ, V ) is a constant function, we

say that IFm is Finsler manifold of constant flag curvature. It is known that IFm is of constant flag

curvature K if and only if (cf. Bao-Chern-Shen [2], p. 313)

Rij = Khij , (1.4)

where hij are the local components of the angular metric on IFm given by

hij = gij − ℓiℓj , where ℓi = gijℓ
j . (1.5)

Randers has introduced a special Finsler structure as follows.

Let a = (aij(x)) be a Riemannian metric and b = (bi(x)) a 1-form on M . Then, we define on TM

the function

F (x, y) =
p

aij(x)yiyj + bi(x)yi. (1.6)

It is proved that F defines a Finsler structure on M if and only if

‖b‖2 = aij(x)bi(x)bj(x) < 1, (1.7)

where [aij(x)] is the inverse matrix of [aij(x)]. A Finsler metric given by (1.6) is called a Randers

metric and IFm = (M, F, aij , bi) is called a Randers manifold. If the 1-form b is nowhere zero on M ,

then we say that F is a proper Randers metric and IFm is a proper Randers manifold.

Now, by using a and b, we define a vector field B and a 1-form θ by

B = bi ∂

∂xi
, where bi = aijbj , (1.8)

and

θ = bi(bi|j − bj|i)dxj , (1.9)

where ”|” denotes the covariant derivative with respect to the Levi-Civita connection ∇ on (M,a). The

curvature tensor field R of ∇ is given by

R(X, Y )Z = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z, ∀X, Y, Z ∈ Γ(TM). (1.10)

Locally, we put

Rhijk = a

„
R

„
∂

∂xk
, ∂

∂xj

«
∂

∂xh
, ∂

∂xi

«
· (1.11)

Next, we recall that Bao and Robles [3] have obtained necessary and sufficient conditions for a

Randers manifold to have constant flag curvature. Also they showed that the Yasuda-Shimada Theorem

stated in [17] needs the additional condition θ = 0 on M . Taking into account the papers of Bao and

Robles [3], Matsumoto and Shimada [12], and Shimada [14] we recall the following from the ”Corrected

Yasuda-Shimada Theorem”.

Theorem 1.1. Let IFm = (M, F, aij , bi) be a Randers manifold. Then IFm is of positive constant flag

curvature and θ = 0 on M if and only if the following conditions are satisfied:

(i) The length ‖b‖ of b is a constant on M and b is not parallel with respect to ∇.
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(ii) The covariant derivative of b with respect to ∇ satisfies

bi|j + bj|i = 0. (1.12)

(iii) The curvature tensor field of the Levi-Civita connection ∇ is given by

Rhijk = K(1 − ‖b‖2){ahjaik − ahkaij}
+ K{bibkahj + bhbjaik − bibjahk − bhbkaij} (1.13)

+ bh|kbi|j − bh|jbi|k + 2bh|ibk|j .

Remark 1.1. a. Clearly, condition (ii) is equivalent to the following:

(ii′) B given by (1.8) is a Killing vector field on (M,a).

b. By using the conditions (i), (ii) and (iii) it is proved (cf. Bejancu-Farran [6]) that

bi|j|k = K(bjaik − biajk). (1.14)

Now, we prove the following.

Theorem 1.2. Let IFm = (M, F, aij , bi) be a Randers manifold of positive constant flag curvature K.

Then, for any constant K∗ > 0, there exists on M a Randers metric F ∗ = (a∗
ij , b

∗
i ) of flag curvature

K∗.

Proof: First, we define on M the Riemannian metric a
∗ and the 1-form b

∗ by

a∗
ij =

K

K∗
aij and b∗i =

r
K

K∗
bi.

