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Abstract

In this note I study the Sasakian geometry associated to the standard CR structure on

the Heisenberg group, and prove that the Sasaki cone coincides with the set of extremal

Sasakian structures. Moreover, the scalar curvature of these extremal metrics is constant

if and only if the metric has Φ-sectional curvature −3. I also briefly discuss some rela-

tions with the well-know sub-Riemannian geometry of the Heisenberg group as well as the

standard Sasakian structure induced on compact quotients.
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1 Introduction

Recently the Heisenberg group H2n+1 has been studied from many viewpoints, in particular, harmonic

analysis and probability theory, and an important underlying theme is sub-Riemannian or Carnot-

Carathéodory geometry [Gro96, Neu96, Tha98, BCT01, Mon02, CDPT07, CCG07]. Of course, it

arose from quantum physics. However, from the point of view of Riemannian geometry, there is a

very natural homogeneous Riemannian metric on H2n+1 = R
2n+1. This metric appears to have been

discovered over 40 years ago by Sasaki [Sas65] and studied a bit later by Tanno [Tan69a, Tan69b],

although the relation with the Heisenberg group was not noticed at that time. It has constant Φ-

sectional curvature equal to −3, where Φ is the endomorphism defining the natural CR structure on

H2n+1. The relationship with the Heisenberg group has been noted in [BGM06, BGO07, BG08], and its

appearance in CR spherical geometry was studied further in [Kam06, Dav08]. Indeed, Kamishima has

noted the important connection between the CR structure on H2n+1 and the Bochner-flat structures

on C
n classified by Bryant [Bry01]. From the sub-Riemannian viewpoint it was noted in [CDPT07]

that the Carnot-Carathéodory metric can be viewed as an anisotropic blow-up of the Sasakian metric.

In [BGS08a] it was shown that in the case of the standard CR structure on the sphere S2n+1 the

Sasaki cone coincides with the set of extremal Sasakian structures, and that the only Sasakian metric

of constant scalar curvature is the round sphere metric. In this note I prove a similar result for the

case of the Heisenberg group H2n+1. However, in this case due to the existence of dilations in the CR

automorphism group of H2n+1, the Sasaki cone has only dimension n instead of n + 1. Nevertheless,
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in both cases the result is closely related to Bryant’s [Bry01] classification of Bochner-flat metrics, as

well as Kamishima’s work [Kam06].
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2 Brief Review of Sasakian Geometry

A Sasakian structure is a particular type of contact metric structure. Recall that a contact structure

can be given by a codimension one subbundle D of the tangent bundle TM which is as far from being

integrable as possible. Alternatively, D can be defined as the kernel of a smooth 1-form η which satisfies

η ∧ (dη)n 6= 0 everywhere on M. The contact structure D only depends on η up to a multiple by a

nowhere vanishing smooth function. A choice of almost complex structure J on the vector bundle

D endows M with an almost CR structure (D, J). Moreover, since dη provides D with a symplectic

structure, we can demand that J is both compatible with dη and that dη is tamed by J in the sense

that dη ◦ (J ⊗ 1l) is a positive definite symmetric bilinear form on D. If we extend J to a smooth

endomorphism Φ of TM by demanding that it annihilate the Reeb vector field ξ of η. We then have a

canonically defined Riemannian metric by setting g = dη ◦ (Φ ⊗ 1l) ⊕ η ⊗ η. The quadruple (ξ, η, Φ, g)

is called a contact metric structure associated to the contact structure D. If the Reeb vector field

ξ is a Killing field or equivalently an infinitesimal CR transformation, the contact metric structure

(ξ, η, Φ, g) is said to be K-contact, and if in addition the almost CR structure is integrable, (ξ, η, Φ, g) is

a Sasakian structure. A contact structure D which admits a contact form η and endomorphism Φ such

that (ξ, η, Φ, g) is (K-contact) Sasakian is said to be of (K-contact) Sasaki type. We also say that the

almost CR structure (D, J) satisfying D = ker η and J = ΦD is of (K-contact) Sasaki type. In [BGS08a]

the authors developed a theory of extremal Sasakian metrics on compact manifolds. Extremal Sasakian

metrics are the critical points of the energy functional which is just the L2-norm of the scalar curvature

sg. This coincides with the fact that the transverse metric be an extremal Kähler metric. The Euler-

Lagrange equations were then shown to be equivalent to the (1, 0) gradient vector field ∂#
g sg being

transversally holomorphic. Thus, Sasakian metrics of constant scalar curvature are extremal. These

include Sasaki-Einstein and more generally Sasaki-eta-Einstein metrics [BGM06]. Since constants are

not generally L2 functions on non-compact manifolds, I simply define an extremal Sasakian metric on

a non-compact manifold to be one such that ∂#
g sg is transversally holomorphic.

