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Abstract

By extending an integrability result previously proved for almost quaternionic mani-

folds, [M1], a characterization of manifolds with an integrable paraquaternionic structure

as locally paraquaternionic projective manifolds is given. An alternative proof of a charac-

terization of twistorial maps between quaternionic projective spaces,[IMOP], is developed

and extended to the paraquaternionic case. The extension of these results to maps between

locally (para)quaternionic Grassmannian manifolds is discussed and partially proved, in

line with [M1] and its extension [M2] to quaternionic tensor product structures.
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1 Introduction

In this paper we deal with G-structures related to the algebra K = H, eH of quaternions, paraquaternions

respectively and with classes of natural maps for such structures, as introduced in [IMOP] from a

twistorial point of view. We denote GL(m, K) the group of invertible right K-linear endomorphisms of

the m-dimensional numerical space Km.

An almost quaternionic structure on a manifold M4m is a reduction of its frame bundle to the group

G = GL(m, H) · GL(1, H) which can be identified with the group of R-automorphisms η = T (ξ) of Hn

of the form: η = Aξq, A ∈ GL(m, H), q ∈ GL(1, H). It is known that the integrability condition of such

G-structure, i.e. the condition that the corresponding reduction of the frame bundle is given by the

cocycle determined by a coordinate atlas, is very restrictive: in [M1], [K] it was proved that it holds

if and only if the manifold is locally quaternionic projective, i.e. the differentiable structure is induced

by an atlas of quaternionic coordinates which change by quaternionic linear fractional transformations,

as it happens for non homogeneous quaternionic projective coordinate systems of the quaternionic

projective space HP m. The proof in [M1] bases on the fact that the integrability condition for the more

∗Work done under the programs of G.N.S.A.G.A. of C.N.R. and COFIN07 ”Riemannian metrics and differ-

entiable structures” of M.I.U.R. (Italy)
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restricted group G = GL(m, H) characterizes the locally quaternionic affine manifolds. In [M2] it was

proved also that, more generally, an almost tensor product quaternionic structure of type (p, k) on a

manifold M4pk, that is a G-structure where G = GL(p, H) · GL(k, H), is integrable if and only if the

manifold is locally quaternionic Grassmannian. A generalization of the first result was given in [IMOP]

dealing with quaternionic maps, where as an application of the given characterization of such maps

as twistorial maps it was proved that quaternionic maps between open sets of quaternionic projective

spaces HP n, HP m are induced by H-linear maps from Hn+1 to Hm+1.

The primary aim of present paper was to present an alternative, direct and more elementary, proof

of the stated characterization of quaternionic maps between quaternionic projective spaces, following

the line of [M1],[M2]. By performing such task, whose basic step essentially consisted in a careful

inspection of the proof of main results in [M1] and [M2], we realized first that analogous results

about integrability are still valid for almost paraquaternionic manifolds and, also, for manifolds with

an almost paraquaternionic tensor product structure: i.e. the paraquaternionic G-structures where

G = GL(m, eH)·GL(1, eH) and G = GL(p, eH)·GL(k, eH) are integrable if and only if the manifold is locally

paraquaternionic projective and, respectively, locally paraquaternionic Grassmannian. (For an account

on almost paraquaternionic manifolds and on tensor product structures let see the bibliographical

references). Then we were able to give a proof of the said characterization of quaternionic maps which

carries over to paraquaternionic case: paraquaternionic maps between open sets of paraquaternionic

projective spaces eHP n, eHP m are induced by eH-linear maps from eHn+1 to eHm+1.

Finally, by going over again the above results, and referring in particular to those in [M2], we are

naturally induced to conjecture that the extension to analogous results holds for maps between open sets

of (para)quaternionic Grassmannian manifolds, ϕ : U ⊂ Gp(Kp+k) → Gp(Kp+k′

), K = H or eH, k ≤ k′.

2 Preliminaries

K denotes an associative, non commutative, algebra over the real field R coinciding with the algebra

H of quaternions or the algebra eH of paraquaternions. An element of K is a (para)quaternion1 of the

form q = q0 + iq1 + jq2 + kq3 where qt ∈ R, t = 0, 1, 2, 3, and the imaginary units i1 = i, i2 = j, i3 = k

verify the relations

i2 = −1, j2 = k2 = −ǫ ; ij = −ji = k , jk = −kj = ǫi , ki = −ik = j

being ǫ = 1 or ǫ = −1 if K = H or K = eH respectively. Also notation i0 = 1 will be used.

