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Abstract

This paper comprises a class of complex Finsler metrics, namely η− Ein-
stein, which satisfies some special conditions on the curvature. By means of
Chern complex linear connection on the pull-back tangent bundle, a special
approach is devoted to obtain the equivalence conditions that a complex
Finsler space should be η− Einstein, (§3). A Schur type theorem for a η−

Einstein complex Finsler space, weakly Kähler, and other characterizations
of the holomorphic curvature of this space are given in §4.
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1 Introduction

The study of the complex Finsler metrics of constant holomorphic curvature is an
interesting problem in complex Finsler geometry. M. Abate and G. Patrizio [1]
gave a characterization of the constant holomorphic curvature through complex
geodesics, with the main result that any complex Finsler metric of holomor-
phic curvature KF = −4 and which satisfies some regularity conditions is the
Kobayashi metric. The first proof is due to J. Faran [8], who used the method
of equivalence problem in his work. Another result, due to M. Abate and G. Pa-
trizio [2], asserts that if the complex Finsler spaces satisfy the notion of Kähler,
a symmetry condition on the curvature and with positive constant holomorphic
curvature, then they are purely Hermitian.

In a previous paper, [4], we started the study of the curvature of complex
Finsler spaces, with respect to the Chern complex linear connection, briefly Chern
(c.l.c), on the pull-back tangent bundle. Our goal was to determine the condi-
tions in which a complex Finsler metric has constant holomorphic curvature. We
solved this problem for a special class of complex Finsler spaces, called generalized
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Einstein, briefly (g.E.). In the present paper we shall introduce a new class of
complex Finsler metrics, called η - Einstein, briefly (η−E), which generalize the
class of (g.E.) complex Finsler metrics. We shall obtain necessary and sufficient
conditions that a complex Finsler metric should be (η−E), (Theorem 3.1). These
results permit us to find the conditions in which a (η−E) complex Finsler space
is (g.E.), (Corollary 3.2). With the additional condition of Kähler, we prove that
the (η − E) complex Finsler spaces of nonzero holomorphic curvature are purely
Hermitian (Corollary 3.3). We prove a Schur type theorem for (η − E) complex
Finsler spaces (Theorem 4.1). Another result is that the (η−E) complex Finsler
spaces of nonzero constant holomorphic curvature are weakly Kähler (Proposition
4.1). Moreover, a (η − E) complex Finsler metric with holomorphic curvature
KF = −4 is the Kobayashi metric, (Proposition 4.4).

2 Notation and definitions

In the present section we recall only the basic notions which are needed; for more
information see [1], [12], [5]. For the beginning, we shall make an introduction
to the geometry of the pull-back tangent bundle with the Chern (c.l.c), [5]. Let
M be a complex manifold, dimC M = n, and T ′M the holomorphic tangent
bundle in which as a complex manifold the local coordinates will be denoted by
(zk, ηk). The complexified tangent bundle of T ′M is decomposed in TC(T ′M) =
T ′(T ′M) ⊕ T ′′(T ′M).

Considering the restriction of the projection to T̃ ′M = T ′M \ {0}, for pulling
the holomorphic tangent bundle T ′M back, we obtain a holomorphic tangent

bundle π′ : π∗(T ′M) −→ T̃ ′M , called the pull-back tangent bundle over the slit

T̃ ′M . We denote by
{

∂
∂zk

∗
, ∂

∂zk

∗
}

, and by
{

dz∗k, dz∗k
}

, the local frame and its

dual.

