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Abstract

This paper comprises a class of complex Finsler metrics, namely n— Ein-
stein, which satisfies some special conditions on the curvature. By means of
Chern complex linear connection on the pull-back tangent bundle, a special
approach is devoted to obtain the equivalence conditions that a complex
Finsler space should be n— Einstein, (§3). A Schur type theorem for a n—
Einstein complex Finsler space, weakly Kahler, and other characterizations
of the holomorphic curvature of this space are given in §4.
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1 Introduction

The study of the complex Finsler metrics of constant holomorphic curvature is an
interesting problem in complex Finsler geometry. M. Abate and G. Patrizio [1]
gave a characterization of the constant holomorphic curvature through complex
geodesics, with the main result that any complex Finsler metric of holomor-
phic curvature Kp = —4 and which satisfies some regularity conditions is the
Kobayashi metric. The first proof is due to J. Faran [8], who used the method
of equivalence problem in his work. Another result, due to M. Abate and G. Pa-
trizio [2], asserts that if the complex Finsler spaces satisfy the notion of Kéahler,
a symmetry condition on the curvature and with positive constant holomorphic
curvature, then they are purely Hermitian.

In a previous paper, [4], we started the study of the curvature of complex
Finsler spaces, with respect to the Chern complex linear connection, briefly Chern
(c.l.c), on the pull-back tangent bundle. Our goal was to determine the condi-
tions in which a complex Finsler metric has constant holomorphic curvature. We
solved this problem for a special class of complex Finsler spaces, called generalized
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Einstein, briefly (¢.E.). In the present paper we shall introduce a new class of
complex Finsler metrics, called 7 - Einstein, briefly (n — E'), which generalize the
class of (g.E.) complex Finsler metrics. We shall obtain necessary and sufficient
conditions that a complex Finsler metric should be (n— E), (Theorem 3.1). These
results permit us to find the conditions in which a (n— E) complex Finsler space
is (¢9.E.), (Corollary 3.2). With the additional condition of Kahler, we prove that
the (n — E) complex Finsler spaces of nonzero holomorphic curvature are purely
Hermitian (Corollary 3.3). We prove a Schur type theorem for (n — E) complex
Finsler spaces (Theorem 4.1). Another result is that the (n— E) complex Finsler
spaces of nonzero constant holomorphic curvature are weakly Kéhler (Proposition
4.1). Moreover, a (n — E) complex Finsler metric with holomorphic curvature
K = —4 is the Kobayashi metric, (Proposition 4.4).

2 Notation and definitions

In the present section we recall only the basic notions which are needed; for more
information see [1], [12], [5]. For the beginning, we shall make an introduction
to the geometry of the pull-back tangent bundle with the Chern (c.l.c), [5]. Let
M be a complex manifold, dimg M = n, and 7'M the holomorphic tangent
bundle in which as a complex manifold the local coordinates will be denoted by
(2%, n*). The complexified tangent bundle of 7'M is decomposed in T (T'M) =
T(T'M)®T"(T'M).

Considering the restriction of the projection to T'M =T'M \ {0}, for pulling
the holomorphic tangent bundle 7'M back, we obtain a holomorphic tangent

bundle 7’ : 7(T"M) — FM, called the pull-back tangent bundle over the slit
T'M. We denote by {%*, %*}7 and by {dz*k, CZE*’“}7 the local frame and its
dual.

