Some remarks on simple closed geodesics of surfaces with ends

by

Jin-ichi Itoh, Fumiko Ohtsuka and Tudor Zamfirescu*
To Professor S. Ianuş on the occasion of his 70th Birthday

Abstract

If a non-compact complete surface M is not homeomorphic to a subset of the plane or of the projective plane, then it has infinitely many simple closed geodesics [7]. In this paper, we consider simple closed geodesics on a surface homeomorphic to such a subset.

Key Words: Simple closed geodesic, self-intersection.
2000 Mathematics Subject Classification: Primary 53C22, Secondary 53C45.

1 Introduction

It is well-known that there are closed geodesics on closed manifolds with non-trivial fundamental group. They can be obtained as minimal loops in free homotopy classes of loops. However, in open manifolds topological restrictions do not necessarily imply the existence of closed geodesics. For an arbitrary manifold M, Thorbergsson [7] has constructed a complete Riemannian metric on $\mathbf{R} \times M$ for which there are no closed geodesics. But, especially in the 2-dimensional case, he also showed (Theorem 3.2 of [7]) that if an open surface M is not homeomorphic to a plane, a cylinder or a Möbius strip, then there exist infinitely many closed geodesics on M, any of which is not a covering of another one, and if M is not homeomorphic to a subset of the plane or of the projective plane, then it is possible to choose such closed geodesics without self-intersections. There are many results about geometric conditions which ensure the existence of closed geodesics ([6], [7], [1], [4] are just some examples).

In this paper we consider closed geodesics without self-intersections on a smooth surface S_{n} with n ends and without handles, called from now on just surface $(n \in \mathbf{N})$. It is easily seen that a cylindrical surface S_{2} with 2 ends may have no closed geodesics. As an example, we can take a surface of revolution of funnel type with the generating curve $y=1 / x(x>0)$. On the other hand, on S_{n} with $n \geqq 3$, there always are infinitely many closed geodesics.

We shall see here, using elementary arguments, that, for $n \geqq 4$, there are infinitely many simple closed geodesics, while, for $n=3$, there might be no such geodesics at all. Also, we shall present a classification of surfaces concerning their capability of allowing simple closed geodesics, according to the type of neighbourhoods of their ends.

For an arc or a closed curve c, we shall denote by $\lambda(c)$ its length.
We would like to express our hearty thanks to Professor Minoru Tanaka for his kind bibliographical suggestions.

[^0]

Figure 1:

2 Surfaces with three ends

Theorem 1. There exist surfaces with 3 ends which have no simple closed geodesics.
Proof. We define a surface \widetilde{S}_{3} as the double of the domain

$$
B=\left\{\left(x_{1}, x_{2}\right) \in \mathbf{R}^{2} \left\lvert\, \frac{1}{\left|x_{1}\right|} \geqq x_{2} \geqq 0\right.\right\}
$$

We will show that there are no simple closed geodesics on \widetilde{S}_{3}. Let b_{0}, b_{1} and b_{2} be the three boundary curves of B such that b_{0} is the x_{1}-axis, $b_{1}(t)=(-t, 1 / t)$ and $b_{2}(t)=(t, 1 / t)$ for $t>0$.

Suppose that the surface \widetilde{S}_{3} possesses a simple closed geodesic c. Let $p_{1}, p_{2}, \cdots, p_{n}$ be the consecutive points on c where c crosses $b_{0} \cup b_{1} \cup b_{2}$ (according to the order induced by arc-length parametrization). For any $i \in N:=\{1, \cdots, n\}$, if c crosses b_{k} at p_{i}, then we define the map $j: N \rightarrow\{0,1,2\}$ by $j(i):=k$. Since c is a simple closed geodesic, for any i we have $j(i) \neq j(i+1)$.

If there exists $i \in N$ such that $j(i)=j(i+2)$, then \widetilde{S}_{3} is divided into two domains by $p_{i} p_{i+1} \cup$ $p_{i+1} p_{i+2} \cup p_{i+2} p_{i}$, and c comes to p_{i} from one domain D_{1} and leaves p_{i+2} towards the other domain D_{2}. Since c has no self-intersections, all successors $\left\{p_{j} \mid j>i+2\right\}$ of $p_{i+2}\left(j\right.$ taken modulo n) lie in D_{2} and will never reach D_{1} again. This contradicts the fact that c is closed.

