On the Ramsey numbers for paths and generalized Jahangir graphs $J_{s, m}$

by
Kashif Ali, E. T. Baskoro, I. Tomescu

Abstract

For given graphs G and H, the Ramsey number $R(G, H)$ is the least natural number n such that for every graph F of order n the following condition holds: either F contains G or the complement of F contains H. In this paper, we determine the Ramsey number of paths versus generalized Jahangir graphs. We also derive the Ramsey number $R\left(t P_{n}, H\right)$, where H is a generalized Jahangir graph $J_{s, m}$ where $s \geq 2$ is even, $m \geq 3$ and $t \geq 1$ is any integer.

Key Words: Ramsey number, path, generalized Jahangir graph. 2000 Mathematics Subject Classification: Primary 05C55, Secondary 05D10.

1 Introduction

The study of Ramsey numbers for (general) graphs have received tremendous efforts in the last two decades, see few related papers [1]-[4], [6, 8] and a nice survey paper [7].

Let $G(V, E)$ be a graph with vertex-set $V(G)$ and edge-set $E(G)$. If $x y \in E(G)$ then x is called adjacent to y, and y is a neighbor of x and vice versa. For any $A \subseteq V(G)$, we use $N_{A}(x)$ to denote the set of all neighbors of x in A, namely $N_{A}(x)=\{y \in A \mid x y \in E(G)\}$. Let P_{n} be a path with n vertices, C_{n} be a cycle with n vertices, W_{k} be a wheel of $k+1$ vertices, i.e., a graph consisting of a cycle C_{k} with one additional vertex adjacent to all vertices of C_{k}. For $s, m \geq 2$, the generalized Jahangir graph $J_{s, m}$ is a graph on $s m+1$ vertices i.e., a graph consisting of a cycle $C_{s m}$ with one additional vertex which is adjacent to m vertices of $C_{s m}$ at distance s to each other on $C_{s m}$.

Recently, Surahmat and Tomescu [9] studied the Ramsey number of a combination of paths P_{n} versus $J_{2, m}$, and obtained the following result.

Theorem A. [9].
$R\left(P_{n}, J_{2, m}\right)= \begin{cases}6 & \text { if }(n, m)=(4,2), \\ n+1 & \text { if } m=2 \text { and } n \geq 5, \\ n+m-1 & \text { if } m \geq 3 \text { and } n \geq(4 m-1)(m-1)+1 .\end{cases}$
For the Ramsey number of P_{n} with respect to wheel W_{m}, Surahmat and Baskoro [1] showed the following result.

Theorem B. [1].

$$
R\left(P_{n}, W_{m}\right)=\left\{\begin{array}{cc}
2 n-1 & \text { if } m \geq 4 \text { is even and } n \geq \frac{m}{2}(m-2) \\
3 n-2 & \text { if } m \geq 5 \text { is odd and } n \geq \frac{m-1}{2}(m-3)
\end{array}\right.
$$

In this paper, we determine the Ramsey numbers involving paths P_{n} and generalized Jahangir graphs $J_{s, m}$. We also find the Ramsey number $R\left(t P_{n}, H\right)$, where H is a generalized Jahangir graph $J_{s, m}$ where $s \geq 2$ is even, $m \geq 3$. In the following section we prove our main results.

2 Main Results

Theorem 1. For even $s \geq 2$ and $m \geq 3, R\left(P_{n}, J_{s, m}\right)=n+\frac{s m}{2}-1$, where $n \geq(2 s m-1)\left(\frac{s m}{2}-1\right)+1$.

Proof: Let $G=K_{n-1} \bigcup K_{\frac{s m}{2}-1}$. We have $R\left(P_{n}, J_{s, m}\right) \geq n+\frac{s m}{2}-1$ since $P_{n} \nsubseteq G$ and $J_{s, m} \nsubseteq \bar{G}$. It remains to prove that $R\left(P_{n}, J_{s, m}\right) \leq n+\frac{s m}{2}-1$. Let F be a graph of order $n+\frac{s m}{2}-1$ and containing no path P_{n}, we will show that $\bar{F} \supseteq J_{s, m}$. Let $L_{1}=l_{1,1}, l_{1,2}, \ldots, l_{1, k}$ be the longest path in F and so $k \leq n-1$. If $k=1$ we have $\bar{F} \cong K_{n+\frac{s m}{2}-1}$, which contains $J_{s, m}$. Suppose that $k \geq 2$ and $J_{s, m} \nsubseteq \bar{F}$. We have $z l_{1,1}, z l_{1, k} \notin E(F)$ for each $z \in V_{1}=V(F) \backslash V\left(L_{1}\right)$. We distinguish two cases:

Case 1. $k \leq 2 s m-1$. Let $L_{2}=l_{1,2}, l_{2,2}, \ldots, l_{2, t}$ be a longest path in $F\left[V_{1}\right]$. It is clear that $1 \leq t \leq k$. If $t=1$ then the vertices in V_{1} induce a subgraph having only isolated vertices. In this case we shall add an edge $u v$ to F, where $u, v \in V_{1}$ and denote $L_{2}=u, v$. In this way we can define inductively the system of paths $L_{1}, L_{2}, \ldots, L_{\frac{s m}{2}-1}$ such that L_{i} is a longest path in $F\left[V_{i-1}\right]$, where $V_{i-1}=V(F) \backslash \bigcup_{j=1}^{i-1} V\left(L_{j}\right)$ or an edge added to F as above. By denoting the set of remaining vertices by B, we have $|B| \geq n+\frac{s m}{2}-1-\left(\frac{s m}{2}-1\right)(2 s m-1) \geq \frac{s m}{2} \geq 3$ since $s \geq 2$ and $m \geq 3$. Let $x, y, z \in B$ be three distinct vertices which are not in any L_{j} for $j=1,2, \ldots, \frac{s m}{2}-1$. Clearly, x, y, z are not adjacent to all endpoints of these L_{j}. If F_{1} denotes the graph F or the graph F plus some edges added
in the process of defining the system of paths, it follows that the endpoints of these L_{j} induce in $\overline{F_{1}}$ a complete graph $K_{s m-2}$ minus a matching having at most $\frac{s m}{2}-1$ edges if some of the endpoints of same L_{j} are adjacent in F_{1}. Since x, y, z are not adjacent to all endpoints of these L_{j} it is easy to see that vertices x, y, z and endpoints of the paths L_{j} form a $J_{s, m} \subseteq \overline{F_{1}} \subseteq \bar{F}$.

Case 2. $k>2 s m-1$. In this case we define $\frac{s m}{2}-1$ quadruple of consecutive vertices of L_{1} as follows:

$$
\begin{aligned}
C_{1} & =\left\{l_{1,2}, l_{1,3}, l_{1,4}, l_{1,5}\right\} \\
C_{2} & =\left\{l_{1,6}, l_{1,7}, l_{1,8}, l_{1,9}\right\} \\
& \vdots \\
C_{\frac{s m}{2}-1} & =\left\{l_{1,2 s m-6}, l_{1,2 s m-5}, l_{1,2 s m-4}, l_{1,2 s m-3}\right\} .
\end{aligned}
$$

Let $Y=V(F) \backslash V\left(L_{1}\right)$. We have $|Y|=n+\frac{s m}{2}-1-k \geq \frac{s m}{2}$ since $k \leq n-1$. Hence we can consider $\frac{s m}{2}$ distinct elements in $Y: y_{1}, y_{2}, \ldots, y_{\frac{s m}{2}}$ and $\frac{s m}{2}-1$ pairs of elements $Y_{i}=\left\{y_{i}, y_{i+1}\right\}$ for $i=1, \ldots, \frac{s m}{2}-1$. By the maximality of L_{1} it follows that for each $i=1, \ldots, \frac{s m}{2}-1$ at least one vertex in C_{i} is not adjacent to any vertex in Y_{i}. Denote by c_{i} the vertex in C_{i} which is not adjacent to any vertex in Y_{i} for $i=1, \ldots, \frac{s m}{2}-1$. We have $\bar{F} \supseteq J_{s, m}$, where $J_{s, m}$ consists of the cycle $C_{s m}$ having $V\left(C_{s m}\right)=\left\{y_{1}, c_{1}, y_{2}, c_{2}, \ldots, y_{\frac{s m}{2}-1}, c_{\frac{s m}{2}-1}, y_{\frac{s m}{2}}, l_{1, k}\right\}$ and the hub $l_{1,1}$.

Theorem 2. For odd $s \geq 3$,
$R\left(P_{n}, J_{s, m}\right)= \begin{cases}2 n-1 & \text { if } n \geq \frac{s m}{2}(s m-2), \text { and } m \geq 2 \text { is even }, \\ 2 n & \text { if } n \geq \frac{s m-1}{2}(s m-1), \text { and } m \geq 3 \text { is odd } .\end{cases}$
Proof: To show the lower bound, consider graphs $2 K_{n-1}$ and $K_{1} \cup 2 K_{n-1}$ for the first and second cases of Theorem respectively.

