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Abstract

We compute the deformations, in the sense of generalized complex structures, of the

standard complex structure on a complex 2-torus. We get a smooth complete family

depending on six complex parameters and, in particular, we obtain the well-known smooth

complete family of complex deformations depending on four parameters.
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1 Introduction

Nigel Hitchin introduced in the paper [5] new geometrical structures which unify many classical struc-

tures. He defines a generalized complex structure to be a complex structure, not on the tangent bundle

T of a manifold, but on T ⊕ T ∗, unifying in this way the complex geometry and the symplectic geom-

etry in some sense. This new geometrical structure is also, in some sense, the complex analogue of the

Dirac structure introduced by Courant and Weinstein [2], [3], in order to unify Poisson geometry with

symplectic geometry. The study of generalized complex structures was continued by Gualtieri (see [4]).

In this paper we start with the (classical) complex structure on a 2-torus and we compute (as in

[1]) by using properties of the Lie algebroids, the family of deformations of this complex structure in

the sense of generalized complex structures (see [4]).

By solving the generalized Maurer-Cartan equation we get the main result of the paper, which shows

that obtained family of deformations is a smooth locally complete family depending on six complex

parameters. In particular, we get the family (depending on four complex parameters) of deformations

of (classical) complex structures on a 2-torus (see, for example [6]), as well as examples of generalized

complex structures of complex type, which are not (classical) complex structures on a 2-torus.
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2 Generalized complex structures on manifolds

A generalized complex structure on a manifold M (see [5], [4]) is defined to be a complex structure

J (J2 = −1) not on the tangent bundle TM , but on the sum TM ⊕ T ∗

M of the tangent and cotangent

bundles, which is required to be orthogonal with respect to the natural inner product on sections

X + σ, Y + τ ∈ C∞(TM ⊕ T ∗

M ) defined by

〈X + σ, Y + τ〉 =
1

2
(σ(Y ) + τ(X)).

This is only possible if dimRM = 2n, which we suppose. In addition, the (+i)-eigenbundle

L ⊂ (TM ⊕ T ∗

M ) ⊗ C

of J is required to be involutive with respect to the Courant bracket, a skew bracket operation on

smooth sections of TM ⊕ T ∗

M defined by

[X + σ, Y + τ ] = [X, Y ] + LXτ − LY σ −
1

2
d(iXτ − iY σ),

where LX and iX denote the Lie derivative and interior product operations on forms.

Since J is orthogonal with respect to 〈·, ·〉, the (+i)-eigenbundle L is a maximal isotropic subbundle

of (TM ⊕ T ∗

M ) ⊗ C of real index zero (i.e. L ∩ L̄ = {0}). In fact, a generalized complex structure on

M is completely determined by a maximal isotropic subbundle of (TM ⊕ T ∗

M ) ⊗ C of real index zero,

which is Courant involutive (see [5], [4]).

For such a subbundle we have the decomposition

(TM ⊕ T ∗

M ) ⊗ C = L ⊕ L̄,

and we may use the inner product 〈·, ·〉 to identify L̄ ≡ L∗. Let

πT : (TM ⊕ T ∗

M ) ⊗ C → TM ⊗ C

be the projection and let E = πT (L). Then, the type k ∈ {0, 1, . . . , n} of the generalized complex

structure at x ∈ M is defined as the codimension of Ex ⊂ Tx ⊗ C.

To deform J we will vary L in the Grassmannian of maximal isotropic. Any maximal isotropic

having zero intersection with L̄ (this is an open set containing L) can be uniquely described as the

graph of a homomorphism ε : L → L̄ satisfying

(∗) 〈ε(X), Y 〉 + 〈X, ε(Y )〉 = 0, ∀ X, Y ∈ C∞(L)

or equivalently, ε ∈ C∞(∧2L∗). Therefore, the new isotropic is given by Lε = (1 + ε)L. As the

deformed J is to remain real, we must have L̄ε = (1 + ε̄)L̄. The subbundle Lε has zero intersection

with L̄ε if and only if the endomorphism on L ⊕ L∗, described by

Aε =

 

1 ε̄

ε 1

!

is invertible; this is the case for ε in an open set around zero (see [4]). So, providing ε is small enough,

Jε = AεJA−1

ε is a new generalized almost complex structure. By [8], Jε is integrable if and only if

ε ∈ C∞(∧2L∗) satisfies the generalized Maurer-Cartan equation

(∗∗) dLε +
1

2
[ε, ε] = 0.
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3 Deformations of generalized complex structures on 2-tori

Let N = C
2/Λ be a complex 2-torus, where C

2 denotes the space of two complex variables (z, w) and

Λ ⊂ C
2 is an integral lattice of rank 4.