Then, it is easy to check the condition (1.7) for (a∗
ij , b

∗
i ). Thus the function

F ∗(x, y) =
q

a∗
ij(x)yiyj + b∗i (x)yi =

r
K

K∗
F (x, y), (1.15)

defines a new Randers metric on M . By using (1.1) for both F and F ∗ and taking into account (1.15),

we deduce that

(a) gij(x, y) =
K∗

K
g∗

ij(x, y) and (b) gij(x, y) =
K

K∗
gij∗(x, y). (1.16)

Next, by using (1.15), (1.16b) and (1.2), we deduce that F and F ∗ define the same canonical nonlinear

connection, that is, we have Gj
i = Gj∗

i . Thus, (1.3), (1.15) and (1.16a) imply

Rij = R∗
ij . (1.17)

On the other hand, by (1.5), (1.15) and (1.16a) we deduce that the angular metrics corresponding to

F and F ∗ are related by

hij =
K∗

K
h∗

ij . (1.18)

Finally, taking into account that the Randers metric F is of constant curvature K (see (1.4)), from

(1.17) and (1.18) we deduce that

R∗
ij = K∗h∗

ij ,

that is, F ∗ is a Randers metric of constant curvature K∗.
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2 Sasakian Space Forms

Let M(ϕ, ξ, η, a) be a (2n + 1)–dimensional contact metric manifold, where ϕ is a tensor field of type

(1, 1), ξ is a vector field, η is a 1-form, and a is a Riemannian metric satisfying (cf. Blair [8], p. 27)

(a) ϕ2 = −I + η ⊗ ξ, (b) η(ξ) = 1,

(c) a(ϕX, ϕY ) = a(X, Y ) − η(X)η(Y ), (d) dη(X, Y ) = a(X, ϕY ),
(2.1)

for any X, Y ∈ Γ(TM). From (2.1b) we see that both η and ξ are nowhere zero on M . The equations

(2.1) imply

(a) ϕξ = 0, (b) a(X, ϕY ) + a(Y, ϕX) = 0,

(c) η ◦ ϕ = 0, (d) dη(ξ, X) = 0, (e) η(X) = a(X, ξ).
(2.2)

The contact metric manifold M(ϕ, ξ, η, a) is called a Sasakian manifold if the following condition is

satisfied:

(∇Xϕ)Y = a(X, Y )ξ − η(Y )X, ∀X, Y ∈ Γ(TM). (2.3)

In this case (ϕ, ξ, η, a) is called a Sasakian structure on M . By direct calculations we deduce that on

a Sasakian manifold we have:

(a) ∇Xξ = −ϕX, (b) (∇Xη)Y = a(X, ϕY ),

(c) (∇Xη)Y + (∇Y η)X = 0,

(d) (∇Z∇Xη)Y = a(Y, Z)η(X) − a(X, Z)η(Y )

(2.4)

for any X, Y, Z ∈ Γ(TM).

Now, we recall a result on the existence of Sasakian structures for later use in our study.

Theorem 2.1. (Hatakeyama-Ogawa-Tanno [10]) Let (M,a) be a (2n+1)–dimensional Riemannian

manifold admitting a unit Killing vector field ξ such that

R(X, Y )ξ = a(Y, ξ)X − a(X, ξ)Y, ∀X, Y ∈ Γ(TM), (2.5)

where R is the curvature tensor field of the Levi-Civita connection ∇ on (M,a). Then M has a Sasakian

structure (ϕ, ξ, η, a), where ϕ and η are given by

ϕX = −∇Xξ and η(X) = a(X, ξ), ∀X ∈ Γ(TM).

Next, we denote by D the contact distribution on M , that is, D is the orthogonal complementary

distribution to the distribution spanned by ξ on M . Let x ∈ M and Π be a plane section in TxM . We

say that Π is a ϕ-section if it is spanned by X and ϕX, where X ∈ Dx. The sectional curvature of M

at x determined by a ϕ-section Π is called ϕ-sectional curvature. A Sasakian manifold M of constant