Hence $j(i)=j(i+3)$ for any i. In this case, $p_{1} p_{2}, p_{2} p_{3}, \ldots, p_{4} p_{5}$ must essentially lie as in Figure 1 (where $p_{1} \in b_{1}$ and $p_{2} \in b_{2}$), and no admissible position of p_{6} can be found, because p_{5} and b_{0} are separated by $p_{1} p_{2}$ in B. The surface \widetilde{S}_{3} is not smooth, but an appropriate slight deformation of \widetilde{S}_{3} yields a smooth example.

Figure 2:

3 Surfaces with more than three ends

Theorem 2. On any surface with at least 4 ends there are infinitely many simple closed geodesics.
Proof. We choose a large compact set $D \subset S_{n}$ such that each connected component C_{i} of $S_{n} \backslash D$ is homeomorphic to a cylinder and the boundary ∂D consists of simple closed curves $c_{i}=\partial C_{i},(i=$ $1,2, \ldots, n)$.

Take smooth $\operatorname{arcs} \alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots$ in D each joining a point of c_{1} to one of c_{2} and having no selfintersections (as illustrated in Figure 2). Note that these arcs form infinitely many homotopy classes, according to the number of times they surround c_{2} and c_{3}.

Let N_{i} be a thin tubular neighbourhood of α_{i} on S_{n} and c_{i}^{\prime} be the component of $\partial\left(D \backslash N_{i}\right)$ meeting c_{1}. Since c_{i}^{\prime} is not contractible, there exists a closed geodesic $s_{i} \subset S_{n}$ in the homotopy class of c_{i}^{\prime} without self-intersections. See also the proof of Theorem 3.2 in [7].

4 A classification for surfaces with two or three ends

In the previous sections, we have seen that there are infinitely many simple closed geodesics on S_{n} for $n \geqq 4$, and on S_{2} or S_{3} there might be no such closed geodesics. If D is a large compact set such that each component D_{i} of $S_{n} \backslash D$ is homeomorphic to a cylinder $(i=1, \ldots, n)$, we call the closure U_{i} of D_{i} an endtube of S_{n}.

In this section we work with three types of endtubes, and relate them to the existence of simple closed geodesics on S_{2} or S_{3}.

The following definitions are inspired by and similar to those of Cohn-Vossen [3] (see also Busemann [2]).

Definition 1. The endtube U is called:

- contracting if it contains no closed curve freely homotopic to ∂U, of relative minimal length, i.e., minimal in some neighbourhood in U,
- expanding if it includes no contracting subtube and all its closed curves freely homotopic to ∂U, of relative minimal length, meet ∂U.
- bulging if it does not include any contracting or expanding subtube.

We note that every endtube includes a subendtube of one of the above three types, and a subendtube of a contracting (expanding) endtube is contracting (expanding).

The following lemma is essentially proven in [3], where it is shown that a "Schaft" has a simple closed geodesic or a "hohles Eineck", i.e., a geodesic loop with the angle toward the end less than π. The conclusion is slightly different because the definitions are modified compared with Cohn-Vossen's.

Lemma 1. If S_{n} has a contracting endtube U, then $U \backslash \partial U$ contains a geodesic loop at some point x, homotopic to ∂U, with the angle at x toward the end of U less than π.

For the next lemma, see Bangert [1], p. 93.
Lemma 2. If S_{2} has two disjoint locally convex endtubes, then it has a simple closed geodesic.
Theorem 3. Let S_{n} be a surface with n ends $(n=2,3)$. Then one of the following situations occurs:

1. If S_{n} contains a bulging endtube, then it has a simple closed geodesic.
2. If S_{3} contains an expanding endtube, then it has a simple closed geodesic.
3. If S_{3} contains three pairwise disjoint contracting endtubes, it may not contain any simple closed geodesic.
4. If S_{2} has two disjoint contracting endtubes or two disjoint expanding endtubes, then it has a simple closed geodesic.
5. If S_{2} has both a contracting endtube and an expanding endtube, it may not contain any simple closed geodesic.

Proof. (1) It is clear that a bulging endtube U contains a curve of relative minimal length freely homotopic to ∂U, which does not meet ∂U, and is therefore of relative minimal length in S_{n}, thus providing a simple closed geodesic.
(2) Assume U_{1} is an expanding endtube of S_{3}.

Let c^{*} be a shortest curve in U_{1} homotopic to ∂U_{1} and meeting ∂U_{1}. Take $a \in c^{*} \cap \partial U_{1}$.
If there is a curve $\widetilde{c} \subset D_{1}=U_{1} \backslash \partial U_{1}$ of length less than $\lambda\left(c^{*}\right)$, homotopic to ∂U_{1}, then it contradicts the shortestness of c^{*}.