We shall identify C
2 with R

4, the space of four real variables (x, y, u, v) by z = x + iy, w = u + iv.

From the point of view of differential structure, a complex 2-torus is a parallelizable manifold, i.e. the

tangent bundle TN is globally generated by invariant vector fields {X, Y, U, V } with all Poisson brackets

zero. The complex structure endomorphism J is acting on TN by

JX = Y, JY = −X, JU = V, JV = −U.

Let

T =
1

2
(X − iY ), W =

1

2
(U − iV ).

Then, the tangent bundle TN is globally generated by {T, W, T̄ , W̄} and the cotangent bundle T ∗

N

is globally generated by the dual basis of 1-forms {ω, ρ, ω̄, ρ̄}.

We have

JT = iT, JW = iW, JT̄ = −iT̄ , JW̄ = −iW̄ .

It follows that the subbundle T0,1 and T1,0 of the tangent bundle TN are globally generated by

{T̄ , W̄}, respectively {T, W} and the dual bundle T ∗

1,0 is globally generated by {ω, ρ}.

The standard complex structure on a 2-torus N can be seen as a generalized complex structure

given by the subbundle L ⊂ (TN ⊕ T ∗

N ) ⊗ C of the form

L = {T̄ , W̄ , ω, ρ}e= (T0,1 ⊕ T ∗

1,0) ⊗ C,

which is maximal isotropic and Courant involutive (see [4]).

Using the inner product we can identify L̄ with L∗ by the isomorphism:

θ : L̄ e→L∗, θ(T ) =
1

2
ω∗, θ(W ) =

1

2
ρ∗, θ(ω̄) =

1

2
T̄ ∗, θ(ρ̄) =

1

2
W̄ ∗.

In the following we shall study the deformations of this generalized complex structure on a 2-torus

N .

In order to obtain the deformations of the generalized complex structure we must consider the

linear maps ε : L → L̄, which verify the condition (*) or, equivalently, we can consider the linear maps

ε̃ = θ ◦ ε : L → L∗.

The map ε̃ is given by the following matrix:

eε =
1

2

0

B

B

B

@

0 t32 −t11 −t21
−t32 0 −t12 −t22
t11 t12 0 t14
t21 t22 −t14 0

1

C

C

C

A

, tij ∈ C,

and eε ∈ C∞(∧2L∗).

Now, as in [1], we shall solve the generalized Maurer-Cartan equation (**), where [ε̃, ε̃] is the

Schouten bracket and the derivative

dL : C∞(∧2L∗) → C∞(∧3L∗),

for a Lie algebroid is given in this case by the formula

dLε̃(X0, X1, X2) = a(X0)ε̃(X1, X2) − a(X1)ε̃(X0, X2) + a(X2)ε̃(X0, X1)−

−ε̃([X0, X1], X2) + ε̃([X0, X2], X1) − ε̃([X1, X2], X0);
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the anchor map a : C∞(L) → C∞(TN ) is the projection on the tangent bundle TN and X0, X1, X2 ∈

C∞(L).

We shall use the notation:

X0 = u1T̄ + u2W̄ + u3ω + u4ρ,

X1 = α1T̄ + α2W̄ + α3ω + α4ρ,

X2 = β1T̄ + β2W̄ + β3ω + β4ρ,

where ui, αi, βi ∈ C∞(N), ∀i = 1, 2, 3, 4.

We have

ε̃(X1, X2) = 1

2
(β1(t32α2 − t11α3 − t21α4) + β2(−t32α1 − t12α3 − t22α4)+

+β3(t11α1 + t12α2 + t14α4) + β4(t21α1 + t22α2 − t14α3)).