There is a natural sub-Riemannian geometry associated to any contact manifold [Str86, Gro96]. We

construct a metric d on the contact manifold (M, D) by choosing a Riemannian metric g and defining

the distance d(p, q) between any two points p, q ∈ M by taking the infimum of the distance with respect

to g over all piecewise smooth curves joining p to q whose tangents lie in D at every point. The metric

dD so constructed is called the Carnot-Carathéodory metric or CC metric for short, and the metric

topology on M coincides with the manifold topology. Moreover, its dependence on the Riemannian

metric is mild in the sense that if di
D are CC metrics computed with respect to the Riemannian metrics

gi for i = 1, 2, then they are bi-Lipschitz equivalent on compact subsets of M [Gro96]. When g is the

Riemannian metric of a contact metric structure (ξ, η, Φ, g), the transverse metric gT = g|D×D is also

called a sub-Riemannian metric, and if dg denotes the distance with respect to the Riemannian metric

g, then we have dg ≤ dD where dD is the sub-Riemannian distance with respect to gT . So the transverse

metric gT plays two distinct roles, one as a Riemannian metric on the transverse space, and second as a

sub-Riemannian metric on all of M. Furthermore, beginning with a contact metric g = gT + η ⊗ η, one

can form the anisotropic blow-up of g by forming the family of “penalized metrics” gL = gT + Lη ⊗ η

for some constant L. We can then take the limit L → ∞ in an appropriate sense. The length becomes
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squashed in the vertical direction, and the metric spaces dgL
converge in the pointed (fixed base point)

Gromov-Hausdorff topology to the CC metric dD
1. The small CC boxes [Gro96] have length ǫ in

each horizontal direction and ǫ2 in the vertical dimension; thus, the Hausdorff dimension of a contact

manifold with its CC measure is 2n + 2. A key ingredient in the construction of Carnot-Carathéodory

metrics is the so-called bracket generating condition that for any local frame {X1, · · · , X2n} of D the

iterated brackets {Xi, [Xi, Xj ], [Xi, [Xj , Xk]], · · · } span the whole tangent space at each point. In the

case of a contact manifold this is two-step or strongly bracket generating, that is, {Xi, [Xi, Xj ]} span

TpM at all points. A well-known theorem of Chow says that if a sub-Riemannian manifold is bracket

generating then any two points can be joined by a curve whose tangent vectors lie in the horizontal

subspace at all point along the curve (assuming M is connected, of course).

3 The Groups of Sasakian and CR Automorphisms

For any CR structure (D, J) on a manifold M we can define the group of CR transformations

CR(D, J) = {φ ∈ Diff(M) | φ∗D ⊂ D, φ∗J = Jφ∗} . (1)

Its Lie algebra cr(D, J) can be characterized as

cr(D, J) = {X ∈ X(M) | [X, D] ⊂ D, £XJ = 0} . (2)

When the CR structure is strictly pseudoconvex the group CR(D, J) is a Lie group [CM74, BRWZ04].

Lemma 3.1. If (D, J) is a strictly pseudoconvex almost CR structure, the group CR(D, J) preserves

the orientation of the bundle D.

Proof: Suppose that φ ∈ CR(D, J) reverses the orientation of D, i.e. φ∗η = −fφη where fφ > 0 and

Jφ = φ−1
∗ Jφ∗ = J. We show that the Levi form changes sign to give a contradiction. We have

φ∗(dη ◦ (J ⊗ 1l)) = −d(fφη) ◦ (Jφ ⊗ 1l) = −fφdη ◦ (J ⊗ 1l).

Since (D, J) is strictly pseudoconvex, a choice of contact 1-form η defines a contact metric structure

S = (ξ, η, Φ, g) with ξ the Reeb vector field, J = Φ|D , and g = dη ◦ (Φ⊗ 1l)⊕ η ⊗ η. The automorphism

group Aut(S) of S is the subgroup of CR(D, J) that leaves S invariant. In fact it is easy to see that

Aut(S) = {φ ∈ CR(D, J) | φ∗η = η}.