If there is a curve $\widetilde{c} \subset D_{1}$ of length $\lambda\left(c^{*}\right)$, but not less, homotopic to ∂U_{1}, then \widetilde{c} itself has relative minimal length, in contradiction to the definition of an expanding endtube.

Hence every curve in D_{1} homotopic to ∂U_{1} has length exceeding $\lambda\left(c^{*}\right)$.
Let γ_{i} be a geodesic ray starting at a, such that $\gamma_{i} \cap U_{i}$ contains a geodesic ray $(i=1,2)$. We parametrize $\gamma=\gamma_{1} \cup \gamma_{2}$ by arc length, with $\gamma(0)=a, \gamma(t)=\gamma_{1}(-t)$ for $t<0$, and $\gamma(t)=\gamma_{2}(t)$ for $t>0$. For any number t, consider a curve c_{t} of minimal length in S_{3}, passing through $\gamma(t)$ and homotopic to ∂U_{1}.

If $t \rightarrow \infty$, then $\lambda\left(c_{t}\right) \rightarrow \infty$, because c_{t} keeps meeting ∂U_{2}.
Clearly, $\lambda\left(c_{0}\right) \leq \lambda\left(c^{*}\right)$.
For $t \leq-\lambda\left(c^{*}\right)$, either c_{t} meets ∂U_{1} and

$$
\lambda\left(c_{t}\right)>|t| \geq \lambda\left(c^{*}\right)
$$

or c_{t} does not meet ∂U_{1} and we showed that in this case $\lambda\left(c_{t}\right)>\lambda\left(c^{*}\right)$.

Thus $\lambda\left(c_{t}\right)$ attains a relative minimum for some $t_{0} \geq-\lambda\left(c^{*}\right)$, and $c_{t_{0}}$ has a relative minimal length among all curves homotopic to ∂U_{1}. Hence $c_{t_{0}}$ is a simple closed geodesic.
(3) We have seen in Theorem 1 that there exists such a surface with no simple closed geodesics.
(4) Assume S_{2} has two contracting endtubes. If U is anyone of them, it has, by Lemma 1, a geodesic loop at some point x, homotopic to ∂U, with the angle at x toward the end of U less than π. Now, the conclusion follows from Lemma 2.

If S_{2} has two expanding tubes, we follow the same reasoning as for (2). The difference is that now both halves γ_{1} and γ_{2} of γ are treated in the same way, namely similar to γ_{1} in the proof of (2).
(5) A surface of revolution of funnel type has no simple closed geodesics.

5 Two examples

In this section we give two examples of surfaces with four ends. The first surface has infinitely many closed geodesics without self-intersections illustrating Theorem 2, while the second is not a smooth surface, has four vertices of negative singular curvature, and on it all closed geodesics except for four do have self-intersections.

Example 1. Let E be the doubly covered domain

$$
B=\left\{\left(x_{1}, x_{2}\right) \in \mathbf{R}^{2} \left\lvert\,-\frac{1}{\left|x_{1}\right|} \leq x_{2} \leq \frac{1}{\left|x_{1}\right|}\right.\right\}
$$

Take four simple closed curves c_{1}, c_{2}, c_{3} and c_{4} on E defined by $x_{1}=2, x_{2}=-2, x_{1}=-2$ and $x_{2}=2$.
Consider smooth arcs $\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots$ in D each joining a point of c_{1} to one of c_{2} and having no selfintersections (as illustrated in Figure 3). Note that these arcs form infinitely many homotopy classes. Proceed like in the proof of Theorem 2, and eventually find the closed geodesics s_{i} illustrated in Figure 3.

The coordinates of the points where s_{2} passes from one face of E to the other are $(\pm 1, \pm 1)$, $(\pm a, \mp 1 / a),(\pm 1 / a, \mp a)$, where

$$
a=-1+\sqrt{3}+\sqrt{2-\sqrt{3}}
$$

If the arcs $\alpha_{1}, \alpha_{2}, \ldots$ had joined c_{1} and c_{3} instead of c_{1} and c_{2}, we should have obtained another set of simple closed geodesics. But also note that, if $\alpha_{1}, \alpha_{2}, \ldots$ joined c_{3} to c_{4}, we should again obtain s_{1}, s_{2}, \ldots.