The conjugate of q is q = q0− iq1− jq2−kq3; Re(q) = q0 is the real part and Im(q) = iq1 + jq2 +kq3

is the imaginary part of q.

The square norm of q is

‖q‖2 = qq ≡ (q0)
2 + (q1)

2 + ǫ((q2)
2 + (q3)

2) .

We recall that

Re(p + q) = Re(p) + Re(q) , Re(pq) = Re(qp)

p + q = p + q , pq = qp (p, q ∈ K)

For q = q0 + iq1 + jq2 + kq3 ∈ K let define the associated quaternions

q′ = −iqi , q′′ = −ǫjqj , q′′′ = −ǫkqk

1In the following, by writing say (para)quaternion we intend that the statement is to be made respectively

for a quaternion or a paraquaternion, that is for H or eH.
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(cfr. [Bo]). Hence
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:

q = q0 + iq1 + jq2 + kq3

q′ = q0 + iq1 − jq2 − kq3

q′′ = q0 − iq1 + jq2 − kq3

q′′′ = q0 − iq1 − jq2 + kq3

,
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>

>

>

<

>
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>

:

q0 = 1
4
(q + q′ + q′′ + q′′′)

q1 = − i
4
(q + q′ − q′′ − q′′′)

q2 = − ǫj

4
(q − q′ + q′′ − q′′′)

q3 = − ǫk
4

(q − q′ − q′′ + q′′′)

(1)

Let ξ = ξ0 + iξ1 + jξ2 + kξ3 be a (para)quaternionic variable or function whose differential is

dξ = dξ0 + idξ1 + idξ1 + jdξ2 + kdξ3

Then
8

>

>

>

<

>

>

>

:

dξ0 = 1
4
(dξ + dξ′ + dξ′′ + dξ′′′)

dξ1 = − i
4
(dξ + dξ′ − dξ′′ − dξ′′′)

dξ2 = − ǫj

4
(dξ − dξ′ + dξ′′ − dξ′′′)

dξ3 = − ǫk
4

(dξ − dξ′ − dξ′′ + dξ′′′)

(2)

If F = F (ξ) is a (para)quaternionic function of ξ, whose real components are Fi = Fi(ξ) ≡ Fi(ξ0, ξ1, ξ2,

ξ3), i = 0, 1, 2, 3, i.e. F (ξ) = F0 + iF1 + jF2 + kF3, then the differential of F ,

dF = dF0 + idF1 + jdF2 + kdF3 , (3)

where

dFi =
∂Fi

∂ξ0
dξ0 +

∂Fi

∂ξ1
dξ1 +

∂Fi

∂ξ2
dξ2 +

∂Fi

∂ξ3
dξ3 (i = 0, 1, 2, 3) , (4)

could be written at any point as a linear function of the (para)quaternionic differentials dξ, dξ′, dξ′′, dξ′′′

dF =
∂F

∂ξ
dξ +

∂F

∂ξ′
dξ′ +

∂F

∂ξ′′
dξ′′ +

∂F

∂ξ′′′
dξ′′′ (5)

and the unicity of such expression gives also the definition of (para)quaternionic derivatives
∂F
∂ξ

, ∂F
∂ξ′

, ∂F
∂ξ′′

, ∂F
∂ξ′′′

.

These definitions and results can be carried over to a function η = F (ξ1, . . . , ξn) of n (para)quaternio-

nic variables ξ1, . . . , ξn. In particular, one has the (para)quaternionic expression of the differential

dF =

n
X

α=1

(
∂F

∂ξα
dξα +

∂F

∂ξα′
dξα′ +

∂F

∂ξα′′
dξα′′ +

∂F

∂ξα′′′
dξα′′′) (6)

(In the following we will omit the summation symbol by adopting Einstein convention).

A basic result, which goes back to C. Ehresmann (see [Bo]), states that a quaternionic function of

n quaternionic variables which is differentiable on the right (resp. on the left) in quaternionic sense

has to be linear. For completeness and in view of extensions to the paraquaternionic case we state the

following proposition. In the quaternionic case the proof, which is elementary, was indicated to us by

G.B. Rizza several years ago, before [M1].