ϕ-sectional curvature c is called a Sasakian space form and it is denoted by M [c]. In this case, we say

that (ϕ, ξ, η, a, c) is a Sasakian space form structure on M . By using the well known formula for the

curvature tensor field R of M [c] (cf. Blair [8], p. 97), and taking into account (2.4b) we deduce that R

is given by

a(R(X, Y )Z, W ) =
c + 3

4
{a(Y, Z)a(X, W ) − a(X, Z)a(Y, W )}

+
1 − c

4

˘
η(Y )η(Z)a(X, W ) + η(X)η(W )a(Y, Z) (2.6)

− η(X)η(Z)a(Y, W )−η(Y )η(W )a(X, Z)+(∇Xη)(Z)(∇Y η)(W )

− (∇Y η)(Z)(∇Xη)(W ) + 2(∇Xη)(Y )(∇Zη)(W )
¯
,
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for any X, Y, Z, W ∈ Γ(TM).

The standard model for Sasakian space forms of constant ϕ-sectional curvature c > −3 is the unit

sphere S2n+1. Let (ϕ0, ξ0, η0, a0) be the standard Sasakian structure on S2n+1 induced by the Kähler

structure of R
2n+2 (cf. Blair [8], p. 89). Then, for any ε > 0 we consider the following deformed

structures

ϕ = ϕ0, ξ =
1

ε
ξ0, η = εη0, a = εa0 + ε(ε − 1)η0 ⊗ η0. (2.7)

Since the metrics restricted to the contact deformations are homothetic, the transformations (2.7) are

called D-homothetic deformations. Tanno [15] has proved that S2n+1 endowed with (ϕ, ξ, η, a) given

by (2.7) is a Sasakian space form S2n+1[c] of constant ϕ-sectional curvature

c =
4

ε
− 3. (2.8)

Next, we suppose that M [c] and fM [ec] are two Sasakian space forms with Sasakian space form structures

(ϕ, ξ, η, a, c) and (eϕ, eξ, eη, ea,ec), respectively. Then we say that M [c] and fM [ec] are isomorphic if ec = c

and there exists a C∞ diffeomorphism f : M [c] → fM [ec] which maps the tensor fields from (ϕ, ξ, η, a, c)

into the corresponding tensor fields from (eϕ, eξ, eη, ea,ec). In particular, two isomorphic Sasakian space

forms are isometric Riemannian manifolds. This enables us to recall the following important result.

Theorem 2.2. (Tanno [16]) Let M [c] be a simply connected and complete Sasakian space form of

constant ϕ-sectional curvature c > −3. Then M [c] is isomorphic to S2n+1[c].

Remark 2.1. In particular, M [c] and S2n+1[c] are isometric, but we should note that we consider on

S2n+1 a Riemannian metric a given by the D-homothetic transformation (2.7).

As we want to apply the theory of Sasakian space forms in Finsler geometry, the expressions of

some of the above formulas in local coordinates are imperiously required. First, we set:

aij = a

„
∂

∂xi
, ∂

∂xj

«
, ηi = η

„
∂

∂xi

«
, ϕ

„
∂

∂xi

«
= ϕj

i

∂

∂xj
,

ηi|j =
“
∇ ∂

∂xj
η
”„ ∂

∂xi

«
, ηi|j|k =

“
∇ ∂

∂xk
∇ ∂

∂xj
η
”„ ∂

∂xi

«
.

Then, (2.4b), (2.4c) and (2.4d) become

ηi|j = gikϕk
j , (2.9)

ηi|j + ηj|i = 0, (2.10)

and

ηi|j|k = aikηj − ajkηi, (2.11)

respectively. Also, as a consequence of (2.9), (2.2a) and (2.2c) we obtain

ηi|jξ
j = 0 and ηi|jξ

i = 0. (2.12)

Now, we take X = ∂/∂xj , Y = ∂/∂xi and ξ = ξk(∂/∂xk) in (2.5) and by using (1.10) we infer that

(2.5) is equivalent to

ξk
|i|j − ξk

|j|i = ηiδ
k
j − ηjδ

k
i . (2.13)

Finally, we take X = ∂/∂xk, Y = ∂/∂xj , Z = ∂/∂xh and W = ∂/∂xi in (2.6) and by using (1.11) and