The surface E is not smooth, but an appropriate slight deformation of E yields a smooth example.
Example 2. Let ξ be positive, let

$$
B_{0}=\left\{\left(x_{1}, x_{2}\right) \in \mathbf{R}^{2} \mid-e^{-x_{1}^{2} / 5} \leq x_{2} \leq e^{-x_{1}^{2} / 5}\right\}
$$

and let $a_{0}=(0,-1), a_{0}^{\prime}=(0,1), \bar{b}_{0}=\left(-\xi,-e^{-\xi^{2} / 5}\right), \bar{b}_{0}^{\prime}=\left(-\xi, e^{-\xi^{2} / 5}\right), b_{0}=\left(\xi,-e^{-\xi^{2} / 5}\right), b_{0}^{\prime}=$ $\left(\xi, e^{-\xi^{2} / 5}\right)$ as on Figure 4, left.

We construct the non-smooth surface S with four ends from six pieces $B_{1}, B_{2}, \ldots, B_{6}$, each isometric to B_{0}, by identifying their boundaries as follows.

First determine points $a_{i}, b_{i}, \bar{b}_{i}, a_{i}^{\prime}, b_{i}^{\prime}, \bar{b}_{i}^{\prime}$ on $B_{i}(i=1, \ldots, 6)$ corresponding to $a_{0}, b_{0}, \bar{b}_{0}, a_{0}^{\prime}, b_{0}^{\prime}, \bar{b}_{0}^{\prime}$ via the mentioned isometries. Then place $B_{1}, B_{2}, \ldots, B_{6}$ as shown on Figure 4, right, by gluing the arcs such that $a_{i}^{\prime} b_{i}^{\prime}=a_{i+1}^{\prime} \bar{b}_{i+1}^{\prime}$ (modulo 3), $a_{3} b_{3}=a_{4} \bar{b}_{4}, a_{1} \bar{b}_{1}=a_{4}^{\prime} \bar{b}_{4}^{\prime}$ and so on, and let $\xi \rightarrow \infty$.

Then S has four singular points of negative singular curvature, in the sense of [5], all corresponding to a_{0} or a_{0}^{\prime}. Here we can see that the "angle" at each of these four points is 3π.

Figure 3:

Figure 4:

We now prove that S has exactly three simple closed geodesics, one of which is illustrated by a broken thick loop in Figure 5, right, consisting of $a_{2}^{\prime} a_{2}$ on $B_{2}, a_{5}^{\prime} a_{5}$ on $B_{5}, a_{4}^{\prime} a_{4}$ on B_{4} and $a_{3} a_{3}^{\prime}$ on B_{3}; thus, this example shows that the smoothness condition in Theorem 2 is essential.

Let $\operatorname{trqr} r^{\prime} t^{\prime}$ be a piece of a geodesic in the double of B_{0}, as shown on Figure 5, left.
Suppose a simple closed geodesic γ surrounding c_{1} and c_{2} does not pass through a_{1} or a_{1}^{\prime}. Then γ either

1) consists of two broken lines isometric to $\operatorname{trqr}^{\prime} t^{\prime}$ (see Figure 5, left), or
2) includes two consecutive arcs isometric to the line-segment $p p^{\prime} \subset B_{0}$, where p, p^{\prime} lie on the arcs $a_{0} \bar{b}_{0}, a_{0}^{\prime} b_{0}^{\prime}$, respectively.

For example, γ_{1} in Figure 5, right, is in the case 1), and consists of two broken lines isometric to trqr t^{\prime}, one of which is passing through B_{1}, B_{2}, B_{5} and B_{1}, and the other through B_{1}, B_{4}, B_{3} and B_{1}. Furthermore, γ_{2} in Figure 5, right, is in the case 2), and is passing through B_{2}, B_{5}, B_{4} and B_{3}.

Case 1). Let $v \in \partial B_{0}$, and m_{v} be the (oriented) angle between the tangent at v to ∂B_{0} and the positive x_{1}-axis.

Putting $f(x)=e^{-x^{2} / 5}$, we find that, on $\left[0, \infty\left[, f^{\prime \prime}(x)=0\right.\right.$ for $x=\sqrt{5} / \sqrt{2}$, where f^{\prime} reaches its minimal value $-\sqrt{2} / \sqrt{5 e}$. Since $\sqrt{2} / \sqrt{5 e}<\sqrt{2} / \sqrt{10}<1 / \sqrt{3}$, the absolute value of the slope of ∂B_{0} is everywhere less than $1 / \sqrt{3}$. Hence $\left|m_{v}\right|<\pi / 6$ for all v.