If the CR structure is of Sasaki type, there is a choice of η such that the contact metric structure is

Sasakian. It is this situation that interests us.

The Sasaki cone was defined in [BGS08a] (Definition 6.7) to be the moduli space of Sasakian

structures that are compatible with a given strictly pseudoconvex CR structure (D, J); however, it is

often convenient to loosen this definition a bit, and think of the Sasaki cone as a kind of pre-moduli

space, that is, before modding out by discrete groups. This is an abuse of notation that we have used

in [BGS08a]. In order to distinguish the two, we shall refer to the latter as the unreduced Sasaki cone.

First, we mention that the construction clearly works equally well for K-contact structures, and goes

as follows: fix an almost CR structure of K-contact type, (D, J), and choose η so that (ξ, η, Φ, g) is

K-contact. Define cr+(D, J) to be the subset of the Lie algebra cr(D, J) defined by

cr
+(D, J) = {ξ′ ∈ cr(D, J) | η(ξ′) > 0}. (3)

1A proof of this in the case of the Heisenberg group is given in [CDPT07], but it holds generally for contact

metric structures as explained to me by Misha Gromov.
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The set cr+(D, J) is a convex cone in cr(D, J), and it is open when M is compact2. Furthermore,

cr+(D, J) is invariant under the adjoint action of CR(D, J), and is bijective to the set of K-contact

structures compatible with (D, J), namely

S(D, J) =

(

S = (ξ, η, Φ, g) : S a K-contact structure

(ker η, Φ |ker η) = (D, J)

)

, (4)

since a contact metric structure S = (ξ, η, Φ, g) with underlying almost CR structure (D, J) is K-contact

if and only if ξ ∈ cr(D, J). Now fix a K-contact structure S and let a be a maximal Abelian subalgebra

of cr(D, J) containing ξ. We then say that the maximal Abelian subalgebra is of Reeb type [BG00].

When both M and CR(D, J) are compact a is unique up to conjugacy; however, when either M or

CR(D, J) is non-compact there can be many conjugacy classes of maximal Abelian subalgebras. In the

case of the sphere the group CR(D, J) is non-compact, but the positivity requirement determined the

Sasaki cone [BGS08a]. In the non-compact case we shall make a maximal positivity requirement. For

any Abelian subalgebra a ⊂ cr(D, J) we set a+ = a ∩ cr+(D, J). We say that the subset a+ is maximal

if whenever a+ ⊂ a+
1 for some other Abelian subalgebra a1 we have a+ = a+

1 . I now define an unreduced

Sasaki cone to be a maximal a+.

As in [BGS08a] we define the (reduced) Sasaki cone to be the moduli space of Sasakian (K-contact)

structures associated to the strictly pseudoconvex (almost) CR structure (D, J) and denote it by

κ(D, J) = S(D, J)/CR(D, J).

When the action of CR(D, J) on S(D, J) is proper κ(D, J) is always a well-defined Hausdorff space. I

remark that the dimension of a+ does not necessarily equal the dimension of a; however, we have

Proposition 3.2. Let a+ be the Sasaki cone of a contact structure D of K-contact type. Let κ, k denote

the dimensions of a+ and a, respectively. Then 1 ≤ κ ≤ k, and κ = k if M is compact.

Proof: The first statement is immediate from the definition of a+ and the fact that it contains at least

a ray of Reeb vector fields. The last statement follows from the fact that a+ is open in a when M is

compact.

The following generalizes a result of [BGS08a] to the case when M is not necessarily compact:

Proposition 3.3. Let (M, D) be a contact manifold of Sasaki type with CR structure (D, J). Suppose

that (M, D, J) is not CR equivalent to the Heisenberg group H2n+1 = R
2n+1 nor the sphere S2n+1 with

their standard CR structures. Then there exists a Sasakian structure S = (ξ, η, Φ, g) with (ker η, Φ|D) =

(D, J) such that Aut(S) = CR(D, J).