(2.10) we deduce that (2.6) is equivalent to

Rhijk =
c + 3

4
{ahjaik − ahkaij} +

1 − c

4
{ηiηkahj + ηhηjaik

−ηiηjahk − ηhηkaij + ηh|kηi|j − ηh|jηi|k + 2ηh|iηk|j}.
(2.14)
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3 Randers Metrics of Positive Constant Flag Curvature on S2n+1

Let S2n+1[c] be the unit (2n + 1)–dimensional sphere endowed with the Sasakian space form structure

(ϕ, ξ, η, a, c) described in the previous section. We recall that a is not the standard metric on S2n+1

induced by the Euclidean metric of R
2n+2. More precisely, a is a metric on S2n+1 defined by a D-

homothetic deformation (2.7). Throughout this section, we suppose that c ∈ (−3, 1), which by (2.8) is

equivalent to ε ∈ (1,∞). This enables us to define for each ε > 1 a new 1-form on S2n+1 as follows

b = αη, where α =

r
1 − 1

ε
. (3.1)

Then we consider on the tangent bundle of S2n+1 the functions

F (x, y) =
p

aij(x)yiyj + bi(x)yi, (3.2)

where aij(x) and bi(x) are the local components of the Riemannian metric a and of the 1-form b,

respectively. Taking into account that ξ is a unit vector field and by using (2.2e), we obtain ‖η‖ = 1.

Thus, from (3.1) we deduce that

‖b‖ = α < 1, (3.3)

that is, F given by (3.2) defines a Randers metric on S2n+1. Moreover, we prove the following theorems.

Theorem 3.1. The sphere S2n+1, n ≥ 1, endowed with any of the Randers metrics given by (3.2) is

a proper Randers manifold of constant flag curvature K = 1. Moreover, IF2n+1 = (S2n+1, F ) is not a

projective flat Finsler manifold.

Proof: First, from (3.1) we obtain

bi = αξi, where bi = aijbj . (3.4)

Then, by using (2.12), (3.1) and (3.4) we deduce that θ given by (1.9) vanishes identically on S2n+1.

Next, from (3.3) we see that the 1-form b is of constant length. Also, by using (2.4b) and (3.1), we

obtain

(∇ϕY b)Y = a(ϕY, ϕY ) > 0,

for any non zero vector field Y ∈ Γ(D). Hence the condition (i) from Theorem 1.1 is satisfied. The

condition (ii) of the same theorem is a direct consequence of (2.10) and (3.1). Now, by using (2.8),

(3.1) and (3.3), we infer that

c + 3

4
=

1

ε
= 1 − α2 = 1 − ‖b‖2,

1 − c

4
ηiηk =

„
1 − 1

ε

«
ηiηk = α2ηiηk = bibk, (3.5)

1 − c

4
ηh|kηi|j = α2ηh|kηi|j = bh|kbi|j .

Then, using (3.5) into (2.14), we deduce that (1.13) is true for K = 1. Hence the condition (iii) of

Theorem 1.1 is satisfied. Thus, any F given by (3.2) on S2n+1 is a Randers metric of constant flag

curvature K = 1. For the last part of the theorem we recall from Douglas [9] that a Finsler manifold is

projectively flat if and only if its projective Weyl and Douglas tensors vanish. On the other hand, from

Bacsó-Matsumoto [1] we know that the Douglas tensor of a Randers manifold vanishes if and only if

the 1-form b is closed. In our case, by using (3.1) and (2.1d) we obtain

db(X, Y ) = αdη(X, Y ) = αa(X, ϕY ).
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Then we take a non zero vector field Y ∈ Γ(D) and deduce that

db(ϕY, Y ) > 0.

Thus any Randers metric F given by (3.2) on S2n+1 is not projectively flat. This completes the proof

of the theorem.

Theorem 3.2. For any constant K > 0 there exists on S2n+1 a family of proper Randers metrics that

are of flag curvature K and are not projectively flat.