Since a(X0) = u1T̄ + u2W̄ , by direct computation as in [1], we get:

Lemma 3.1

a(X0)ε̃(X1, X2) = 1

2
(t11u1(T̄ (α1)β3 + T̄ (β3)α1 − T̄ (α3)β1 − T̄ (β2)α3)+

+t12u1(T̄ (α2)β3 + T̄ (β3)α2 − T̄ (α3)β2 − T̄ (β2)α3)+

+t21u1(T̄ (α1)β4 + T̄ (β4)α1 − T̄ (α4)β1 − T̄ (β1)α4)+

+t22u1(T̄ (α2)β4 + T̄ (β4)α2 − T̄ (α4)β2 − T̄ (β2)α4)+

+t14u1(T̄ (α4)β3 + T̄ (β3)α4 − T̄ (α3)β4 − T̄ (β4)α3)+

+t32u1(T̄ (α2)β1 + T̄ (β1)α2 − T̄ (α1)β2 − T̄ (β2)α1)+

+t11u2(W̄ (α1)β3 + W̄ (β3)α1 − W̄ (α3)β1 − W̄ (β1)α3)+

+t12u2(W̄ (α2)β3 + W̄ (β3)α2 − W̄ (α3)β2 − W̄ (β2)α3)+

+t21u2(W̄ (α1)β4 + W̄ (β4)α1 − W̄ (α4)β1 − W̄ (β1)α4)+

+t22u2(W̄ (α2)β4 + W̄ (β4)α2 − W̄ (α4)β2 − W̄ (β2)α4)+

+t14u2(W̄ (α4)β3 + W̄ (β3)α4 − W̄ (α3)β4 − W̄ (β4)α3)+

+t32u2(W̄ (α2)β1 + W̄ (β1)α2 − W̄ (α1)β2 − W̄ (β2)α1)).

Analogous formulae can be written for the terms a(X1)ε̃(X0, X2) and a(X2)ε̃(X0, X1).

Lemma 3.2 For the Courant bracket we have:

[X0, X1] = (X(α1) − Y (u1))T̄ + (X(α2) − Y (u2))W̄+

+(X(α3) − Y (u3))ω + (X(α4) − Y (u4))ρ.

where X0 = X + σ, X1 = Y + τ,

X = u1T̄ + u2W̄ , Y = α1T̄ + α2W̄ ∈ C∞(TN )
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and

σ = u3ω + u4ρ, τ = α3ω + α4ρ ∈ C∞(T ∗

N ).

Proof: By direct computation we have

LXτ = X(α3)ω + X(α4)ρ, LY σ = Y (α3)ω + Y (u4)ρ,

and

iXτ = 0, iY σ = 0.

By using the definition of the Courant bracket the result follows.

We have analogous formulae for [X0, X2] and [X1, X2].

Now, a tedious but direct computation gives:

Lemma 3.3

ε̃([X0, X2], X1) = 1

2
(t11(−α1u1T̄ (β3) − α1u2W̄ (β3) + α1β1T̄ (u3)+

+α1β2W̄ (u3) + α3u1T̄ (β1)+

+α3u2W̄ (β1) − α3β1T̄ (u1) − α3β2W̄ (u1)) + t12(−α2u1T̄ (β3)−

−α2u2W̄ (β3) + α2β1T̄ (u3) + α2β2W̄ (u3)+

+α3u1T̄ (β2) + α3u2W̄ (β2) − α3β1T̄ (u2)−

−α3β2W̄ (u2)) + t21(−α1u1T̄ (β4) − α1u2W̄ (β4) + α1β1T̄ (u4)+

+α1β2W̄ (u4) + α4u1T̄ (β1) + α4u2W̄ (β1) − α4β1T̄ (u1)−

−α4β2W̄ (u1)) + t22(−α2u1T̄ (β4) − α2u2W̄ (β4) + α2β1T̄ (u4)+

+α2β2W̄ (u4) + α4u1T̄ (β2) + α4u2W̄ (β2) − α4β1T̄ (u2)−

−α4β2W̄ (u2)) + t14(α3u1T̄ (β4) + α3u2W̄ (β4) − α3β1T̄ (u4)−

−α3β2W̄ (u4) − α4u1T̄ (β3) − α4u2W̄ (β3) + α4β1T̄ (u3)+

+α4β2W̄ (u3) + t32(α1u1T̄ (β2)+

+α1u2W̄ (β2) − α1β1T̄ (u2) − α1β2W̄ (u2) − α2u1T̄ (β1)−

−α2u2W̄ (β1) + α2β1T̄ (u1) + α2β2W̄ (u1))).