Let V(T'M) = kerm, C T'(T'"M) be the vertical bundle, spanned locally
by {%} A complex nonlinear connection, briefly (¢.n.c.), determines a supple-
mentary complex subbundle to V/(T'M) in T"(T"M), i.e. T"(T'M) = H(T'M) ®
V(T'M). The adapted frames of the (c.n.c.) is 55 = 52 —Ni%, where N (z,7)
are the coefficients of the (c.n.c.). Further on we shall use the abbreviations

i = 525, 0y = o, 07 = 52, O; = %, and theirs conjugates ([1], [3], [12]). On

5270 o
T'M let 9ij = % be the fundamental metric tensor of a complex Finsler space

(M, F? = L). The isomorphism between 7*(7"M) and T'M induces an isomor-
phism of 7*(T¢ M) and TcM. Thus, g;; defines an Hermitian metric structure
G(z,m) = gjgdz*j ®dz**on 7 (To M), with respect to the natural complex struc-
ture. On the other hand, H(7T'M) and 7*(T"M) are isomorphic. Therefore
the structures on 7*(T¢ M) can be pulled-back to H(T'M) @& H(T'M). By this
isomorphism the natural cobasis dz*’ is identified with dz’.

In view of this construction the pull-back tangent bundle 7* (7" M) admits a
unique complex linear connection V, called the Chern (c.l.c.), which is metric with
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respect to G and of (1,0)— type. Its connection form is w}(z, n) = L;k(z, n)dz* +
i 095m mi anm

;k(z,n)énk, where L;k =gm SR C’k =g
of X := X(z, n)%, associated to the Chern (c.l.c) is

, [6]. The covariant derivative

VX = (Xjdeb + Xldn® + Xzt + Xl £,

with Xlk = 0p X+ XL X =0k XT 4+ XIC; XIL =0 XY X'|pi=0p X'
The Chern (c.l.c.) on 7*(T"M) determines the Chern-Finsler (c.n.c.) on T’M7
c

mi 39]771

F
with the coefficients N;= g n’, and its local coefficients of torsion and

curvature are

o =L —Liys 21)
A ‘ CF , ,

R;‘ﬁk po= =0zl — (Nk)cll ) :l-* = =055 = E;sﬁj;
, o CF .

P;ﬁk = _%L;k %(Nk) Jl ; Sz _650; S;chj

The Riemann type tensor R(W, Z, X,Y) := G(R(X,Y)W, Z) has the properties:

R(W,Z,X,Y) = WZXxv" R Regy, = R 055 (2.2)
Rﬁkﬁ = _Rij/hk = RﬁhE = Rﬁﬁm
If R;hk = R;ﬂﬁj then R;7 = R;z5 = Rz
By setting Ry, := Rijkﬁniﬁh = —9;5%% (Nk) 7", the Ricci scalar and the
Ricci tensor associated to the Chern (c.l.c.) on 7 (T’M) are defined by Ric :=
g’ kRjk = Rk '’ Ric;; = ;:ig%cj. An easy computation shows that the func-

tions R;, are 1— homogeneous with respect to 7, i.e. 8 ”“ nt = Ry,

According to [1] the complex Finsler space (M, F) is strongly Kahler iff T;k =
0, Kdhler iff T;knj = 0 and weakly Kahler iff gﬂT;knjﬁl = 0. Note that for a
complex Finsler metric which comes from a Hermitian metric on M, so-called
purely Hermitian metric in [12], i.e. g7 = g;5(2), the three nuances of Kéhler
spaces coincide, [14]. In [1], the holomorphic curvature of F' in direction n, with
respect to the Chern (c.l.c.), is

2R(n,7,.7) _ 20" Ry
G2(n,m) L2(z,m)

where 7 is viewed as local section of 7*(T'M), i.e. n = n' Bazi*' Further on, we
shall simply call it holomorphic curvature. It depends both on the position z € M
and the direction 7. Moreover, it is 0— homogeneous with respect to 7.

In this context, we introduced in [4] the following concept:

Kr(z,m) = (2.3)
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Definition 2.1. The complex Finsler space (M, F) is called generalized Einstein
if Ry, is proportional to t;5, i.e. if there exists a real valuated function K(z,n),
such that

Ry, = K(z,0)ty5, (2.4)

where tyz 1= L(2,1) g7 + M7, Mk = %7 nj = g—ﬁLj.