Proof: By Theorem 3.1, for any ε > 1 there exists a Randers metric F ∗ of constant flag curvature

K∗ = 1. Then we apply Theorem 1.2 and obtain a Randers metric F = (1/
√

K)F ∗ of constant flag

curvature K. Next, from the proof of Theorem 1.2 we know that b = (1/
√

K)b∗. As b
∗ is not closed,

we conclude that b is also not closed. Thus F is not projectively flat.

Let us explain what Riemannian metric and 1-form we consider on S2n+1 to obtain the Randers

metric F of constant flag curvature K. As in Section 2, we consider the standard Sasakian structure

(ϕ0, ξ0, η0,a0) on S2n+1. We note that S2n+1 is of constant sectional curvature 1 with respect to the

Riemannian metric a0. Then we take ε > 1 and from (2.8) we deduce that

ε =
4

c + 3
, c ∈ (−3, 1). (3.6)

Replace ε from (3.6) into (2.7) and we obtain on S2n+1 the Sasakian space form structure (ϕ, ξ, η,a, c)

given by

(a) ϕ = ϕ0, (b) ξ =
c + 3

4
ξ0, (c) η =

4

c + 3
η0,

(d) a =
4

c + 3


a0 +

1 − c

c + 3
η0 ⊗ η0

ff
.

(3.7)

Thus, by Theorem 3.1, the function

(a) F (x, y) =
p

aijyiyj + bi(x)yi; (b) bi =

√
1 − c

2
ηi, (3.8)

defines on S2n+1 a Randers metric of constant flag curvature K = 1. Finally, we consider the Rieman-

nian metric ea and the 1-form eb given by

(a) ea =
1

K
a, and (b) eb =

1√
K

b. (3.9)

Then, for any c ∈ (−3, 1), the function

eF (x, y) =
p
eaij(x)yiyj +ebi(x)yi =

1√
K

F (x, y) (3.10)

defines on S2n+1[c] a Randers metric of constant flag curvature K. We call the Randers manifold
eIF2n+1

= (S2n+1[c], eF ), where eF is given by (3.10), the Randers (c, K)-sphere. As we shall see in the

next section, this is going to be the standard model for Randers manifolds of positive constant flag

curvature K and with θ = 0.
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4 The Classification Theorem

Let IFm = (M, F, aij , bi), m ≥ 2, be an m-dimensional proper Randers manifold whose 1-form θ given

by (1.9) vanishes identically on M . Moreover, we suppose that IFm is of constant flag curvature K = 1.

In the first part we show an interesting interrelation between the geometry of the proper Randers

manifold IFm and a natural Sasakian space form structure on M . Then we use this to obtain a global

classification theorem for proper Randers manifolds of positive constant flag curvature with θ = 0 on

M .

First, we define the unit 1-form η on M by

η =
1

‖b‖ b. (4.1)

Thus we have

aijηiηj = 1. (4.2)

Then we note that Theorem 1.1 applies to the above IFm. Thus, by using (4.1) in (1.12), (1.13) and

(1.14), and taking into account that ‖b‖ = constant and K = 1, we obtain

ηi|j + ηj|i = 0, (4.3)

Rhijk = (1 − ‖b‖2){ahjaik − ahkaij} + ‖b‖2{ηiηkahj + ηhηjaik

−ηiηjahk − ηhηkaij + ηh|kηi|j − ηh|jηi|k + 2ηh|iηk|j},
(4.4)

and

ηi|j|k = ηjaik − ηiajk, (4.5)

respectively. Next, we define on M the unit vector field ξ = ξi(∂/∂xi), where we set

ξi = aijηj . (4.6)

Then, by direct calculations using (4.6), (4.3) and (4.5), we deduce that

aikξk
|j + ajkξk

|i = 0, (4.7)

and

aihξh
|j|k = (aikajh − ajkaih)ξh. (4.8)

Also, we define on M a tensor field ϕ of type (1, 1), whose local components are given by

ϕi
j = −ξi

|j . (4.9)

Finally, we consider the number

c = 1 − 4‖b‖2, (4.10)

and, taking into account that 0 < ‖b‖ < 1, we deduce that

−3 < c < 1. (4.11)

Summing up, we can say that we constructed on M the structure (ϕ, ξ, η, a, c), where a = (aij) is the

Riemannian metric on M and ϕ, ξ, η, c are given by (4.9), (4.6), (4.1) and (4.10), respectively.