Proof: Clearly for any Sasakian structure S with underlying CR structure (D, J) we have Aut(S) ⊂

CR(D, J), so it suffices to prove the inclusion CR(D, J) ⊂ Aut(S) for some Sasakian structure S. For

notational convenience we set G = CR(D, J). The case of M compact is Proposition 4.4 of [BGS08a],

so we confine ourselves to the non-compact case. By a theorem of Schoen [Sch95] G acts properly on

M , so we can use a slice theorem as done in Lemma 2.6 of Lerman [Ler02] to obtain a 1-form η with

ker η = D such that G ⊂ Con(M, η). Since (M, D) is of Sasaki type, there exists a Sasakian structure

S̃ = (ξ̃, η̃, Φ̃, g̃) with underlying CR structure (D, J). Then Sφ = (φ−1
∗ ξ̃, φ∗η̃, φ−1

∗ Φ̃φ∗, φ
∗g̃) is Sasakian

for all φ ∈ G. Now locally we can use the slice theorem to write M = G ×K V for some compact

subgroup K ⊂ G, and some representation K → GL(V ) on the vector space V. The action of K on

2Since [BGS08a] deals almost exclusively with compact manifolds, the compactness assumption was not

stated explicitly in Lemma 6.4 of [BGS08a]. As we shall see the set cr
+(D, J) is not necessarily open when M

is non-compact.
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G × V is given by (g, v) 7→ (gk−1, k · v), so we can average the restriction η̃|V over K and extend it

to all of M by G-invariance. This gives a G-invariant 1-form η belonging to a G-invariant Sasakian

structure S = (ξ, η, Φ, g). So G ⊂ Aut(S).

Remark 3.1. The theorem does not apply when M is the Heisenberg group H2n+1. In this case

CR(D, J) contains the dilation (xi, yi, z) 7→ (λxi, λyi, λ
2z) which stabilizes the origin (0, · · · , 0) in

R
2n+1. So the action of CR(D, J) is not proper.

4 The Heisenberg Group

The 2n + 1 dimensional Heisenberg group H2n+1 can be described by the group of n + 2 by n + 2 real

matrices of the form

H(n) =

8

>

<

>

:

0

B

@

1 xt z

0 1 y

0 0 1

1

C

A
; x,y ∈ R

n, z ∈ R

9

>

=

>

;

, (5)

As a manifold it is just R
2n+1. There are two natural isomorphic Sasakian structures on H2n+1: the right

invariant contact 1-form is ηR = dz−y ·dx, and the left invariant contact form is ηL = dz−x·dy. These

are related by the involution ι : R
2n+1−−→R

2n+1 defined by ι(x,y, z) = (y,x, z), that is, ι∗ηL = ηR.

Notice that ι preserves orientation if n is even, and reverses orientation if n is odd. These contact forms

give rise to the right invariant Sasakian structure SR = (ξ, ηR, ΦR, gR) and left invariant Sasakian

structure SL = (ξ, ηL, ΦL, gL), where

ξ = ∂z, ΦR =
X

i

[(∂xi
+ yi∂z) ⊗ dyi − ∂yi

⊗ dxi], gR = dx · dx + dy · dy + (dz − y · dx)2, (6)

and

ξ = ∂z, ΦL =
X

i

[(∂yi
+ xi∂z) ⊗ dxi − ∂xi

⊗ dyi], gL = dx · dx + dy · dy + (dz − x · dy)2. (7)

Both Sasakian structures have the same Reeb vector field. The corresponding contact bundles D
R =

ker ηR and D
L = ker ηL are spanned by {UR

i = ∂yi
, V R

i = (∂xi
+ yi∂z)}

n
i=1 and {UL

i = ∂xi
, V L

i =

(∂yi
+xi∂z)}

n
i=1, respectively. So we have isomorphic underlying CR structures (DR, JR), and (DL, JL)

where as usual J = Φ|D . Notice that V R
i , UR

i , ξ span the Lie algebra h2n+1 of the Heisenberg group.

However, it is the Lie algebra associated with the left action, not the right. Likewise, V L
i , UL

i , ξ span

the Lie algebra h2n+1 associated to the right action. So the Heisenberg group has what we can call a

bi-Sasakian structure.

Let (M,S) be a Sasakian manifold and let φ : M−−→M be a diffeomorphism, then (M,Sφ) is an

isomorphic Sasakian structure where φ∗S := (φ−1
∗ ξ, φ∗η, φ−1

∗ Φφ∗, φ
∗g). Then we see that SL = ι∗SR.