Let V (T ′M) = ker π∗ ⊂ T ′(T ′M) be the vertical bundle, spanned locally
by { ∂

∂ηk }. A complex nonlinear connection, briefly (c.n.c.), determines a supple-

mentary complex subbundle to V (T ′M) in T ′(T ′M), i.e. T ′(T ′M) = H(T ′M)⊕
V (T ′M). The adapted frames of the (c.n.c.) is δ

δzk = ∂
∂zk −N

j
k

∂
∂ηj , where N

j
k(z, η)

are the coefficients of the (c.n.c.). Further on we shall use the abbreviations
δi = δ

δzi , ∂̇i = ∂
∂ηi , δi = δ

δzi , ∂̇i = ∂
∂ηi , and theirs conjugates ([1], [3], [12]). On

T ′M let gij̄ = ∂2L
∂ηi∂ηj be the fundamental metric tensor of a complex Finsler space

(M,F 2 = L). The isomorphism between π∗(T ′M) and T ′M induces an isomor-
phism of π∗(TCM) and TCM . Thus, gij̄ defines an Hermitian metric structure

G(z, η) := gjkdz∗j ⊗dz∗kon π∗(TCM), with respect to the natural complex struc-
ture. On the other hand, H(T ′M) and π∗(T ′M) are isomorphic. Therefore
the structures on π∗(TCM) can be pulled-back to H(T ′M) ⊕ H(T ′M). By this
isomorphism the natural cobasis dz∗j is identified with dzj .

In view of this construction the pull-back tangent bundle π∗(T ′M) admits a
unique complex linear connection ∇, called the Chern (c.l.c.), which is metric with
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respect to G and of (1, 0)− type. Its connection form is ωi
j(z, η) = Li

jk(z, η)dzk +

Ci
jk(z, η)δηk, where Li

jk = gmi δgjm

δzk , Ci
jk = gmi ∂gjm

∂ηk , [5]. The covariant derivative

of X := Xj(z, η) ∂∗

∂zj , associated to the Chern (c.l.c) is

∇X =
(

Xi
|kdzk + Xi|kδηk + Xi

|k
dzk + Xi|kδηk

)

∂∗

∂zi ,

with Xi
|k := δkXi + X lLi

lk; Xi|k :=
.

∂k Xi + X lCi
lk; Xi

|k
:= δkXi; Xi|k :=

.

∂k Xi.

The Chern (c.l.c.) on π∗(T ′M) determines the Chern-Finsler (c.n.c.) on T ′M,

with the coefficients
CF

N i
k= gmi ∂gjm

∂zk ηj , and its local coefficients of torsion and
curvature are

T i
jk : = Li

jk − Li
kj ; (2.1)

Ri

jhk
: = −δhLi

jk − δh(
CF

N l
k)Ci

jl ; Ξi

jhk
:= −δhCi

jk = Ξi

khj
;

P i

jhk
: = −∂̇hLi

jk − ∂̇h(
CF

N l
k)Ci

jl ; Si

jhk
:= −∂̇hCi

jk = Si

khj
.

The Riemann type tensor R(W,Z,X, Y ) := G(R(X,Y )W,Z) has the properties:

R(W,Z,X, Y ) = W iZ
j
XkY

h
Rijkh; Rjihk := Rl

ihk
glj ; (2.2)

Rijkh = −Rijhk = Rjihk = Rjihk;

If Ri

jhk
= Ri

khj
then Rijkh = Rkjih = Rkhij̄ .

By setting Rjk := Rijkhηiηh = −gljδh(
CF

N l
k)ηh, the Ricci scalar and the

Ricci tensor associated to the Chern (c.l.c.) on π∗(T ′M) are defined by Ric :=

gjkRjk = Rk

ihk
ηiηh; Ricij := ∂2Ric

∂ηi∂ηj . An easy computation shows that the func-

tions Rjk are 1− homogeneous with respect to η, i.e.
∂Rjk

∂ηi ηi = Rjk.

According to [1] the complex Finsler space (M,F ) is strongly Kähler iff T i
jk =

0, Kähler iff T i
jkηj = 0 and weakly Kähler iff gilT

i
jkηjηl = 0. Note that for a

complex Finsler metric which comes from a Hermitian metric on M, so-called
purely Hermitian metric in [12], i.e. gij = gij(z), the three nuances of Kähler
spaces coincide, [14]. In [1], the holomorphic curvature of F in direction η, with
respect to the Chern (c.l.c.), is

KF (z, η) :=
2R(η, η, η, η)

G2(η, η)
=

2ηjηkRjk

L2(z, η)
, (2.3)

where η is viewed as local section of π∗(T ′M), i.e. η := ηi ∂
∂zi

∗
. Further on, we

shall simply call it holomorphic curvature. It depends both on the position z ∈ M

and the direction η. Moreover, it is 0− homogeneous with respect to η.