Now, we prove the following.

Theorem 4.1. Let IFm = (M, F, aij , bi), m ≥ 2, be an m-dimensional proper Randers manifold of

constant flag curvature K = 1 and with θ = 0 on M . Then m must be an odd number 2n + 1, and

(ϕ, ξ, η, a, c) is a Sasakian space form structure on M .
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Proof: First, by using (4.9), (4.6) and (4.3), we obtain

ϕi
jϕ

j

k = −aihajsηj|hηs|k. (4.12)

Then, from (4.2) we deduce that

ajsηj|hηs = 0. (4.13)

Next, we take the covariant derivative in (4.13) and by using (4.5) and (4.2) we infer that

ajsηj|hηs|k = ahk − ηhηk.

Thus (4.12) becomes

ϕi
jϕ

j

k = −δi
k + ξiηk. (4.14)

Now, denote by D the complementary orthogonal distribution to span{ξ} in TM . Then, by using

(4.14) and (4.6), we obtain

ϕi
jϕ

j

kXk = −Xi,

for any X = Xi(∂/∂xi) that lies in Γ(D). Hence, the restriction of ϕ to D is an almost complex

structure. Thus the fibres of D must be of even dimension and therefore m = 2n+1, n ≥ 1. Next, from

(4.2), (4.6) and (4.7) we deduce that on the Riemannian manifold (M, aij) there exists a unit Killing

vector field ξ. Moreover, from (4.8) we infer that

ξi
|j|k = δi

kηj − ajkξi,

which implies (2.13). Hence, by Theorem 2.1, (ϕ, ξ, η, a) is a Sasakian structure on M . Finally, for c

given by (4.10) we obtain
c + 3

4
= 1 − ‖b‖2 and

1 − c

4
= ‖b‖2.

Thus, from (4.4) we deduce (2.14), that is, (ϕ, ξ, η, a, c) is a Sasakian space form structure on M . This

completes the proof of the theorem.

Next, we consider a proper Randers manifold IFm = (M, F, aij , bi), m ≥ 2, of constant flag curvature

K > 0 and θ = 0 on M . Then, we define on M the Riemannian metric a
∗ and the 1-form b

∗ by their

local components

(a) a∗
ij = Kaij and (b) b∗i =

√
K bi. (4.15)

According to Theorem 1.2, the Randers metric

F ∗(x, y) =
√

K F (x, y), (4.16)

is of constant flag curvature K∗ = 1. Thus, by Theorem 4.1, we infer that m = 2n + 1, and

(ϕ∗, ξ∗, η∗,a∗, c∗) is a Sasakian space form structure, where a
∗ is the Riemannian metric given by

(4.15a) and the others are defined as follows

(a) η∗
i =

1

‖b∗‖ b∗i , (b) ξi∗ = aij∗η∗
j ,

(c) ϕi∗
j = −ξi∗

|∗j , (d) c∗ = 1 − 4‖b∗‖2.

(4.17)

Here, the norm is taken with respect to the Riemannian metric a
∗ and the covariant derivative is taken

with respect to the Levi-Civita connection defined by a
∗. By using (4.15), we rewrite the right sides

of formulas in (4.17) in terms of the geometric objects defined by aij and bi. First, by using (4.15b),

we obtain

‖b∗‖2 = aij∗b∗i b∗j =
1

K
aij

√
K bi

√
K bj = aijbibj = ‖b‖2.
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Thus, we have

(a) η∗
i =

√
K

‖b‖ bi, (b) ξi∗ =
1√

K‖b‖
aikbk,

(c) ϕi∗
j = − 1√

K‖b‖
aikbk|j , (d) c∗ = 1 − 4‖b‖2.