Proposition 2.1. Let F (ξ1, . . . , ξn) be a (para)quaternionic function of the n (para)quaternionic

variables ξ1, . . . , ξn. Let assume that F is Ck, k ≥ 2, and that it is differentiable on the right in

(para)quaternionic sense, that is

dF = Aβdξβ (β = 1, . . . , n) (7)

with Aβ = Aβ(ξ1, . . . , ξn) a (para)quaternionic function, of class Ck−1. Then F is (right-)linear, i.e.

of the form F = aβξβ + b with aβ = Aβ , b (para)quaternionic constants (β = 1, . . . , n).
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Proof. (7) is equivalent to the (set of) identities

∂F

∂ξβa

= Aβia (a = 0, 1, 2, 3; β = 1, . . . , n)

and also to the identities

∂F

∂ξβ0

= Aβ ,
∂F

∂ξβa

=
∂F

∂ξβ0

ia (a = 0, 1, 2, 3; β = 1, . . . , n). (8)

Hence, by further differentiation and using equality of mixed partials,

∂2F

∂ξγb∂ξβa

=
∂2F

∂ξγb∂ξβ0

ia =
∂2F

∂ξβ0∂ξγb

ia =
∂2F

∂ξβ0∂ξγ0

ibia (9)

and by applying again the equality of mixed partials, it results

∂2F

∂ξβ0∂ξγ0

(ibia − iaib) = 0 (a, b = 0, 1, 2, 3; β, γ = 1, . . . , n) .

For a 6= b, a, b ∈ {1, 2, 3}, ibia − iaib = −2iaib 6= 0, then

∂2F

∂ξβ0∂ξγ0

= 0 (β, γ = 1, . . . , n)

and by (9) all second derivatives of F vanish. Hence F = Aβξβ + b.

3 The (para)quaternionic projective space KP
n

Let Kn+1 be the (n+1)-dimensional (para)quaternionic numerical space, formed by vectors x = (x0, x1,

. . . , xn), (xi ∈ K). A vector x is called isotropic if ‖x‖2 :=
P

i ‖x
i‖2 = 0; for K = H there are

no non zero isotropic vectors. Denote K0 = {q ∈ K|‖q‖ 6= 0} the multiplicative group of invertible

(para)quaternions. Let Kn+1
0 be the open set of nonisotropic vectors of Kn+1 and ∼ be the equivalence

relation x ∼ y if and only if y = xλ for some λ ∈ K0.

The (right) n-dimensional (para)quaternionic projective space KP n, the space of (nonsingular)

(para)quaternionic lines of Kn+1, can be defined as the quotient space

KP n = K
n+1
0 ÂK0 .

(see [B], [GMV], [L]). We denote [x] the point of KP n which is determined by the vector x ∈ Kn+1
0 ,

i.e. [x] is the equivalence class of x in Kn+1
0 .

KP n is endowed by a natural (para)quaternionic structure that is an integrable almost (para)quater-

nionic structure given by a canonical atlas of (paraquaternionic) coordinates.

Let first recall the following definitions (for this point of view in quaternionic case, see [Bo])

Definition 3.1. An almost (para)quaternionic structure on a manifold M4n is defined by:

1) a locally trivial bundle p : K(M) → M with fiber type the (para)quaternionic algebra K

2) a field R of effective representations Rx of p−1(x) = Kx(M) in TxM, x ∈ M .

Let

x • y :=
X

1,...,n+1

xiyi , x,y ∈ K
n+1

be the standard (para)quaternionic hermitian product in Kn+1 and

〈x,y〉K := Re(x • y) =
X

1,...,n+1

(xi
0y

i
0 + xi

1y
i
1 + ǫxi

2y
i
2 + ǫxi

3y
i
3)
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be the corresponding standard scalar product in R
4(n+1)
K

≡ Kn+1 where R
4(n+1)
K

is R4(n+1) endowed by

the standard positively defined euclidean product if K = H and R
4(n+1)

2(n+1), that is R4(n+1) endowed by the

standard pseudoeuclidean scalar product
P

1,...,n+1(x
i
0y

i
0 + xi

1y
i
1 + ǫxi

2y
i
2 + ǫxi

3y
i
3) of neutral signature

(2n + 2, 2n + 2), if K = eH.

Denote S4n+3
K

the unit (pseudo)sphere of the (para)hermitian space R
4(n+1)
K

formed by the non

singular vectors x of unitary norm, defined by the equation

x • x = 1 .