In this context, we introduced in [4] the following concept:
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Definition 2.1. The complex Finsler space (M,F ) is called generalized Einstein

if Rjk is proportional to tkj , i.e. if there exists a real valuated function K(z, η),
such that

Rjk = K(z, η)tkj , (2.4)

where tkj := L(z, η)gkj + ηkηj , ηk := ∂L
∂ηk , η̄j := ∂L

∂η̄j .

The main properties of the (g.E.) complex Finsler spaces are collected in:

Theorem 2.1. Let (M,F ) be a (g.E.) complex Finsler space. Then

i) K(z, η) = 1
4KF (z, η) and it depends on z alone.

ii) If (M,F ) is connected and weakly Kähler, of complex dimension n ≥ 2,
then it is a space with constant holomorphic curvature.

iii) If the space is of nonzero constant holomorphic curvature, then F is weakly

Kähler.

iv) If the space is Kähler of nonzero constant holomorphic curvature, then

F is purely Hermitian. Conversely, a purely Hermitian complex Finsler space,

which is Kähler of constant holomorphic curvature, is (g.E.).

Note that for the particular case of the complex Finsler spaces which are
Kähler of nonzero constant holomorphic curvature, the notions of (g.E.) and
purely Hermitian spaces coincide.

3 η − Einstein complex Finsler metrics

Definition 3.1. The complex Finsler space (M,F ) is called η− Einstein, briefly

(η − E), if there exists two smooth functions Ki(z, η) : T ′M → R, i = 1, 2, such

that

Rjk = K1(z, η)Lgkj + K2(z, η)ηkη̄j . (3.1)

Under the changes rule of complex coordinates on T ′M , the functions Ki(z, η)
are well defined on T ′M. The main examples of (η−E) - spaces are (g.E) - spaces.
From formula (3.1) we deduce:

Proposition 3.1. Let (M,F ) be a (η − E) complex Finsler space of complex

dimension n. Then

i) K1(z, η) + K2(z, η) = 1
2KF (z, η);

ii) (∂̇lK1)η
lLgkj + (∂̇lK2)η

lηkη̄j = 0;

iii) (K1(z, η) + K2(z, η)) |kηk = (K1(z, η) + K2(z, η)) |j |kηk = 0 and its con-

jugates.

iv) Rjk = Rkj ;

v) the functions Ki(z, η), i = 1, 2, are 0− homogenous with respect to η, if

n ≥ 2.



Holomorphic curvature of (η − E) spaces 269

Proof: Contracting the relation (3.1) with ηkηj and taking into account (2.3),
we obtain i).

For ii) we have

∂Rjk

∂ηl
ηl = (∂̇lK1)η

lLgkj + K1Lgkj + (∂̇lK2)η
lηkη̄j + K2ηkη̄j .

Because the functions Rjk are 1− homogeneous with respect to η, it follows
that

Rjk = (∂̇lK1)η
lLgkj + (∂̇lK2)η

lηkη̄j + Rjk and so, ii).

Using i) and the fact that KF (z, η) is 0− homogeneous with respect to η, i.e.
KF (z, λη) = KF (z, η), for any λ ∈ C, we have

K1(z, λη) + K2(z, λη) =
1

2
KF (z, η). (3.2)

Thus, differentiating in (3.2) with respect to λ and setting λ = 1 we get
∂̇k (K1(z, η) + K2(z, η)) ηk = 0. Therefore,

(K1(z, η) + K2(z, η)) |kηk = ∂̇k (K1(z, η) + K2(z, η)) ηk = 0.