Now let us fix one of these structures, namely, the right Sasakian structure SR with its underlying

CR structure (DR, JR). However, for ease of notation I will often drop the superscript R, and refer

to this as the standard Sasakian or CR structure on H2n+1. There is also another frequently used

model of the standard CR structure on H2n+1 which is intermediate to the right and left ones, but

explicitly exhibits the complex structure on the transverse space. It is defined by the contact 1-form

η = dz − 2
P

j
(x · dy− y · dx), and gives an equivalent Sasakian structure which is invariant under the

group action (z, z) · (ζ, c) = (z + ζ, z + c + 2Im(ζ̄ · z).

5 The Group of CR Transformations of H2n+1

The group of CR automorphisms of the standard strictly pseudoconvex CR structure on H2n+1 is well-

known [Tol78, Fol89]. Actually, we compute the Lie algebra cr(H2n+1; D, J). Of course, this gives the

component CR(H2n+1; D, J)0 of CR(H2n+1; D, J) connected to the identity. We have
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Theorem 5.1. The Lie algebra cr(H2n+1; D, J) of infinitesimal CR transformations for the standard

(right) CR structure on H2n+1 is spanned by the vector fields:

ξ = ∂z, Ri = ∂xi
, Si = ∂yi

+ xi∂z, Xij = xi∂yj
+ xj∂yi

− yi∂xj
− yj∂xi

+ (xixj − yiyj)∂z

Yij = xi∂xj
− xj∂xi

+ yi∂yj
− yj∂yi

, D = 2z∂z +
X

k

(xk∂xk
+ yk∂yk

).

Proof: The procedure is well known. First, since the vector fields leave ηR invariant they take the

form

X =

„

F −

n
X

i=1

yi
∂F

∂yi

«

∂

∂z
−

n
X

i=1

∂F

∂yi

∂

∂xi

+

n
X

i=1

„

yi
∂F

∂z
+

∂F

∂xi

«

∂

∂yi

, (8)

where F is an arbitrary smooth function on R
2n+1 known as a Hamiltonian function for the infinitesimal

contact transformation X. We then demand that X satisfy £XΦR = 0 where ΦR is given by Equation

(6). This gives a system of PDE’s for F which is straightforward to solve.

Note that (Ri, Sj , ξ) span the Lie algebra h2n+1 of the Heisenberg group and that (Ri, Si) =

(UL
i , V L

i ). Moreover, (Xij , Yij) span the Lie algebra u(n) of the unitary group U(n). The Heisenberg

algebra h2n+1 is an ideal in cr(H2n+1; D, J) with quotient algebra u(n)⊕R where R is generated by D.

Summarizing we have

Lemma 5.2. There is an exact sequence of Lie algebras

0−−−→h
2n+1−−−→cr(H2n+1; D, J)−−−→u(n) ⊕ R−−−→0.

From this we have

Theorem 5.3. The group CR(H2n+1; D, J)0 is isomorphic to the semi-direct product (U(n) × R
+) ⋉

H2n+1. Moreover, the connected component of the group of automorphisms, Aut(S)0 of the standard

Sasakian structure on H2n+1, is isomorphic to the semi-direct product U(n) ⋉ H2n+1.

Proof: By Lemma 5.2 it suffices to show that the vector fields of Theorem 5.1 are complete. Since

linear vector fields on R
2n+1 are complete, we only need check this for Xij . Since these vector fields all

have the same form, it suffices to look at one case, for example X12 = x1∂y2
+ x2∂y1

− y1∂x2
− y2∂x1

+

(x1x2 − y1y2)∂z. The integral curves satisfy

dy2

dt
= x1,

dy1

dt
= x2,

dx2

dt
= −y1,

dx1

dt
= −y2,

dz

dt
= x1x2 − y1y2.

The solutions are sines and cosines and thus defined for all t. This proves the first statement. The only

element of cr(H2n+1; D, J) that does not leave SR invariant is D which generates the dilation group

R
+ which proves the second statement.

Although I have not determined the full automorphism group Aut(S), it is easy to see that there are

some discrete elements that are not in Aut(S)0. For each i = 1, · · · , n the map σi defined by sending

(xi, yi) to (−xi,−yi) and leaving all other coordinates unchanged is in Aut(S) \Aut(S)0. However, the

product σiσj is in Aut(S)0, since it can be realized by a rotation generated by Yij .