There are analogous formulae for the terms ε̃([X0, X1], X2) and ε̃([X1, X2], X0). By using all the

above formulae, we get

Theorem 3.4 For the differential dL we have:

(dLε̃)(X0, X1, X2) = 0, ∀ X0, X1, X2 ∈ C∞(L).
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As in [1], by similar computation we get:

Theorem 3.5 For the Schouten bracket we have:

[ε̃, ε̃] = 0.

From the two theorems, we get the following:

Corollary 3.6 The solutions of the generalized Maurer-Cartan equation are given by

ε̄ = 4(t32ω̄ ∧ ρ̄ − t11ω̄ ∧ T − t21ρ̄ ∧ T − t21ω̄ ∧ W − t22ρ̄ ∧ W + t14T ∧ W )

Now, we need the following result:

Lemma 3.7 The image of the differential

dL : C∞(L∗) → C∞(∧2L∗)

is zero.

The proof is similar to the proof of Proposition 4.8 in [1].

By all the above results we get the main result:

Theorem 3.8 The deformations in the sense of generalized complex structures of the standard

complex structure on a 2-torus N are given by

ε̃ = t32ω̄ ∧ ρ̄ − t11ω̄ ∧ T − t12ρ̄ ∧ T − t21ω̄ ∧ W − t22ρ̄ ∧ W + t14T ∧ W,

where (t32, t11, t12, t21, t22, t14) ∈ C
6.

In particular, taking the parameters t32 = 0 and t14 = 0 we get the classical deformations of

complex structures (see [6]).

We have the following:

Corollary 3.9 The family of deformations of generalized complex structures on a complex 2-torus

N , given by

eε = t32ω̄ ∧ ρ̄ − t11ω̄ ∧ T − t12ρ̄ ∧ T − t21ω̄ ∧ W − t22ρ̄ ∧ W + t14T ∧ W,

with (t32, t11, t12, t21, t22, t14) ∈ U ⊂ C
6, where U is an open neighborhood of 0 ∈ C

6, is a smooth locally

complete family.

Proof: By Theorem 3.5 we have [eε, eε] = 0. From the definition of the obstruction map φ by Theorem

5.4, [4] (see also [7]) we get φ = 0. Then, applying again Theorem 5.4 in [4] it follows that the above

family of deformations is a smooth locally complete family in a open neighborhood U of 0 ∈ C
6.
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We have the following result:

Proposition 3.10 Let N be a complex 2-torus. The type of the generalized complex structure given

by the subbundle Lε = (1+ ε)L ⊂ (TN ⊕T ∗

N )⊗C is kε = 0 (symplectic type) or kε = 2 (complex type).

Proof: The type kε of a generalized complex structure is the codimension in any fibre of the projection

of Lε on TN ⊗ C by the canonical map

πT : (TN ⊕ T ∗

N ) ⊗ C → TN ⊗ C.

Since

L = {T̄ , W̄ , ω, ρ}˜,

we get:
(1 + ε)(T̄ ) = T̄ + t11T + t21W − t32ρ̄

(1 + ε)(W̄ ) = W̄ + t12T + t22W − t32ω̄

(1 + ε)(ω) = −t14W + ω − t11ω̄ − t12ρ̄

(1 + ε)(ρ) = t14T + ρ − t21ω̄ − t22ρ̄.

It follows that the projection of Lε on TN ⊗ C is globally generated by

{T̄ + t11T + t21W, W̄ + t12T + t22W,−t14W, t14T}.

If t14 6= 0, then the type kε = 0 (symplectic type) and, if t14 = 0,then kε = 2 (complex type).

Remark If, in the case t14 = 0, we have also t32 = 0, we get classical deformations of complex

structures. If, in the case t14 = 0, we have t32 6= 0, we get examples of generalized complex structures

of complex type, which are not classical complex structures.
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[1] V. Br̂ınzănescu, O.A. Turcu, Generalized complex structures on Kodaira surfaces, arXiv:

0903.4359.

[2] T. Courant, Dirac manifolds, Trans. Amer. Math. Soc. 319(1990), 631-661.

[3] T. Courant, A. Weinstein, Beyond Poisson structures, In: Action hamiltoniennes de groupes,
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