(K1(z, η) + K2(z, η)) |j |kηk = ∂̇k

(

(K1(z, η) + K2(z, η))|j

)

ηk

= ∂̇k

(

∂̇j̄(K1(z, η) + K2(z, η))
)

ηk = ∂̇j̄

(

∂̇k(K1(z, η) + K2(z, η))ηk
)

= 0. So,

iii) is proved.
By conjugation in (3.1), it results

Rjk = K1(z, η)Lgkj + K2(z, η)ηkη̄j = K1(z, η)Lgjk̄ + K2(z, η)ηj η̄k = Rkj ,

i.e. iv).
In order to prove v), we write ii) as K1(z, η)|lη

lLgkj + K2(z, η)|lη
lηkη̄j = 0.

Because K1(z, η)|lη
l = −K2(z, η)|lη

l, the last relation can be written in the form

LhkjK2(z, η)|lη
l = 0,

where

hkj := gkj −
1

L(z, η)
ηkηj .

But, hkjg
j̄k = n− 1 and n ≥ 2, therefore L(n− 1)K2(z, η)|lη

l = 0, and from here
results

K2(z, η)|hηh = (∂̇lK2(z, η))ηl = 0,

i.e. K2(z, η) is 0− homogeneous with respect to η. Using again iii) we get that
K1(z, η) is 0− homogeneous with respect to η.
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Theorem 3.1. Let (M,F ) be a complex Finsler space, of complex dimension

≥ 2. The following statements are equivalent:

i) (M,F ) is (η − E);
ii) There exists two smooth functions Ki(z, η) : T ′M → R, i = 1, 2, which are

0− homogeneous with respect to η and such that

Rjhk : = Rl

hk
glj = K1(z, η)gkjηh + K2(z, η)gkhηj + (3.3)

K1(z, η)|hLgkj + K2(z, η)|hηkη̄j + Cjh|k|m̄η̄m,

where Rl

hk
:= Rl

mhk
ηm.

iii) There exists two smooth functions Ki(z, η) : T ′M → R, i = 1, 2, which

are 0− homogeneous with respect to η and such that

Rjlhk = K1(z, η)
(

Ckjlηh + glhgkj

)

+ K2(z, η)
(

Ckhlηj + gljgkh

)

(3.4)

+K1(z, η)|lgkjηh + K2(z, η)|lgkhηj

+K1(z, η)|h

(

L(z, η)Ckjl + gkjηl

)

+ K2(z, η)|h

(

Cklηj + gljηk

)

+K1(z, η)|h|lLgkj + K2(z, η)|h|lηkη̄j

+Cjh|r|m̄Cr
klη̄

m + Cjh|k|m̄|lη̄
m − Cjr|kCr

l|h
.

Given any of these equivalent conditions, we have

(K1 − K2) L(z, η)hkj − L(z, η) (K1 + K2) |kηj + Cjr|lC
r
k|h̄ηlη̄h+

.

T jk= 0, (3.5)

where

ηi = gijη
j ; Cij := Chijη

h ; Chij := ∂̇j̄ghı̄ ; (3.6)

Cr
l : = grjCjl ; Tjk := gijT

i
lkηl ;

.

T jk:= Tjk|mηm.

Proof: If (M,F ) is (η − E), by a direct computation, we obtain:

Rjk|h = K1(z, η)gkjηh + K2(z, η)gkhηj + K1(z, η)|hLgkj + K2(z, η)|hηkη̄j ; (3.7)

and

Rjk|h|l = K1(z, η)glhgkj + K2(z, η)gljgkh (3.8)

+K1(z, η)|lgkjηh + K2(z, η)|lgkhηj + K1(z, η)|hgkjηl

+K2(z, η)|hgljηk + K1(z, η)|h|lLgkj + K2(z, η)|h|lηkη̄j .