The main properties of the (g.E.) complex Finsler spaces are collected in:

Theorem 2.1. Let (M, F) be a (g.E.) complex Finsler space. Then

i) K(2,m) = 1Kr(z,n) and it depends on z alone.

1) If (M, F) is connected and weakly Kdhler, of complex dimension n > 2,
then it is a space with constant holomorphic curvature.

iii) If the space is of nonzero constant holomorphic curvature, then F is weakly
Kahler.

w) If the space is Kdihler of nonzero constant holomorphic curvature, then
F is purely Hermitian. Conversely, a purely Hermitian complex Finsler space,
which is Kdhler of constant holomorphic curvature, is (g.E.).

Note that for the particular case of the complex Finsler spaces which are
Kéhler of nonzero constant holomorphic curvature, the notions of (¢.E.) and
purely Hermitian spaces coincide.

3 1n — Einstein complex Finsler metrics

Definition 3.1. The complex Finsler space (M, F) is called n— Einstein, briefly
(n — E), if there exists two smooth functions K;(z,n): T'M — R, i = 1,2, such
that

Ry, = Ki(z,m)Lg; + Ka(z, m)nki;. (3.1)

Under the changes rule of complex coordinates on 7" M, the functions K;(z,n)
are well defined on 7" M. The main examples of (n— E) - spaces are (g.E) - spaces.
From formula (3.1) we deduce:

Proposition 3.1. Let (M,F) be a (n — E) complex Finsler space of complex
dimension n. Then

Z) Kl(Zﬂ?) + K2(Z777) = %K:F(Zan)a

i) (91 K1)n' Lgy; + (91 Ka)n' nen; = 0;

iii) (Ki(z,m) + Ka(z,m)) [xn* = (K1(2,1) + Ka(2,1)) |5[xn* = 0 and its con-
Jjugates.

i) By, = Ry;

v) the functions K;(z,m), i = 1,2, are 0— homogenous with respect to n, if
n > 2.
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Proof: Contracting the relation (3.1) with n*7’ and taking into account (2.3),
we obtain 7).
For ii) we have

OR-

anjf ' = (K10 Lgy; + K1Lg,s + (0 Ka)n'nen; + Konen;.

Because the functions R;, are 1— homogeneous with respect to 7, it follows
that

Ry, = (8'1K1)771Lgk; + (51K2)77l77k77j + Ry, and so, ).
Using 7) and the fact that Kr(z,n) is 0— homogeneous with respect to 7, i.e.
Kr(z,\n) = Kr(z,n), for any A € C, we have

1
~ Thus, differentiating in (3.2) with respect to A and setting A = 1 we get
Ok (K1(2,m) + Ka(2,m)) n* = 0. Therefore,
(K1(2,m) + Ka(2,m)) [sn* = Ok (K1 (2,m) + Ka(2,m)) n* = 0.
(K1(z,m) + Ka(z,m)) [51kn* = Ok ((Kl(z,n) + Ks(z, n))l;) n*

= Ok (55(K1(z,n) + Kz(z,n))) nk = 0; (é’m(Kl(z,n) + Kg(z,n))nk> — 0. So,
iii) is proved.
By conjugation in (3.1), it results

Ry, = Ki1(2,n)Lgy5 + Koz, )iy = Ki(2,m)Lgjx + Ka(2,m)n;7k = Ry,

- Ilrzlj)c;rder to prove v), we write ii) as Kl(z,n)|mngk5 + Ka(z,n)imnin; = 0.
Because K1(z,7n)in' = —Ka2(z,1)|in', the last relation can be written in the form
LhyzK2(2,m)lin' =0,

where 1
hkj =G5 — mmﬁj-
But, hkjgjlc =n—1and n > 2, therefore L(n —1)K2(z,n)|;n' = 0, and from here

results

Ko(z,n)lz7" = (0 K2(z,m))n' =0,

ie. Ky(z,7n) is 0— homogeneous with respect to 1. Using again iii) we get that
K1(z,n) is 0— homogeneous with respect to 7. 0
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Theorem 3.1. Let (M, F) be a complex Finsler space, of complex dimension
> 2. The following statements are equivalent:

i) (M. F) is (1 - E);

i1) There exists two smooth functions K;(z,n) : T'"M — R, i = 1,2, which are
0— homogeneous with respect to n and such that