Let $\alpha\left(\alpha^{\prime}\right)$ be the (oriented) angle between tr (respectively $t^{\prime} r^{\prime}$) and the positive x_{1}-axis.
The reflection law implies that the angles β, β^{\prime} between $r q$, respectively $r^{\prime} q$, and the positive x_{1}-axis are $\beta=2 m_{r}-\alpha, \beta^{\prime}=2 m_{r^{\prime}}-\alpha^{\prime}$.

Again the reflection law (at q) implies $\pi+2 m_{q}-\beta=\beta^{\prime}$, whence

$$
\alpha+\alpha^{\prime}=2\left(m_{r}+m_{r^{\prime}}-m_{q}\right)-\pi<0
$$

This means that $\nu>\nu^{\prime}$ (see Figure 4, right), because $\nu=(\pi / 2)-\alpha$ and $\nu^{\prime}=(\pi / 2)+\alpha^{\prime}$. And this cannot happen for both pieces composing the closed geodesic γ.

Case 2). Let p^{*} be the intersection point of $p p^{\prime}$ with $a_{0} a_{0}^{\prime}$.

Figure 5:

The normal line through the point of $a_{0}^{\prime} b_{0}^{\prime}$ of abscise $x_{1}>0$ cuts the x_{2}-axis at a point of ordinate

$$
x_{2}=e^{-x_{1}^{2} / 5}-\frac{5}{2} e^{x_{1}^{2} / 5}
$$

Since $e^{-x_{1}^{2} / 5}<1$ and $e^{x_{1}^{2} / 5}>1$ for all positive x_{1}, we have $x_{2}<-3 / 2$. Since p^{*} has ordinate at least -1 , the halfline $p^{\prime} p$ and the arc $p^{\prime} b_{0}^{\prime}$ make an obtuse angle δ, see Figure 4, right. But this cannot happen for both consecutive pieces of γ isometric to $p p^{\prime}$.

On S we have a closed geodesic formed by four arcs analogous to $a_{1} a_{1}^{\prime}$, surrounding c_{1} and c_{2}, passing through a_{1} (and the other three singular points), and of length 8. As we saw above, there are no further closed geodesics surrounding c_{1} and c_{2}.

Hence every simple closed geodesic is composed by four arcs isometric to $a_{0} a_{0}^{\prime}$ and passes through all four singular points of negative singular curvature. There are only three such geodesics.

Acknowledgement. The first author was partially supported by Grant-in-aid for Scientific Research(C) No.17540085, Japan Society for the Promotion of Science.
The second author was partially supported by Grant-in-aid for Scientific Research(C) No.17540060, Japan Society for the Promotion of Science.
The third author thankfully acknowledges partial support from Grant 2-CEx 06-11-22/2006 of the Romanian Government, and from the JSPS research fellowship S-07025, Japan.

References

[1] V. Bangert, Closed geodesics on complete surfaces, Math. Ann. 251 (1980) 83-96.
[2] H. Busemann, The Geometry of Geodesics, Academic Press, New York-London, 1955.
[3] S. Cohn-Vossen, Kürzeste Wege und Totalkrümmung auf Flächen, Compositio Math. 2 (1935) 63-133.
[4] T. H. Colding and N. Hingston, Metrics without Morse index bounds, Duke Math. 119 (2003) 345-365.
[5] J. Itoh and F. Ohtsuka, Total curvature of noncompact piecewise Riemannian 2-polyhedra, Tsukuba J. 29 (2005) 471-493.
[6] S. Kobayashi, On conjugate and cut loci, in "Global Differential Geometry", MAA Studies in Math. 27 (1989), 140-169.
[7] G. Thorbergsson, Closed geodesics on non-compact Riemannian manifolds, Math. Z. 159 (1978) 249-258.

Received: 4.11.2008.

Faculty of Education
University of Kumamoto
Kumamoto, Kumamoto 860-8555, Japan
E-mail: j-itoh@gpo.kumamoto-u.ac.jp

Fumiko Ohtsuka
Department of Mathematical Sciences
Faculty of Science
Ibaraki University
Mito, Ibaraki 310-8512, Japan
E-mail: ohtsuka@mx.ibaraki.ac.jp

Tudor Zamfirescu
Faculty of Mathematics
Dortmund University of Technology, Germany, and
Institute of Mathematics
Romanian Academy, Bucharest, Romania
E-mail: tudor.zamfirescu@mathematik.uni-dortmund.de

[^0]: *The authors are partially supported by a PN II IDEI Grant, code 1193.