S4n+3
H

⊂ R4(n+1) is the unit sphere S4n+3 of the euclidean space R4(n+1) and S4n+3
eH

⊂ R4(n+1) is the

unit pseudosphere S4n+3
2n+1 of the euclidean space R

4(n+1)
2n+2 .

We denote by SK the unit 3-dimensional (pseudo)sphere of R4
K, that is SH ≡ S3 ⊂ R4, SeH

≡ S1
2 ⊂ R4

2

respectively. SK is formed by the unitary (para)quaternions λ ∈ K such that λλ = 1.

SK ⊂ K0 acts on the right on Kn+1
0 and the n-dimensional (para)quaternionic projective space can

be considered as the quotient

KP n = S4n+3
K

/SK .

that is we can write

KP n = {[x] |x ∈ K
n+1
0 ,x • x = 1,x ∼ xλ, ∀λ ∈ SK} .

Then the fibre space of tangent vectors T (KP n) can be realized as the quotient

T (KP n) = { [x,v]|x ∈ Kn+1
0 ,x • x = 1,v ∈ Kn+1,x • v = 0,

(x,v) ∼ (xλ,vλ) ∀λ ∈ SK},

The fibre space K(KP n) can be defined as the quotient of the set of pairs (x, q), where x ∈ S4n+3
K

and q ∈ K, by the equivalence relation:

two pairs (x, q) and (x′, q′) are equivalent if and only if it exists a unitary λ ∈ SK such that

x
′ = xλ and q′ = λ−1qλ

i.e.

K(KP n) = {[x, q]|x ∈ K
n+1
0 ,x • x = 1, q ∈ K, (x, q) ∼ (xλ, λ−1qλ) ∀λ ∈ SK}

The representation of K(KP n) on T (KP n) is defined by

R[x][x, q] : [x,v] → [x,vq] , ∀[x,v] ∈ T (KP n)

(One verifies that x • (vq) = 0 , [x,vq] ∼ [xλ,vλλ−1qλ] = [xλ,vqλ] .)

For any basis {f0, f1, . . . , fn} of Kn+1 and corresponding (para)quaternionic coordinates (y0, y1, . . . ,

yn) a system of (non homogeneous) coordinates (ξ1, . . . , ξn) is defined on the open set where y0 6= 0 by

assuming ξα = yα(y0)−1, α = 1, . . . , n. If {f0
′, f1

′, . . . , fn
′} is another basis of Kn+1 and ξα′ = yα(y0′)−1

the induced coordinates the change of homogeneous coordinates is a linear transformation

yα′ = bα′

β yβ

(by using Einstein convention for sum) and the corresponding change of non homogeneos coordinates

is a (para)quaternionic linear fractional transformation

ξα′ = (bα′

β ξβ + bα′

0 )(b0′

γ ξγ + b0′

0 )−1 (α′, β, γ = 1, . . . , n) (10)

By differentiating one obtains

dξα′ = Aα′

γ dξγQ (α, γ = 1, . . . , n)



326 Stefano Marchiafava

where

Aα′

γ = −ξα′

b0′

γ + bα′

γ , Q = (b0′

β ξβ + b0′

0 )−1 .

The coordinate systems (ξ1, . . . , ξn) form the standard coordinate atlas of KP n.

The standard atlas induces a GL(n, K) · GL(1, K)-structure on the manifold KP n , which thus is

an almost (para)quaternionic manifold, and moreover such structure is integrable.

Let M4n be a 4n-dimensional differentiable manifold and assume that it is endowed by a (para)quater-

nionic coordinate atlas, consisting of local systems of (para)quaternionic coordinates (ξα) ≡ (ξ1, . . . , ξn)

on open sets U of a covering of M4n, such that in the non empty intersection U ∩U ′ of two charts the

corresponding coordinate systems are related by linear fractional (para)quaternionic transformations of

type (10); then we say that M4n is locally (para)quaternionic projective. A locally (para)quaternionic

projective manifold M4n is automatically endowed by an integrable (smooth) almost (para)quaternionic

structure.

As an extension of the main result in [M1], proved for H, we can state that the converse is always

true for both algebras K.

Proposition 3.2. An almost (para)quaternionic structure, of class Ct, t ≥ 3, is integrable if an only

if it is induced by a locally (para)quaternionic structure.