R = Rb g5 = Ki(2,0)0,57, + Ka(2,0)9,57; + (3.3)
Ki(z,m)lpLgy; + Ka(z,m)lpmen; + Cigpm ™
where Rlﬁ’C = Rinﬁknm.
ii1) There exists two smooth functions K;(z,n) : T'"M — R, i = 1,2, which
are 0— homogeneous with respect to n and such that
Rome = Ki(zm) (ijlﬁh + gmgk;) + Ka(2,m) (Ckmﬁj + gljgkﬁ) (3.4)
+Ki(z, Tl)|19k3ﬁh + Ko (2,019,575
+EK1(z,0)l (L(z, nCig + gk;m) + K (2,n)ly (ij + gzjﬁk)
+K1(z, )zl Lgy; + K2(zn)|5lmw;
O m ™ + Cipppm ™ — Cap Oy
Given any of these equivalent conditions, we have
(K1 — Ka) L(z,mhy5 — L(z,1) (K1 + K2) [77; + C5, CLan' "+ T5,= 0, (3.5)
where
mi = 9575 Cg:=Cun"; Cy = i9m ; (3.6)
e o= gFjle TS gijTliknl ; T}k:: Tjkmﬁm-
Proof: If (M, F) is (n — E), by a direct computation, we obtain:

Ryl = Ki(2,m) 9,570 + K2(2,m) 9,57, + K1(2,m) [ Lgy5 + K2 (2,m) [win; (3.7)

and

Raylnle = Ki(z,ma5915 + K2(2,m9595 (3.8)
+EK1(2,m)19557h + Ko (2, M) hg,571; + Ki(2,0) lpgim
+EK2(z,m)zg5me + Ki(z,n)gliLgy; + K2 (2, n)|5low;-

If the functions K;(z,7n), i = 1,2, are 0— homogeneous with respect to n, we
get:

Ki(z,n)in' = Ki(z,n)lz7" = Ki(z,n)l;im* = 0. (3.9)
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Now let us prove that i) < ii).
Given R; asin (3.1), we can reconstruct Rz For this, contracting the Bianchi

identity, (see [5]), R hk'l ]lklh hlPlTk + SZ R+ Ri,, C% = 0 with p/7",

we obtain Ri |777 Clzlklh . On the other hand RZ mt =Ryl — le, where

= RL, *h - So, By = Cj, oi" + Ry Indeed, Ry, = C’l|k|hn + R;,|; which,
together w1th (3.7) implies (3.3). Now, by Proposition 3.1 v), the functions
K;(z,n), 1 = 1,2, are 0— homogeneous with respect to 1.

Conversely, contracting (3.3) by 7", we have

R, " = Ry, = Ki(2,n)Lgy5 + Koz, el + K1 (2,0) 577" Lg;

+Ka(z, )z " men; + C Tk 7", Because K;(z,n)7" = 0, i = 1,2, and
Cﬁ‘k‘mﬁmﬁh = 0, the last relation gives 7).
i) += iii). Given B3, as in (3.1), we use the following Bianchi identity
R;hk| H;‘Euk P;TkP% + SR+ R;ETC,Q = 0 to reconstruct .Rjzﬁk'
If we contlract this with 77, we obtain Rt |mJ = r\kclrm R%TC,Q. But,
R’L

jhk\m i _R;Tk’ so that Rif = R | CrlkClT‘h—i—R C},. Tt results that

Ry, = B3, 1500 + By lzl + ]h\r\mckln kaC”h + O

Plugging (3.6) and (3.8) into the last relation, we obtain (3.4). Moreover,
taking into account Proposition 3.1 v), the functions K;(z,7), i = 1,2, are 0—
homogeneous with respect to 7.