For the reverse inequality, firstly we will prove the result for the first case of Theorem. Let F be a graph of order $2 n-1$ containing no path P_{n} where $n \geq \frac{s m}{2}(s m-2)$. We will show that $\bar{F} \supseteq J_{s, m}$. Since F does not contain P_{n}, by Theorem B, \bar{F} will contain a wheel $W_{s m}$, and so clearly $\bar{F} \supseteq J_{s, m}$.

For the second case, to prove $R\left(P_{n}, J_{s, m}\right) \leq 2 n$ let F be a graph on $2 n$ vertices containing no P_{n}. Let $L_{1}=\left(l_{11}, l_{12}, \cdots, l_{1 k-1}, l_{1 k}\right)$ be a longest path in F and so $k \leq n-1$. If $k=1$ we have $\bar{F} \simeq K_{2 n}$, which contains $J_{s, m}$. Suppose that $k \geq 2$ and \bar{F} does not contain $J_{s, m}$. Obviously, $z l_{11}, z l_{1 k}$ are not in $E(F)$ for each $z \in V_{1}$, where $V_{1}=V(F) \backslash V\left(L_{1}\right)$. Let $L_{2}=\left(l_{21}, l_{22}, \cdots, l_{2 t-1}, l_{2 t}\right)$ be a longest path in $F\left[V_{1}\right]$. It is clear that $1 \leq t \leq k$. Let $V_{2}=V(F) \backslash\left(V\left(L_{1}\right) \cup V\left(L_{2}\right)\right)$. We distinguish three cases.

Case 1:k<sm-1. If $t=1$ then the vertices in V_{1} induce a subgraph having only isolated vertices. In this case we shall add an edge $u v$ to F, where $u, v \in V_{1}$ and denote $L_{2}=u, v$. In this way we can define inductively the system of paths $L_{1}, L_{2}, \cdots, L_{\frac{s m-1}{2}}$ such that L_{i} is a longest path in $F\left[V_{i-1}\right]$, where $V_{i-1}=V(F) \backslash \bigcup_{j=1}^{i-1} V\left(L_{j}\right)$ or an edge added to F as above. If F_{1} denotes the graph F or the graph F plus some edges added in the process of defining the system of paths, it follows that endpoints of these L_{j}, where $j=1,2, \cdots, \frac{s m-1}{2}$ induce in $\overline{F_{1}}$ a complete graph $K_{s m-1}$ minus a matching having at most $\frac{s m-1}{2}$ edges if some of the endpoints of same L_{j} are adjacent in F_{1}. Since $s, m \geq 3$ there exist at least two vertices x, y which are not adjacent to all endpoints of these L_{j}. Thus, it is easy to see that vertices x, y together with all endpoints of paths L_{j} form a $J_{s, m} \subseteq \overline{F_{1}} \subseteq \bar{F}$.

Case 2: $k \geq s m-1$ and $t \geq s m-1$. For $i=1,2, \cdots, \frac{s m-3}{2}$ define the couples A_{i} in path L_{1} as follows:

$$
A_{i}= \begin{cases}\left\{l_{1 i+1}, l_{1 i+2}\right\} & \text { for } i \text { odd } \\ \left\{l_{1 k-i}, l_{1 k-i+1}\right\} & \text { for } i \text { even } .\end{cases}
$$

Similarly, define couples B_{i} in path L_{2} as follows:

$$
B_{i}= \begin{cases}\left\{l_{2 i+1}, l_{2 i+2}\right\} & \text { for } i \text { odd } \\ \left\{l_{2 t-i}, l_{2 t-i+1}\right\} & \text { for } i \text { even } .\end{cases}
$$

Since $t \leq k \leq n-1$ and $|F|=2 n$, there exist at least two vertices x, y which are not in $L_{1} \cup L_{2}$. Since L_{1} is a longest path in F, there exists one vertex of A_{i} for each i, say a_{i} which is not adjacent with x. Similarly, since L_{2} is a longest path in $V(F) \backslash V\left(L_{1}\right)$ there must be one vertex, say b_{i}, in couple B_{i} which is not adjacent to x for each i. By maximality of path $L_{1}, b_{i} a_{i}$ and $a_{i} b_{i+1}$ are not in $E(F)$ for each i. Thus $\left\{l_{11}, b_{1}, a_{1}, b_{2}, a_{2}, \cdots, b_{\frac{s m-3}{2}}, a_{\frac{s m-3}{2}}, l_{2 t}, y\right\}$ will form a cycle $C_{s m}$ in \bar{F} and since x is adjacent with at least $s m-1$ vertices of cycle $C_{s m}$ in \bar{F}, we have a subgraph in \bar{F} which contain $J_{s, m}$, so $J_{s, m} \subseteq \bar{F}$.