Proof. For K = H it was proved in [M1] and by carefully following the proof given there we checked,

by a long but rather trivial work, that the same steps can be carried over to the paraquaternionic case,

K = eH. (We will return on that proof when considering proposition 4.1 ).

In fact, we mention that by checking the analogous proof of the results in [M2] it is possible to

state the following generalization of 3.2.

Recall that the group G = GL(p, K) · GL(k, K) is isomorphic to the group of invertible en-

domorphisms Y = T (X) of Kpk, Y = (yα
i ), X = (xβ

j ) ∈ Kpk, of the form Y = AXQ, where

A = (Aα
β ) ∈ GL(p, K), Q = (Qi

j) ∈ GL(k, K), (α, β = 1, . . . , p; i, j = 1, . . . , k). Note also that a

change of Pontrjagin coordinates Γ = (γα
i ), Ξ = (ξβ

j ), (α, β = 1, . . . , p; i, j = 1, . . . , k) in Gp(Kp+k) is

given by a linear fractional (para)quaternionic transformation

Γ = (BΞ + C)(DΞ + E)−1

where the (para)quaternionic matrix

(
B C

D E
) = (

(bα
β ) (cα

j )

(dρ
j ) (er

s))
)

is invertible. Moreover, at any point the transformation between the differentials dΓ, dΞ belongs to

G = GL(p, K) · GL(k, K), see [M2] for K = H.

Proposition 3.3. On a real differentiable manifold M4pk, of class Ct, t ≥ 3, an almost (para)quater-

nionic tensor product structure of type (p, k), is integrable if and only if it is locally (para)quaternionic

Grassmannian, of type Gp(Kp+k), for K = H, eH respectively.

4 (Para)quaternionic maps between (para)quaternionic manifolds

Let M4n, N4m be two almost (para)quaternionic manifolds, whose fields of representations are RM
x ,RN

y , x ∈

M, y ∈ N respectively. A map ϕ : M → N is a is a (para)quaternionic map if there exists a map

eϕ : K(M) → K(N) such that for any vector v ∈ TxM, x ∈ M one has

dϕ ◦ RM
x (qx) = (RN

ϕ(x) ◦ eϕ)(qx) ◦ dϕ , ∀qx ∈ Kx , x ∈ M .
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(see [IMOP]).

Example: Linear projective maps between (para)quaternionic projective spaces. Let A : Kn+1 →

Km+1 be a (para)quaternionic linear map. Let Û = Kn+1
0 −{KerA} and U ⊂ KP n be the corresponding

open set through the canonical projection Kn+1
0 → KP n . Then the map ϕ : KP n ⊇ U → KP m

is (para)quaternionic. To see it let (xi), i = 0, 1, . . . , n, (yj), j = 0, 1, . . . , m, be (para)quaternionic

cartesian coordinate systems on Kn+1, Km+1 respectively and

yj = aj
ix

i (j = 0, 1, . . . , m)

the equations of A, with (para)quaternionic matrix (ai
j). In terms of non homogeneous (para)quaternionic

projective coordinates (ξα = xα(x0)−1), α = 0, 1, . . . n, (ηr = yr(y0)−1), r = 1, . . . , m on KP m, KP n

respectively, the (local) equations of the differential of the map ϕ have the form:

dηr = Br
αdξαQ (r = 1, . . . , m) (11)

where

Br
α = ar

α − ηra0
α , Q = (a0

βξβ + a0
0)

−1 (r = 1, . . . , m; α = 1, . . . , n) .

Hence ϕ is a (para)quaternionic map.

In fact, linear projective maps are the only (para)quaternionic maps between (para)quaternionic

projective spaces. For the quaternionic case, K = H, the result was proved in [IMOP]. Here we will

give a more elementary proof of it, which applies also to the paraquaternionic case.

Proposition 4.1. (See [IMOP]). Let M4n ⊂ KP n be a connected open subset of KP n. A (para)-

quaternionic C3-map ϕ : M4n → KP m is a linear projective map, i.e. it is induced by a linear map

A : Kn+1 → Km+1 through the canonical projections Kn+1
0 → KP n, Km+1

0 → KP m .

Proof. For simplicity, we will proceed by referring to the quaternionic case and step by step,

without special mention, we will take into account that the same procedure formally works for the

paraquaternionic case, if one substitute eH to H.