The converse follows from (3.4) by contraction with 77! and using (3.9) and

Chn' = Cﬁ\k\m|lnl = Cﬁﬂl =0.
To prove (3.5) we compute (Rj; — R;km)nlﬁh in two ways. By i),

(Rjy — B0’ M" = (K1 — K») Lhyg — LKy + K2) |77 + Cg, Crpn' "

and by Bianchi identity lelh + Ajg { - C” Rl } = 0, we obtain
(R, — Rjkm)” 7= T;k . So, we have (3.5). O

Proposition 3.2. Let (M, F) be a (n — E) complex Finsler space, of complex
dimension > 2. Then

1) K depends on z alone, i.e. K1+ Ky := K(z);

i) Ofjuyan™ 0™ — (K + Ko) L(z,m) O = 0;

Foloh
w) CrrCypn'”" = 0.

Proof: Since lehk = Rspy, then R ih%n ik = Rfmkn nk. If we contract (3.4) by
n'n*, taking into account Theorem 3.1, i) we deduce

R;m?? n* =Cy h\k\mn n"™ + L(z,m) (K1 + K2) [50; + (K1 4+ K2) 77, (3.10)
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On the other hand, Rﬂhﬁﬁlﬁk = Rijghﬁlﬁk and by (3.4), we have
Ry ' = (K + Kz) (L(2,m)Cyp +mjme) + 2L(2,m) (K1 + Ka) |-

By conjugation,
Ry = (K + K3) (L) 47,7, ) + 2L(2,m) (K + ) 7, (3.11)
So, (3.10) and (3.11) lead to

k—
Crripmn 1™ =

L(zm) (K + Ko) O = (K + K) [y + (K + Ko) [ ) = 0. (3.12)

To prove i) we contract (3.12) with 7/ and we have L?(z,n) (K1 + Ka2) |7 = 0.
Hence (K + K3) | = 0, i.e. % = 0 By conjugation, % =0,
so K1 + K3 does not depends on 7. As a consequence of i), the relation (3.12)
brings to i3).

i#i) By Jacobi identity [81, [(2,5,}]} + [5]-7 [5,5,81]} + [5,;7 [(Z,@-]} =0, we have

—@(R%jﬁk) + (%(Rf—ﬂ,ﬁk) - Tilj|l_cﬁk = 0. Taking into account (3.1), we obtain

and

(K — Ka) (55773'*‘%ﬂi)+K1\i(5§-L*ﬂjﬂl)+K1u(5§L*77i77l)*Tilj\;;ﬁk =0. (3.13)

Contracting above relation by g;z17, it became (K, — Ky) L(z,n)hiz+ Tiw= 0,
i.e. i4i). From (3.5), i7) and 4ii) we obtain v). O

Corollary 3.1. Let (M, F) be a (n — E) complex Finsler space, of complex di-
mension > 2. Then

i) Ric = (nK1 + K2)L(z,n) is real valued;
ii) Ricg = [(n — K1 + K(2)] g;5 + (n = 1) (K1[ym + Kilim; + LEil5) -

Proof: Ric:= gikR;k = /" (Kngkj + K277k77j) = K\ Lo} + KoL
We compute:

GUe = (nKy + Ka)ni + (nK|; + Kols) L

; 2 Ric
Ricj := S8 = (nK1 + K2)g;5 + (nEK|; + Kal5)m;

+(nK|i + Kali)n; + (nK1|il; + Kalil;) L.

But, by Proposition 3.2 i) we have Ky = K(z) — K. It results K»|; = —K13,
Ks|; = —Ki|; and Ksli|; = —K;i[;5. All these relations lead to 4i). 0
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We emphasize that in any (n — E) complex Finsler space the holomorphic
curvature depends on z only, Kp(z) := Kp(z,1) = 2K(z) and a (n — E) complex
Finsler space is (g.F.) if K1 = Ks. It is natural for us to inquire when K7 = K»?
The answer came below.