If the functions Ki(z, η), i = 1, 2, are 0− homogeneous with respect to η, we
get:

Ki(z, η)|lη
l = Ki(z, η)|hηh = Ki(z, η)|h|lη

l = 0. (3.9)
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Now let us prove that i) ⇐⇒ ii).
Given Rjk as in (3.1), we can reconstruct Ri

jk
. For this, contracting the Bianchi

identity, (see [5]), Ri

jhk
|l − P i

jlk|h
− Ξi

jhl
P r

lk
+ Si

jlr
Rr

hk
+ Ri

jrkCr

hl
= 0 with ηjηh,

we obtain Ri

hk
|lη

h = −Ci

l|k|h
ηh. On the other hand, Ri

hk
|lη

h = Ri
k|l −Ri

lk
, where

Ri
k := Ri

hk
ηh. So, Ri

lk
= Ci

l|k|h
ηh + Ri

k|l. Indeed, Rilk = Cı̄l|k|hηh + Rik|l which,

together with (3.7) implies (3.3). Now, by Proposition 3.1 v), the functions
Ki(z, η), i = 1, 2, are 0− homogeneous with respect to η.

Conversely, contracting (3.3) by ηh, we have

Rjhkηh = Rjk = K1(z, η)Lgkj + K2(z, η)ηkη̄j + K1(z, η)|hηhLgkj

+K2(z, η)|hηhηkη̄j + Cjh|k|m̄η̄mηh. Because Ki(z, η)|hηh = 0, i = 1, 2, and

Cjh|k|m̄η̄mηh = 0, the last relation gives i).

i) ⇐⇒ iii). Given Rjk as in (3.1), we use the following Bianchi identity

Ri

jhk
|l − Ξi

jhl|k
− P i

jrkP r

lh
+ Si

jrlR
r

kh
+ Ri

jhr
Cr

kl = 0 to reconstruct Rjlhk.

If we contract this with ηj , we obtain Ri

jhk
|lη

j = −Ci
r|kCr

l|h
− Ri

hr
Cr

kl. But,

Ri

jhk
|lη

j = Ri

hk
|l −Ri

lhk
, so that Ri

lhk
= Ri

hk
|l −Ci

r|kCr

l|h
+Ri

hr
Cr

kl. It results that

Rjlhk = Rjr|hCr
kl + Rjk|h|l + Cjh|r|mCr

klη
m − Cjr|kCr

l|h
+ Cjh|k|m|lη

m.

Plugging (3.6) and (3.8) into the last relation, we obtain (3.4). Moreover,
taking into account Proposition 3.1 v), the functions Ki(z, η), i = 1, 2, are 0−
homogeneous with respect to η.

The converse follows from (3.4) by contraction with ηhηl and using (3.9) and
Cr

klη
l = Cjh|k|m̄|lη

l = Cr

l|h
ηl = 0.

To prove (3.5) we compute (Rjlhk − Rjkhl)η
lηh in two ways. By iii),

(Rjlhk − Rjkhl)η
lηh = (K1 − K2) Lhkj − L (K1 + K2) |kηj + Cjr|lC

r
k|h̄ηlη̄h,

and by Bianchi identity T i

jk|h
+ Ajk

{

Ri

jhk
− Ci

jlR
l

hk

}

= 0, we obtain

(Rjlhk − Rjkhl)η
lηh = −

.

T jk . So, we have (3.5).

Proposition 3.2. Let (M,F ) be a (η − E) complex Finsler space, of complex

dimension ≥ 2. Then

i) KF depends on z alone, i.e. K1 + K2 := K(z);
ii) Cjh|k|m̄ηkη̄m − (K1 + K2) L(z, η)Cjh = 0;

iii) (K1 − K2) L(z, η)hkj+
.

T jk= 0,

iv) Cjr|lC
r
k|h̄

ηlη̄h = 0.

Proof: Since Rjlhk = Rjlhk, then Rjlhkη̄lη̄k = Rjlhkηlηk. If we contract (3.4) by

ηlηk, taking into account Theorem 3.1, ii) we deduce

Rjlhkηlηk = Cjh|k|m̄ηkη̄m + L(z, η) (K1 + K2) |hη̄j + (K1 + K2) η̄j η̄h. (3.10)
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On the other hand, Rjlhkη̄lη̄k = Rljkhη̄lη̄k and by (3.4), we have

Rljkhη̄lη̄k = (K1 + K2) (L(z, η)Cjh + ηjηk) + 2L(z, η) (K1 + K2) |jηh.