Let (xi), i = 0, 1, . . . , n, (yj), j = 0, 1, . . . , m, be quaternionic cartesian coordinate systems on

Hn+1, Hm+1 respectively. In terms of non homogeneous quaternionic projective coordinates (ξα =

xα(x0)−1), α = 1, . . . n, (ηr = yr(y0)−1), r = 1, . . . , m, on HP n, HP m respectively, the equations of the

differential of a quaternionic map ϕ have the form:

dηr =

n
X

α=1

Br
αdξαQ (r = 1, . . . , m) (12)

where Q, Ba
α are quaternionic smooth functions of the quaternionic variables ξ1, . . . , ξn.

To prove the proposition amount to deduce that the functions ηr have to be of the form

ηr = (ar
αξα + ar

0)(a
0
βξβ + a0

0)
−1 (r = 1, . . . , m)

where the coefficients ai
β , a0

β , a0
0 are constant (we use the Einstein convention for summation). This in

turn is equivalent to be

fBr
α = ar

α − ηra0
α , fQ−1 = a0

βξβ + a0
0

for some constants ar
α ∈ H and a real function f = f(ξ1, . . . , ξn).

In [M1], as recalled concerning proposition (4.1), it was proved that for n=m and Q, B = (Bγ
α)

invertible, that is in the case of a diffeomorphism, the functions ηα′

are in fact of the form

ηρ = (aρ
βξβ + aρ

0)(a
0
αξα + a0

0)
−1 (ρ = 1, . . . , n)

To prove the result in full generality it has to be proved essentially only the following key lemma.
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Lemma 4.2. A smooth quaternionic function η = F (ξ1, . . . , ξn) of the quaternionic variables ξ1, . . . , ξn

whose differential can be written in the quaternionic form

dη = BαdξαQ (13)

where Q, Bα are quaternionic smooth functions of ξ1, . . . , ξn is a linear fractional function, i.e. it has

the form

η = (aβξβ + b)(cαξα + d)−1

where the coefficients aβ , cα, b, d are constant.

Proof of Lemma 4.2: We use induction on n. In fact the result is true for n=1, basing on the

quoted result in [M1], that is: if the smooth quaternionic function η = f(ξ) of the quaternionic variable

ξ verify dη = BdξQ then it is of the form

η = (aξ + b)(cξ + d)−1

for constants a, b, c, d ∈ H. One can easily reduce to show that the result is true on an open set of

points where Q 6= 0.

Now we make the following two remarks:

- 1) for a given quaternionic function η = F (ξ1, . . . , ξn) whose differential verifies equation (13) the

function η′ = F ′(ξ1, . . . , ξn−1) obtained by fixing the value of the variable ξn = ξn
0 , i.e.

F ′(ξ1, . . . , ξn−1) = F (ξ1, . . . , ξn−1, ξn
0 ),

verifies

dη′ =

n−1
X

α=1

B′

αdξαQ′ (14)

where B′

α = Bα(ξ1, . . . , ξn−1, ξn
0 ), Q′ = Q(ξ1, . . . , ξn−1, ξn

0 ).

- 2) if we have a quaternionic linear fractional function

η = (aβξβ + b)(cαξα + d)−1 (15)

and we fix the value of one variable, say ξn = ξn
0 , we still obtain a quaternionic linear fractional function

in the remaining variable.

Basing on these remarks, the induction is performed as follows.

Let consider a quaternionic function η = F (ξ1, ξ2) verifying

dη = (B1dξ1 + B2dξ2)Q . (16)

We can assume that B1, B2 are both non zero (otherwise η depends only on one variable or it is constant

and we are sent back to case n=1). By considering η as a function of the variable ξ1 alone it results

that it has the form

η = (a1ξ
1 + b1)(c1ξ

1 + d1)
−1 (17)

where a1, b1, c1, d1 are functions of ξ2.

Analogously, by considering F as a function of the variable ξ2 alone it results that it has the form

η = (a2ξ
2 + b2)(c2ξ

2 + d2)
−1 (18)
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where a2, b2, c2, d2 are functions of ξ1. Then one has to compare the two expressions and, possibly, get

the desired result.

By resuming we have made the

first step: one has

a1ξ
1 + b1 = η(c1ξ

1 + d1) , a2ξ
2 + b2 = η(c2ξ

2 + d2) (19)

where

a1 = a1(ξ
2) , b1 = b1(ξ

2) , c1 = c1(ξ
2) , d1 = d1(ξ

2)

and

a2 = a2(ξ
1) , b2 = b2(ξ

1) , c2 = c2(ξ
1) , d2 = d2(ξ

1)

Remark 4.3. If we could prove, for example, that a1, c1 are constant and that b2, d2 have respectively

the form b2 = aξ1 + b, d2 = cξ2 + d where a, b, c, d are constants then the conclusion will follow.