Corollary 3.2. If (M, F) is a Kihler (n — E) complex Finsler space, of complex
dimension > 2, then it is (g.E.).

Proof: It follows immediately from Proposition 3.2 7i7). Indeed, because (M, F')
is Kihler, we have T},7/ = 0 and so, T, = 0. We obtain

(K1 — K2) L(2,m)h;; = 0, and from here (n — 1) (K1 — K2) L(z,nm) = 0. It
results K1 = K. O

From this and Theorem 2.1. (iv) it follows immediately the following

Corollary 3.3. If (M, F) is a Kihler (n — E) complex Finsler space, of complex
dimension > 2, with K(z) # 0, then F is purely Hermitian.

4 n—Einstein spaces with constant holomorphic curvature

In the sequel, our goal is to determine conditions under which a (7 — E) complex
Finsler space has constant holomorphic curvature, i.e. when K(z) := K;(z,n) +
Ks(z,m) is constant. At first we prove a Schur type theorem for (n — E) complex
Finsler space, namely:

Theorem 4.1. Let (M, F) be a (n— E) connected complex Finsler space, weakly
Kahler, of complex dimension > 2. Then it is a space with constant holomorphic
curvature.

Proof: By a direct computation, we obtain

Rypy = LhygKqi(z,m)p+ K(2)umen;; (4.1)
Riﬁ = i\mmnm + R%|k; where

Bi= Bpg™ = (L0 -m0) Kin) + K@
Rile = Ki(zm) (kg — 9,5°) + Ea(z,m)lw (L5 = mpn”) + K (2)g57°-

The contraction of the Bianchi identity Ay, {R;EM . Pj;le%}—i—R;EmTﬁ =0

with gzn/n'7", leads to
Ry’ = Rl + Crs i RS — Cosp RS0 + Ren Tipn' = 0.
The last result and (4.1) give

K(2) g Tiin' " + e K (2)yn' — L(z,m) K (2) 1, = 0. (4.2)
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Since F is weakly Kéhler, then from (4.2) we get n, K (z)n' — LK (2)x = 0.
So, by conjugation we have

Because of K(2)gzl; = K(2)|
K(z) 7 . .. Ba . _ .

K(z)mb = T%]hﬂ, which multiplied by ¢"?, we obtain K(z)ﬁnl = 0. Plugging

it into (4.3), it follows that K (z); = 0, i.e. agz(f) 82(2(5) =0

and so, K(z) is a constant on M. O

s = 0, deriving (4.3) we easily deduce 0 =

= 0. By conjugation,

By (4.2), we deduce the following

Proposition 4.1. If (M,F) is a (n — E) complex Finsler space, of complex
dimension > 2, with K(z) a nonzero constant, then F is weakly Kdihler.

Proof: Since F is (7 — E), with K(z) a nonzero constant, then K(z); = 0 and
(4.2) becomes g7 Tyin'n" = 0, i.e. F is weakly Kihler. 0

Particularly, if (M, F) is a (n— E) complex Finsler space, with K(z) = 0, then
it is a flat complex Finsler space, i.e. Krp =0, and thwmnkﬁm = 0. Moreover,
using Theorem 3.1 we can prove

Theorem 4.2. Let (M, F) be a complex Finsler space, of complex dimension
> 2. The following statements are equivalent:
1) (M, F) is (n — E) with constant curvature Kp = 2(K1 + K3) = 2¢, c € R;;
i1) There exists two smooth functions K;(z,m) : T'"M — R, i = 1,2, such that
Ki(z,m) is 0— homogeneous with respect to n, K1(z,n) + Ka(z,m) = ¢ and

Ry = RL g5z = K1 (9,57 — 97) (4.4)
+egiany + KilpLhyg + Chppm™-

iii) There exists two smooth functions K;(z,n) : T'M — R, i = 1,2, such
that K1(z,n) is 0— homogeneous with respect to n, Ki(z,n) + Ka(z,n) = ¢ and