Now Schoen [Sch95] proved that the group CR(H2n+1; D, J) acts properly on a strictly pseudoconvex

CR manifold M unless M is the Heisenberg group H2n+1 or the sphere S2n+1 with their standard CR

structures. In the case of H2n+1 we see that the group CR(H2n+1; D, J) does not act properly, since the

isotropy subgroup of the origin is the dilatation group R
+. It can be shown, however, that the group

Aut(S)0 does act properly on H2n+1.
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6 The Sasaki and Extremal Cones of (H2n+1;D, J)

The maximal dimension of a maximal Abelian subalgebra of cr(H2n+1; D, J) is n + 1. This can be seen

from the decomposition cr(H2n+1; D, J) = (u(n) ⊕ R) ⋉ h2n+1.

Lemma 6.1. The unreduced Sasaki cone a+ of H2n+1 is determined by the maximal Abelian subalgebra

a spanned by the basis {ξ, X11, · · · , Xnn}, and is given by a > 0 and bi ≤ 0 where (a, b1, · · · , bn) are

coordinates of a with respect to this basis.

Proof: To satisfy positivity a must contain ξ, and any other element of h2n+1 will not be positive.

Moreover, any maximal Abelian subalgebra of u(n) is conjugate to that spanned by {X11, · · · , Xnn},

so up to conjugacy we obtain the Abelian algebra a. It is easy to check that this is maximal. Then on

the algebra a we have

0 < η(aξ +
X

i

biXii) = a −
1

2

X

i

bi

`

x2
i + y2

i

´

, (9)

which is positive on all of H2n+1 if and only if a > 0 and bi ≤ 0. Furthermore, it can be checked that,

up to conjugacy, a+
1 of any other maximal Abelian subalgebra a1 is contained in a+.

As mentioned previously, we have an identification a+ = S(D, J), and we denote an element of

S(D, J) by Sa,b where b = (b1, · · · , bn) denote the coordinates of a maximal Abelian subalgebra a of

u(n). From the action of the dilatation subgroup of CR(H2n+1; D, J) we can put a = 1, and by the

action of U(n) we choose a maximal torus T n. The normalizer of T n is the Weyl group of U(n) which

is isomorphic to the symmetric group Σn, so any element of S(D, J) can be brought to the form S1,b

with the ordered weights. So the Sasaki cone κ(H2n+1; D, J) = S(D, J)/CR(H2n+1; D, J) associated to

the standard CR structure (D, J) on H2n+1 is the subset of R
n defined by bn ≤ · · · ≤ b1 ≤ 0. It is

convenient to set ai = − 1

2
bi. We are now ready for

Theorem 6.2. Let (D, J) be the standard CR structure on the Heisenberg group H2n+1, and let κ(D, J)

and e(D, J) denote the Sasaki cone and the extremal Sasaki set on H2n+1, respectively. Then

1. the Sasaki cone κ(D, J) can be identified with set of non-negative ordered n-tuples 0 ≤ a1 ≤ · · · ≤

an;

2. the standard Sasakian structure S1,0 is the only one with constant scalar curvature, and is strongly

extremal in the sense of [BGS08b], and it has a null eta-Einstein structure with constant Φ-

sectional curve −3;

3. for a 6= (0, · · · , 0) the Sasakian metrics in S1,a are complete and extremal, but they do not have

constant scalar curvature;

4. κ(D, J) = e(D, J);

5. for generic a, the automorphism group Aut(S1,a) is the n-torus T n.

Proof: Let us consider the vector field ξa = ξ− 2
P

i
aiXii as a Reeb field. The corresponding contact

form is then

ηa =
η

1 +
P

i
ai(x2

i + y2
i )

. (10)

As discussed previously it is easy to see that the vector field ξa is complete and nowhere vanishing on

H2n+1.

Lemma 6.3. The flow of ξa generates a free proper action A of R on H2n+1 and the quotient space

H2n+1/A(R) is biholomorphic to C
n.
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Proof: The integral curves of ξa are easily seen to be

xi(t) = xi(0) cos 4ait + yi(0) sin 4ait, yi(t) = yi(0) cos 4ait − xi(0) sin 4ait,

z(t) = t + z(0) +
X

i

2ai[xi(0)yi(0) sin2 4ait +
xi(0)2 − yi(0)2

4
sin 8ait].