But we have to note also the following.

Remark 4.4. The functions Bα, Q in the expression (16) of the differential dη are determined up to

a smooth real function f : i.e., for Bα
′ = Bαf (α = 1, 2) and Q′ = Qf−1 one still has

dη = (B′

1dξ1 + B′

2dξ2)Q′ .

second step: Let’s show that in (16) one can assume

Q = (c2ξ
2 + d2)

−1

that is

dη = (B1dξ1 + B2dξ2)(c2ξ
2 + d2)

−1 . (20)

In fact, let start from (16). By differentiating the second of identities (19) one has

da2ξ
2 + a2dξ2 + db2 = (B1dξ1 + B2dξ2)Q(c2ξ

2 + d2)

+η(dc2ξ
2 + c2dξ2 + dd2)

. (21)

By equating separately the terms containing dξ1 and the terms containing dξ2 one has respectively the

identities

da2ξ
2 + db2 = B1dξ1Q(c2ξ

2 + d2) + η(dc2ξ
2 + dd2) (22)

and

a2dξ2 = B2dξ2Q(c2ξ
2 + d2) + ηc2dξ2

that is

(a2 − ηc2)dξ2 = B2dξ2Q(c2ξ
2 + d2) . (23)

The last identity (23) has the form

Udξ2 = V dξ2W

for some U = U(ξ1, ξ2), V = V (ξ1, ξ2), W = W (ξ1, ξ2) and if U 6= 0, as in our case otherwise η = a2c
−1
2

would be a function of ξ1 alone, it implies that W is a real function. (In fact: for dξ2 = 1, i, j, k

respectively we have

U = V W , Ui = V iW , Uj = V jW , Uk = V kW ,

and hence

V Wi = V iW , V Wj = V jW , V Wk = V kW.
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If V 6= 0 it follows that the values of W belong to the center R of H.) In our case, from (23) it results

that f = Q(c2ξ
2 + d2) is a real function and hence for Q′ = Qf−1 one has Q′ = (c2ξ

2 + d2)
−1, as to be

proved.

third step: Under the made assumption on Q, the differentiation of the first identity (21) gives

da2ξ
2 + a2dξ2 + db2 = (B1dξ1 + B2dξ2) + η(dc2ξ

2 + c2dξ2 + dd2) . (24)

and this last identity is equivalent to the identities

B2 = a2 − ηc2 (25)

da2ξ
2 + db2 = B1dξ1 + η(dc2ξ

2 + dd2) . (26)

fourth step: (26) implies that a2 and c2 are constant and b2, d2 are linear functions of ξ1.

Proof of the fourth step: Since the quaternionic differentials dξ, dξ′, dξ′′, dξ′′′ are independent,

(26) is equivalent to the identities

∂a2

∂ξ1
dξ1ξ2 +

∂b2

∂ξ1
dξ1 = B1dξ1 + η(

∂c2

∂ξ1
dξ1ξ2 +

∂d2

∂ξ1
dξ1)

and
( ∂a2

∂ξ1′ dξ1′ + ∂a2

∂ξ1′′ dξ1′′ + ∂a2

∂ξ1′′′ dξ1′′′)ξ2 + ( ∂b2
∂ξ1′ dξ1′ + ∂b2

∂ξ1′′ dξ1′′ + ∂b2
∂ξ1′′′ dξ1′′′ =

η
`

( ∂c2
∂ξ1′ dξ1′ + ∂c2

∂ξ1′′ dξ1′′ + ∂c2
∂ξ1′′′ dξ1′′′)ξ2 + ( ∂d2

∂ξ1′ dξ1′ + ∂d2

∂ξ1′′ dξ1′′ + ∂d2

∂ξ1′′′ dξ1′′′)
´

(27)

that is, respectively

(
∂a2

∂ξ1
− η

∂c2

∂ξ1
)dξ1ξ2 = (B1 + η

∂d2

∂ξ1
−

∂b2

∂ξ1
)dξ1 (28)