By conjugation,

Rljkhη̄lη̄k = (K1 + K2)
(

L(z, η)Cjh + ηjηk

)

+ 2L(z, η) (K1 + K2) |jηh. (3.11)

So, (3.10) and (3.11) lead to

Cjh|k|m̄ηkη̄m−

L(z, η)
(

(K1 + K2) Cjh − (K1 + K2) |hη̄j + (K1 + K2) |j η̄h

)

= 0. (3.12)

To prove i) we contract (3.12) with η̄j and we have L2(z, η) (K1 + K2) |h = 0.

Hence (K1 + K2) |h = 0, i.e. ∂(K1+K2)
∂η̄h = 0 By conjugation, ∂(K1+K2)

∂ηh = 0, and

so K1 + K2 does not depends on η. As a consequence of i), the relation (3.12)
brings to ii).

iii) By Jacobi identity
[

∂̇i, [δj , δk̄]
]

+
[

δj , [δk̄, ∂̇i]
]

+
[

δk̄, [∂̇i, δj ]
]

= 0, we have

−∂̇i(R
l
k̄j

η̄k) + ∂̇j(R
l
k̄i

η̄k) − T l
ij|k̄

η̄k = 0. Taking into account (3.1), we obtain

(K1 − K2) (δl
iηj−δl

jηi)+K1|i(δ
l
jL−ηjη

l)+K1|j(δ
l
iL−ηiη

l)−T l
ij|k̄η̄k = 0. (3.13)

Contracting above relation by glr̄η
j , it became (K1 − K2) L(z, η)hir+

.

T ir= 0,
i.e. iii). From (3.5), ii) and iii) we obtain iv).

Corollary 3.1. Let (M,F ) be a (η − E) complex Finsler space, of complex di-

mension ≥ 2. Then

i) Ric = (nK1 + K2)L(z, η) is real valued;

ii) Ricij = [(n − 1)K1 + K(z)] gij + (n − 1)
(

K1|j̄ηi + K1|iη̄j + LK1|i|j̄
)

.

Proof: Ric := gjkRjk = gjk
(

K1Lgkj + K2ηkη̄j

)

= K1Lδk
k + K2L

= (nK1 + K2)L.

We compute:

∂Ric
∂ηi = (nK1 + K2)ηi + (nK1|i + K2|i)L;

Ricij := ∂2Ric
∂ηi∂ηj = (nK1 + K2)gij̄ + (nK1|j̄ + K2|j̄)ηi

+(nK1|i + K2|i)η̄j + (nK1|i|j̄ + K2|i|j̄)L.

But, by Proposition 3.2 i) we have K2 = K(z)−K1. It results K2|j̄ = −K1|j̄ ,
K2|i = −K1|i and K2|i|j̄ = −K1|i|j̄ . All these relations lead to ii).
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We emphasize that in any (η − E) complex Finsler space the holomorphic
curvature depends on z only, KF (z) := KF (z, η) = 2K(z) and a (η −E) complex
Finsler space is (g.E.) if K1 = K2. It is natural for us to inquire when K1 = K2?
The answer came below.

Corollary 3.2. If (M,F ) is a Kähler (η−E) complex Finsler space, of complex

dimension ≥ 2, then it is (g.E.).

Proof: It follows immediately from Proposition 3.2 iii). Indeed, because (M,F )

is Kähler, we have T i
jkηj = 0 and so,

.

T jk= 0. We obtain
(K1 − K2) L(z, η)hkj = 0, and from here (n − 1) (K1 − K2) L(z, η) = 0. It

results K1 = K2.

From this and Theorem 2.1. (iv) it follows immediately the following

Corollary 3.3. If (M,F ) is a Kähler (η−E) complex Finsler space, of complex

dimension ≥ 2, with K(z) 6= 0, then F is purely Hermitian.

4 η−Einstein spaces with constant holomorphic curvature

In the sequel, our goal is to determine conditions under which a (η−E) complex
Finsler space has constant holomorphic curvature, i.e. when K(z) := K1(z, η) +
K2(z, η) is constant. At first we prove a Schur type theorem for (η−E) complex
Finsler space, namely:

Theorem 4.1. Let (M,F ) be a (η−E) connected complex Finsler space, weakly

Kähler, of complex dimension ≥ 2. Then it is a space with constant holomorphic

curvature.