(4.18)

Note that we used in (4.18c) the fact that the Levi-Civita connections of a and a
∗ coincide.

Summing up these results, we can state the following.

Theorem 4.2. Let IFm = (M, F, aij , bi), m ≥ 2, be an m-dimensional proper Randers manifold of

constant flag curvature K > 0 and with θ = 0 on M . Then, m must be an odd number 2n + 1, and M

carries a Sasakian space form structure (ϕ∗, ξ∗, η∗,a∗, c∗) given by (4.18) and (4.15a).

Next, we consider two m-dimensional Finsler manifolds IFm = (M, F ) and eIFm
= (fM, eF ). Then we

say that IFm and eIFm
are Finsler isometric if there exists a C∞ diffeomorphism f : M → fM such that

F = eF ◦ df, (4.19)

where df : TM → TfM is the differential of f . Now, we can state the following.

Theorem 4.3. (Global Classification Theorem) Let IFm = (M, F, aij , bi), m ≥ 2, be an m-dimensional

proper Randers manifold, where (M,a = (aij)) is a simply connected and complete Riemannian mani-

fold. Suppose that IFm is of positive constant flag curvature K and that θ = 0 on M . Then, m must be

an odd number 2n + 1, and IF2n+1 = (M, F, aij , bi) is Finsler isometric to the Randers (c, K)-sphere
eF 2n+1 = (S2n+1[c], eF ), where c = 1 − 4‖b‖2 and eF is given by (3.10).

Proof: By Theorem 4.2 we know that m must be an odd number 2n + 1, and M carries a Sasakian

space form structure (ϕ∗, ξ∗, η∗,a∗, c), where c = 1− 4‖b‖2 (cf. (4.18d)). Also, from the same theorem

we deduce that the Randers metric F is expressed as follows (cf. (4.16))

F (x, y) =
1√
K

nq
a∗

ijy
iyj + b∗i (x)yi

o
, (4.20)

where a∗
ij and b∗i are the local components of the Riemannian metric a

∗ of the Sasakian space form

M [c] and of the 1-form b
∗ on M (see (4.15)). Next, by Theorem 2.2 we know that there exists a diffeo-

morphism f : M [c] → S2n+1[c] which transforms the Sasakian space form structure (ϕ∗, ξ∗, η∗,a∗, c)

of M [c] into the Sasakian space form structure (ϕ, ξ, η,a, c) of S2n+1[c] given by (3.7). Moreover, the

Randers metric eF of constant flag curvature K is given by (cf. (3.10))

eF (ex, ey) =
1√
K

np
aijeyi eyj + bi(ex)eyi

o
, (4.21)

where (ex, ey) = df(x, y), for (x, y) ∈ TM . Now, according to the properties of f we deduce that

aij(x)yiyj = aij(ex)eyi eyj . (4.22)

Also, by using (4.17a), (3.8) and taking into account that η∗ is transformed in η by the diffeomorphism

f , we obtain

b∗i (x)yi = ‖b‖η∗
i (x)yi = ‖b‖ηi(ex)eyi = ‖b‖ 2√

1 − c
bi(ex)eyi = bi(ex)eyi, (4.23)

since

‖b‖ =

√
1 − c

2
·

Taking into account (4.20)–(4.23), we deduce that

F (x, y) = eF (ex, ey), ∀(x, y) ∈ TM,

that is, F 2n+1 is isometric to eF 2n+1. This completes the proof of the theorem.
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Remark 4.1. If we drop the condition for M to be simply connected and complete Riemannian

manifold, then Theorem 4.3 becomes a local classification theorem. This means that IFm is locally

Finsler isometric to the Randers (c, K)-sphere eIF2n+1
.

Remark 4.2. The global classification of Randers manifolds of constant flag curvature for the cases

that were not considered in the present paper is still open. We hope that a result similar to Theorem

4.3 can be proved in general.
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