If not all ais vanish the curves are helices, and isomorphic to R; whereas, if ai = 0 for all i the curve

is the z axis. In any case the group law holds and one has an action of R which one easily sees is

both free and proper. Moreover, since H2n+1 is diffeomorphic to R
2n+1, the quotient is diffeomorphic

to R
2n. Since Φa is invariant under the flow of ξa and Φa|D = J, almost complex structure induced on

the quotient is integrable.

Continuing with the proof of Theorem 6.2 we notice that the standard CR structure has vanishing

Chern-Moser tensor [CM74], and by a result of Webster [Web77] this means that the submersed metrics

on the quotient C
n are Bochner-flat. So if we can show that they are complete, we can identify them

with Bryant’s complete Bochner-flat metrics on C
n [Bry01]. This was done in detail by Kamishima

[Kam06]. He uses sub-Riemannian geometry on H2n+1 identifying the closure of CC-balls with compact

subsets of the one point compactification S2n+1. We refer to Proposition 3.5 of [Kam06] for details.

Since the Reeb orbits are complete geodesics with respect to the Sasakian metrics ga, it follows that

these metrics are complete. Moreover, since Bryant gives a classification of complete Bochner-flat

metrics on C
n, we obtain all the Sasakian structures in the Sasaki cone κ(D, J). Also as noted by

Bryant a result of Abreu [Abr98] implies that Bochner-flat metrics are extremal in the sense of Calabi,

so the Sasakian metrics ga are also extremal which implies (4). This can be seen explicitly once we

compute the scalar curvature (see Remark 6.1 below).

The isotropy subgroup of a Sasakian structure S1,a ∈ κ(D, J) is Aut(S1,a), and one easily sees

that Lemma 6.6 of [BGS08a] applies to our case, so (5) follows. (This is also noted in [Bry01] for

the Bochner-flat metrics on C
n, and Kamishima [Kam06] essentially computes Aut(S1,a) in all cases.)

It remains to show that the only structure S1,a with constant scalar curvature sga is the standard

Sasakian structure S1,0. We do so by computing sga explicitly.

Lemma 6.4. The scalar curvature sga of the Sasakian structures S1,a is given by

sga = −n(2n + 7)

P

a2
j |zj |

2

1 +
P

ai|zi|2
+ 2n(4|a| − 1)

where |a| =
P

i
ai.

Proof: First we notice that sga is related to the scalar curvature of the transverse metric gT
a by

sga = sT
ga − 2n where ga = gT

a + ηa ⊗ ηa, and we see from Equation (10) that gT
a = fagT

0 where gT
0 is

the flat transverse metric of the standard Sasakian structure and fa = (1 +
P

j
aj |zj |

2)−1. Since fa is

basic and gT
a = fagT

0 , we can compute sT
ga from sgT

0

= 0 by using the well-known formula for how the

scalar curvature changes under conformal changes of metrics [Bes87].

Clearly from this lemma sga is constant if and only if a = 0 which completes the proof of Theorem

6.2.

Remark 6.1. The functions that appear in the expression for sga are the components of the moment

map µa : H2n+1−−→t∗n defined by < µa, τ >= ηa(τ) associated to the action of the maximal torus T n
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in CR(D, J) whose Lie algebra is spanned by {Xii}i. Indeed, with respect to the standard basis of

t∗n = tn = R
n we see that the moment map is µa(z, z, z̄) = (h1, · · · , hn) with components

hi(z, z̄) = ηa(Xii) = −2
|zi|

2|

1 +
P

j
aj |zj |2

,

and the scalar curvature sga is an affine function of these components, namely

sga = 2n(4|a| − 1) +
n(2n + 7)

2

X

i

a2
i hi(z, z̄).

Note that although this structure is not toric in the Sasakian sense due to the non-compactness, the

transverse geometry is toric, and we can use the result of Abreu [Abr98] to prove that our Sasakian

metrics ga are extremal. The point is that ∂#
gasga is holomorphic if and only if the scalar curvature is

an affine function of the moment map coordinates.

Remark 6.2. The last statement of Theorem 6.2 says that the Sasakian structure S1,0 is strongly

extremal in the sense of [BGS08b]. There the authors described another variational problem varying

over the set of Reeb vector fields that lie in the Lie algebra of a maximal torus. The critical points of

this functional are called strongly extremal Sasakian structures. In this case S1,0 is a null eta-Einstein

structure with constant Φ-sectional curve −3; whereas, the generic Sasakian structures S1,a are not

eta-Einstein although they are extremal, of course.