Proof: By a direct computation, we obtain

Rjk|l = LhkjK1(z, η)|l + K(z)|lηkη̄j ; (4.1)

Rs

kh
= Cs

k|h|m
ηm + Rs

h
|k; where

Rs

h
:= Rhkgsk =

(

L(z, η)δs

h
− ηhηs

)

K1(z, η) + K(z)ηhηs;

Rs

h
|k = K1(z, η)

(

ηkδs

h
− gkhηs

)

+ K1(z, η)|k
(

Lδs

h
− ηhηs

)

+ K(z)gkhηs.

The contraction of the Bianchi identity Akl

{

Ri

jhk|l
− P i

jrkRr

lh

}

+Ri

jhm
Tm

kl = 0

with girη
jηlηh, leads to

Rrk|lη
l − Rrl|kηl + Crs|kRs

h
ηh − Crs|lR

s

kh
ηlηh + RrmTm

kl η
l = 0.

The last result and (4.1) give

K(z)gmrT
m
kl η

lηr + ηkK(z)|lη
l − L(z, η)K(z)|k = 0. (4.2)
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Since F is weakly Kähler, then from (4.2) we get ηkK(z)|lη
l − LK(z)|k = 0.

So, by conjugation we have

K(z)|h =
1

L(z, η)
ηhK(z)|lη

l. (4.3)

Because of K(z)|h|j = K(z)|j|h = 0, deriving (4.3) we easily deduce 0 =

K(z)|h|j =
K(z)|lη

l

L(z,η) hjh, which multiplied by gh̄j , we obtain K(z)|lη
l = 0. Plugging

it into (4.3), it follows that K(z)|h = 0, i.e. ∂K(z)
∂zh = 0. By conjugation, ∂K(z)

∂zh = 0

and so, K(z) is a constant on M .

By (4.2), we deduce the following

Proposition 4.1. If (M,F ) is a (η − E) complex Finsler space, of complex

dimension ≥ 2, with K(z) a nonzero constant, then F is weakly Kähler.

Proof: Since F is (η − E), with K(z) a nonzero constant, then K(z)|l = 0 and

(4.2) becomes gmrT
m
kl η

lηr = 0, i.e. F is weakly Kähler.

Particularly, if (M,F ) is a (η−E) complex Finsler space, with K(z) = 0, then
it is a flat complex Finsler space, i.e. KF = 0, and Cjh|k|m̄ηkη̄m = 0. Moreover,
using Theorem 3.1 we can prove

Theorem 4.2. Let (M,F ) be a complex Finsler space, of complex dimension

≥ 2. The following statements are equivalent:

i) (M,F ) is (η − E) with constant curvature KF = 2(K1 + K2) = 2c, c ∈ R;
ii) There exists two smooth functions Ki(z, η) : T ′M → R, i = 1, 2, such that

K1(z, η) is 0− homogeneous with respect to η, K1(z, η) + K2(z, η) = c and

Rjhk : = Rl

hk
glj = K1(gkjηh − gkhηj) (4.4)

+cgkhηj + K1|hLhkj + Cjh|k|m̄η̄m.

iii) There exists two smooth functions Ki(z, η) : T ′M → R, i = 1, 2, such

that K1(z, η) is 0− homogeneous with respect to η, K1(z, η) + K2(z, η) = c and

Rjlhk = K1

(

Ckjlηh − Ckhlηj + glhgkj − gljgkh

)

(4.5)

+c
(

Ckhlηj + gljgkh

)

+ K1|l

(

gkjηh − gkhηj

)

+K1|h

(

L(z, η)Ckjl − Cklηj + gkjηl − gljηk

)

+K1|h|lLhkj + Cjh|r|m̄Cr
klη̄

m + Cjh|k|m̄|lη̄
m − Cjr|kCr

l|h
.
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Proof: By Theorem 3.1, if (M,F ) is (η − E) then there exists the smoothly
functions Ki(z, η), i = 1, 2, which are 0− homogeneous with respect to η and
satisfy (3.3) and (3.4). Moreover, K(z) = K1(z, η) + K2(z, η) = c and plugging
it into (3.3) and (3.4) we obtain (4.4) and (4.5). So, the requirements i) ⇒ ii)
and i) ⇒ iii) are true.