Ryp, = K (Ckﬁﬁh = Cemi; + 9m95 — 9139kﬁ) (4.5)
+c (Ckmﬁj + gljgkﬁ) + K1y (Qkﬁh - gkﬁﬁj)
+EKilp (L(Z, M Cr = Cully + g — gl;m)

+ K1 lpliLhg + O 1™ + Cppopn 1™ = Ciz

7
Cl\ﬁ'
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Proof: By Theorem 3.1, if (M, F) is (n — E) then there exists the smoothly
functions K;(z,n), ¢ = 1,2, which are 0— homogeneous with respect to n and
satisfy (3.3) and (3.4). Moreover, K(z) = K1(z,n) + K2(z,n) = ¢ and plugging
it into (3.3) and (3.4) we obtain (4.4) and (4.5). So, the requirements i) = i)
and ¢) = iii) are true.

Conversely, contracting (4.4) by 7 and (4.5) by 7! and taking into account
Ki(z,m) + K2(z,m) = ¢ and K;(z,7n) is 0— homogeneous with respect to 7, we
obtain i). So we have proved ii) = ¢) and i) = i). O

Proposition 4.2. Let (M, F) be a (n — E) complex Finsler space, of complex
dimension > 2, of constant holomorphic curvature 2c. Then,

i) Re 70" = cL(z,n)n's Ry Pn'" = cL(z,m)mw;
it) (Rypy, — Ry) ' = 05
iii) O 1™ — cLC = 0.

Proof: It follows from Theorem 4.2. O

We note that the above conditions ) and i), with ¢ = —2, are equivalent
to the conditions of Theorem 3.1.15, from [1], p. 146. Therefore, the following
Proposition gives a particular form of that Theorem.

Proposition 4.3. Let (M, F) be a complex Finsler space, of complex dimension
> 2. If one of equivalent conditions from Theorem 4.2 holds for c = —2, then F
is the Kobayashi metric on M.

An example. We give an example which illustrate our theory. Let

_ P +elzPnP- <zn><zn>)

L:
(1+¢lz]?)? ’

(4.6)

be a complex Finsler metric, where |2|? := 3"} _2F2F, < 2,9 >:= S°1_ 2k,

defined on the disk A” = {z ceCn, |zl <r, ri= 1/é} ife<0,onC"ife=0

and on the complex projective space P*(C) if € > 0. In particular, for e = —1 we
obtain the Bergman metric on the unit disk A" := AY; for € = 0 the Euclidean
metric on C", and for € = 1 the Fubini-Study metric on P"(C). They are purely
Hermitian. Indeed, they are the well known metrics of the simply connected
homogeneous Kéahler manifolds of constant holomorphic sectional curvature Kp =
4e.

Now, let us consider a Finsler metric which is conformal to (4.6), i.e. gz’_g =

ep(z)gij = % (61‘7 — 6%) . Clearly, g;'j is purely Hermitian and an imme-
2
diate computation shows that R%k =er(?) (5tk3 — %ﬁjﬁh) .

We suppose that p(z) = alog(1 + €|z]?), €, € R*. Therefore,
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g;? = (1 + ¢|z[2)e! (52.3—5%), and it is not Kahler. Furthermore,
we have ng = GreEe (Lg;CE —(1- a)n;ﬁ;) . This last relation shows that

_ (-a)e
e and K = Gy So the
2e(2—a)

metric gl’,7 is (n — E) with holomorphic curvature K%, = 2(K; 4+ K») = E=EDEE
Moreover, if e < 0 and o < 2, or € > 0 and a > 2, then K%, < 0. If e < 0 and
a>2,0ore>0and o <2, then K7, > 0.

These are examples of (7 — E) purely Hermitian complex Finsler spaces that
are not Kahler nor (g.E.).

R%k = Kngl’€3+ Ko, 7;, where K, =
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