7 Compact Quotients

One can easily construct compact nilmanifolds N2n+1
k by forming the quotient manifold by the subgroup

H2n+1(Z, k) of H2n+1 obtained by restricting the coordinates (z, x1, · · · , xn, y1, · · · , yn) in Equation

(5) to take values in the set of all integers divisible by the integer k > 0. It is easy to see that

H1(N
2n+1
k , Z) = Z

2n + Zk. More generally, we consider a lattice subgroup Γ of N2n+1 with a compact

quotient N2N+1(Γ) = H2n+1/Γ. Then up to an automorphism of H2n+1 each nilmanifold N2N+1(Γ) is

determined by an n-tuple l = (l1, · · · , ln) of integers such that li|li+1 [Tol78, Fol04]. If we take the right

action of Γl = Γ of H2n+1, the quotient inherits the standard right Sasakian structure (ξR, ηR, ΦR, gR),

since it is invariant under this action. The quotient is also a homogeneous space inherited from the

left action of H2n+1; however, this does not leave the right Sasakian structure on H2n+1 invariant,

so the Sasakian structure and homogeneous structure on N2n+1(Γl) are incompatible [BGO07]. (Of

course, one can interchange right and left and obtain an isomorphic model of N2n+1(Γl).) For any

lattice subgroup Γl its centralizer in H2n+1 is the one parameter group generated by the standard Reeb

vector field ξ = ∂z, so only the standard Sasakian structure passes to the quotient manifold N2n+1(Γl).

Indeed up to a finite group the automorphism group Aut(S) is one dimensional, and generated by the

Reeb vector field. So the Sasaki cone is one dimensional. Summarizing we have

Proposition 7.1. The only Sasakian structure S1,a that passes to a compact quotient is the standard

one with a = 0. Moreover, the induced Sasakian structure on the quotient N2n+1(Γl) is null-eta-Einstein

with constant Φ-holomorphic sectional curvature −3, and the quotient space N2n+1(Γl)/Fξ is an Abelian

variety C
n/Λl determined by the lattice Λl = π(Γl), where π is induced by the natural quotient map

H2n+1−−−→H2n+1/Fξ ≈ C
n.

The procedure can be inverted, that is we can begin with a polarized Abelian variety (Cn/Λl, L)

where L is a positive line bundle on C
n/Λl, and construct N2n+1(Γl) as the total space of the unit circle

bundle in the line bundle L. Folland [Fol04] proved that, up to holomorphic CR equivalence there is a

1-1 correspondence between the nilmanifolds N2n+1(Γl) and polarized Abelian varieties (Cn/Λl, L).
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A result of Marinescu and Yeganefar [MY07] says that every compact Sasakian manifold is holomor-

phically fillable in the sense that it can be realized as the boundary of a compact strictly pseudoconvex

complex manifold V . In fact, Folland [Fol04] shows how to present the nilmanifolds N2n+1(Γl) as a

boundary of the unit disc bundle V in the dual bundle L∗ by using the theta functions that determine

L. Since the zero section of L∗ is identified with the Abelian variety (Cn/Λl) this is not a Stein filling.

In fact, Stein fillings of N2n+1(Γl) may not exist [PP07]. It is interesting to compare this situation

with that of links of isolated hypersurface singularities by weighted homogeneous polynomials. These

are called Milnor fillable in [PP07]. By the well-known Milnor Fibration Theorem N2n+1(Γl) can be

represented as a link of a weighted homogeneous polynomial only if n = 1, and in this case only the

nilmanifolds N3
k with k = 1, 2, 3 can be so represented [BG08]. In dimension three holomorphically

fillable implies Stein fillable, so all Sasakian 3-manifolds are Stein fillable.
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Tôhoku University (1965).

[Sch95] R. Schoen, On the conformal and CR automorphism groups, Geom. Funct. Anal. 5 (1995),

no. 2, 464–481. MR 1334876 (96h:53047)

[Str86] Robert S. Strichartz, Sub-Riemannian geometry, J. Differential Geom. 24 (1986), no. 2,

221–263. MR MR862049 (88b:53055)

[Tan69a] S. Tanno, The automorphism groups of almost contact Riemannian manifolds, Tôhoku
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