Conversely, contracting (4.4) by ηh and (4.5) by ηhηl and taking into account
K1(z, η) + K2(z, η) = c and K1(z, η) is 0− homogeneous with respect to η, we
obtain i). So we have proved ii) ⇒ i) and iii) ⇒ i).

Proposition 4.2. Let (M,F ) be a (η − E) complex Finsler space, of complex

dimension ≥ 2, of constant holomorphic curvature 2c. Then,

i) Rl
jk

ηjηk = cL(z, η)ηl; Rjlhkηjηlηh = cL(z, η)ηk;

ii) (Rjlhk − Rjkhl)η
jηlηh = 0;

iii) Cjh|k|m̄ηkη̄m − cLCjh = 0.

Proof: It follows from Theorem 4.2.

We note that the above conditions i) and ii), with c = −2, are equivalent
to the conditions of Theorem 3.1.15, from [1], p. 146. Therefore, the following
Proposition gives a particular form of that Theorem.

Proposition 4.3. Let (M,F ) be a complex Finsler space, of complex dimension

≥ 2. If one of equivalent conditions from Theorem 4.2 holds for c = −2, then F

is the Kobayashi metric on M.

An example. We give an example which illustrate our theory. Let

L :=
|η|2 + ε(|z|2|η|2− < z, η > < z, η >)

(1 + ε|z|2)2
, (4.6)

be a complex Finsler metric, where |z|2 :=
∑n

k=1z
kzk, < z, η >:=

∑n
k=1z

kηk,

defined on the disk ∆n
r =

{

z ∈ Cn, |z| < r, r :=
√

1
|ε|

}

if ε < 0, on Cn if ε = 0

and on the complex projective space Pn(C) if ε > 0. In particular, for ε = −1 we
obtain the Bergman metric on the unit disk ∆n := ∆n

1 ; for ε = 0 the Euclidean

metric on Cn, and for ε = 1 the Fubini-Study metric on Pn(C). They are purely
Hermitian. Indeed, they are the well known metrics of the simply connected
homogeneous Kähler manifolds of constant holomorphic sectional curvature KF =
4ε.

Now, let us consider a Finsler metric which is conformal to (4.6), i.e. g′
ij

=

eρ(z)gij = eρ(z)

1+ε|z|2

(

δij − ε zizj

1+ε|z|2

)

. Clearly, g′
ij

is purely Hermitian and an imme-

diate computation shows that R′
jk

= eρ(z)
(

εtkj −
∂2ρ

∂zk∂zh ηjη
h
)

.

We suppose that ρ(z) = α log(1 + ε|z|2), ε, α ∈ R∗. Therefore,



276 Nicoleta Aldea

g′
ij

= (1 + ε|z|2)α−1
(

δij − ε zizj

1+ε|z|2

)

, and it is not Kähler. Furthermore,

we have R′
jk

= ε
(1+ε|z|2)α

(

Lg′
kj

− (1 − α)η′
kη′

j

)

. This last relation shows that

R′
jk

= K1Lg′
kj

+ K2η
′
kη′

j , where K1 = ε
(1+ε|z|2)α and K2 = (1−α)ε

(1+ε|z|2)α . So the

metric g′
ij

is (η−E) with holomorphic curvature K′
F ′ = 2(K1 +K2) = 2ε(2−α)

(1+ε|z|2)α .

Moreover, if ε < 0 and α < 2, or ε > 0 and α > 2, then K′
F ′ < 0. If ε < 0 and

α ≥ 2, or ε > 0 and α ≤ 2, then K′
F ′ ≥ 0.

These are examples of (η − E) purely Hermitian complex Finsler spaces that
are not Kähler nor (g.E.).
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