Case 3: $k \geq s m-1$ and $t<s m-1$. Since $k \leq n-1\left(F\right.$ has no $\left.P_{n}\right)$, V_{1} will have at least $n+1$ vertices. Then, we can define the same process as in Case 1, since $n+1-(s m-2) \frac{s m-1}{2} \geq \frac{s m+1}{2} \geq 5$.

In the following theorem we derive Ramsey number $R\left(t P_{n}, J_{s, m}\right)$ for any integer $t \geq 1$, even s and $m \geq 3$, where n is large enough with respect to s and m as follows.

Theorem 3. $R\left(t P_{n}, J_{s, m}\right)=t n+\frac{s m}{2}-1$ if $n \geq\left(\frac{s m}{2}-1\right)(2 s m-1)+1$, $s \geq 2$ is even, $m \geq 3$ and t is any positive integer.

Proof: Since graph $G=K_{\frac{s m}{2}-1} \cup K_{t n-1}$ contains no $t P_{n}$ and \bar{G} contains no $J_{s, m}$, then $R\left(t P_{n}, J_{s, m}\right) \geq t n+\frac{s m}{2}-1$. For proving the upper bound, let F be
a graph of order $t n+\frac{s m}{2}-1$ such that \bar{F} contains no $J_{s, m}$. We will show that F contains $t P_{n}$. We use induction on t. For $t=1$ this is true from Theorem 1. Now, let assume that the theorem is true for all $t^{\prime} \leq t-1$. Take any graph F of $t n+\frac{s m}{2}-1$ vertices such that its complement contains no $J_{s, m}$. By the induction hypothesis, F must contain $t-1$ disjoint copies of P_{n}. Remove these copies from F, then by Theorem 1 the subgraph $F[H]$ on remaining vertices will induce another P_{n} in F since $\bar{F} \nsupseteq J_{s, m}$, so $\overline{F[H]} \nsupseteq J_{s, m}$. Therefore $F \supseteq t P_{n}$. The proof is complete.

References

[1] E. T. Baskoro and Surahmat, The Ramsey numbers of path with respect to wheels, Discrete Math., 294 (2005), 275-277.
[2] S. A. Burr, P. Erdös and J. H. Spencer, Ramsey theorem for multiple copies of graphs, Trans. Amer. Math. Soc., 209 (1975), 87-89.
[3] S. A. Burr, On Ramsey numbers for large disjoint unions of graphs, Discrete Math., 70 (1988), 277-293.
[4] Y. J. Chen, Y. Q. Zhang and K.M. Zhang, The Ramsey numbers of stars versus wheels, European J. Combin., 25 (2004), 1067-1075.
[5] V. Chvátal and F. Harary, Generalized Ramsey theory for graphs, III: small off-diagonal numbers, Pac. J. Math., 41 (1972), 335-345.
[6] Hasmawati, E. T. Baskoro and H. Assiyatun, Star-wheel Ramsey numbers, J. Combin. Math. Combin. Comput., 55 (2005), 123-128.
[7] S. P. Radziszowski, Small Ramsey numbers, Electron. J. Combin., July (2004) \#DS1.9, http://www.combinatorics.org/
[8] Surahmat and E. T. Baskoro, On the Ramsey number of a path or a star versus W_{4} or W_{5}, Proceedings of the 12-th Australasian Workshop on Combinatorial Algorithms, Bandung, Indonesia, July 14-17 (2001), 165-170.
[9] Surahmat and I. Tomescu, On path-Jahangir Ramsey numbers, Preprint (2006).

Received: 1.05.2008.

COMSATS Institute of Information Technology,
Lahore, Pakistan.
E-mail: akashifali@gmail.com

Combinatorial Mathematics Research Division,
Institut Teknologi Bandung, Indonesia.
E-mail: ebaskoro@math.itb.ac.id

Faculty of Mathematics and Computer Sciences, University of Bucharest, Str. Academiei, 14, 010014 Bucharest, Romania.
E-mail: ioan@fmi.unibuc.ro