and
( ∂a2

∂ξ1′ dξ1′ξ2 + ∂b2
∂ξ1′ )dξ1′ = η( ∂c2

∂ξ1′ dξ1′ξ2 + ∂d2

∂ξ1′ dξ1′) ,

( ∂a2

∂ξ1′′ dξ1′′ξ2 + ∂b2
∂ξ1′′ )dξ1′′ = η( ∂c2

∂ξ1′′ dξ1′′ξ2 + ∂d2

∂ξ1′′ dξ1′′) ,

( ∂a2

∂ξ1′′′ dξ1′′′ξ2 + ∂b2
∂ξ1′′′ )dξ1′′ = η( ∂c2

∂ξ1′′′ dξ1′′′ξ2 + ∂d2

∂ξ1′′′ dξ1′′′) .

(29)

Now, (28) has the form Rdξ1ξ2 = Sdξ1. By doing like in step 2 and, moreover, by taking into

account the independence of ξ2, it follows

R ≡
∂a2

∂ξ1
− η

∂c2

∂ξ1
= 0 (30)

and successively, since we assumed η depending effectively on both ξ1, ξ2, one has

∂a2

∂ξ1
=

∂c2

∂ξ1
= 0 (31)

and also

B1 + η
∂d2

∂ξ1
−

∂b2

∂ξ1
= 0 (32)

From first of (29), for ex., one has

(
∂a2

∂ξ1′
− η

∂c2

∂ξ1′
)dξ1′ξ2 = (η

∂d2

∂ξ1′
−

∂b2

∂ξ1′
)dξ1′
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and by the same argument as above it follows

∂a2

∂ξ1′
− η

∂c2

∂ξ1′
= 0 , η

∂d2

∂ξ1′
−

∂b2

∂ξ1′
= 0

and successively
∂a2

∂ξ1′
=

∂c2

∂ξ1′
= 0 ,

∂d2

∂ξ1′
=

∂b2

∂ξ1′
= 0 (33)

and also, by repeating the procedure on second and third identity of (29) respectively, one has

∂a2

∂ξ1′′
=

∂c2

∂ξ1′′
= 0 ,

∂d2

∂ξ1′′
=

∂b2

∂ξ1′′
= 0 (34)

∂a2

∂ξ1′′
=

∂c2

∂ξ1′′
= 0 ,

∂d2

∂ξ1′′
=

∂b2

∂ξ1′′
= 0 (35)

final step: By summarizing, we proved that

∂a2

∂ξ1
=

∂a2

∂ξ1′
=

∂a2

∂ξ1′′
=

∂a2

∂ξ1′′′
= 0 ,

∂c2

∂ξ1
=

∂c2

∂ξ1′
=

∂c2

∂ξ1′′
=

∂c2

∂ξ1′′′
= 0

hence a2, c2 are constant, and that

∂b2

∂ξ1′
=

∂b2

∂ξ1′′
=

∂b2

∂ξ1′′′
= 0 ,

∂d2

∂ξ1′
=

∂c2

∂ξ1′′
=

∂d2

∂ξ1′′′
= 0

hence b2, d2 are (right) linear functions of ξ1, of the form

b2 = bξ1 + p , d2 = dξ1 + q p, q ∈ H

The conclusion follows by recalling remark (4.3).

The same proof can be easily performed to deal with the case of a quaternionic function η(ξ1, . . . , ξn),

for any n.

5 Generalizations in the same line

- (I) - By using the result of [M2] it should be possible to carry over the same proof of proposition 4.1

above for maps between locally grassmannian (para)quaternionic manifolds, and prove the following

proposition.

Proposition 5.1. (Conjecture) Let M4pk ⊂ Gp(Kp+k) be a connected open subset of Gp(Kp+k). A

tensor product map ϕ : M4pk → Gp(Kp+k′

), k ≤ k′, is a linear projective map, i.e. it is induced by a

linear map A : Kp+k → Kp+k′

.

Note that a quaternionic tensor product structure belongs to an interesting class of G-structures

for which a good twistor theory can be considered, [AG1].

- (II) - Th. Hangan proved a characterization of real or complex manifolds admitting an integrable

(p,q) tensorial product structure, under the hypothesis that p 6= 1 and q 6= 1, as locally grassmannian

manifolds. One could wonder if the above generalization (I) holds true also in real and complex case.

Of course, in the real and complex case Lemma (4.2) cannot be proved and the hypothesis p 6= 1 and

q 6= 1 is necessary.
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