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Abstract

For given graphs G and H, the Ramsey number R(G, H) is the least
natural number n such that for every graph F of order n the following
condition holds: either F contains G or the complement of F contains H.

In this paper, we determine the Ramsey number of paths versus generalized
Jahangir graphs. We also derive the Ramsey number R(tPn, H), where H

is a generalized Jahangir graph Js,m where s ≥ 2 is even, m ≥ 3 and t ≥ 1
is any integer.
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1 Introduction

The study of Ramsey numbers for (general) graphs have received tremendous
efforts in the last two decades, see few related papers [1]-[4], [6, 8] and a nice
survey paper [7].

Let G(V,E) be a graph with vertex-set V (G) and edge-set E(G). If xy ∈ E(G)
then x is called adjacent to y, and y is a neighbor of x and vice versa. For any
A ⊆ V (G), we use NA(x) to denote the set of all neighbors of x in A, namely
NA(x) = {y ∈ A|xy ∈ E(G)}. Let Pn be a path with n vertices, Cn be a cycle
with n vertices, Wk be a wheel of k +1 vertices, i.e., a graph consisting of a cycle
Ck with one additional vertex adjacent to all vertices of Ck. For s,m ≥ 2, the
generalized Jahangir graph Js,m is a graph on sm + 1 vertices i.e., a graph con-
sisting of a cycle Csm with one additional vertex which is adjacent to m vertices
of Csm at distance s to each other on Csm.
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Recently, Surahmat and Tomescu [9] studied the Ramsey number of a combina-
tion of paths Pn versus J2,m, and obtained the following result.

Theorem A. [9].

R(Pn, J2,m) =







6 if (n,m) = (4, 2),
n + 1 if m = 2 and n ≥ 5,
n + m − 1 if m ≥ 3 and n ≥ (4m − 1)(m − 1) + 1.

For the Ramsey number of Pn with respect to wheel Wm, Surahmat and Baskoro
[1] showed the following result.

Theorem B. [1].

R(Pn,Wm) =







2n − 1 if m ≥ 4 is even and n ≥ m
2

(m − 2),

3n − 2 if m ≥ 5 is odd and n ≥ m−1

2
(m − 3).

In this paper, we determine the Ramsey numbers involving paths Pn and genera-
lized Jahangir graphs Js,m. We also find the Ramsey number R(tPn,H), where H
is a generalized Jahangir graph Js,m where s ≥ 2 is even, m ≥ 3. In the following
section we prove our main results.

2 Main Results

Theorem 1. For even s ≥ 2 and m ≥ 3, R(Pn, Js,m) = n + sm
2

− 1, where

n ≥ (2sm − 1)( sm
2

− 1) + 1.

Proof: Let G = Kn−1

⋃

K sm

2
−1. We have R(Pn, Js,m) ≥ n+ sm

2
−1 since Pn 6⊆ G

and Js,m 6⊆ G. It remains to prove that R(Pn, Js,m) ≤ n + sm
2

− 1. Let F be a

graph of order n+ sm
2
−1 and containing no path Pn, we will show that F ⊇ Js,m.

Let L1 = l1,1, l1,2, . . . , l1,k be the longest path in F and so k ≤ n− 1. If k = 1 we
have F ∼= Kn+ sm

2
−1, which contains Js,m. Suppose that k ≥ 2 and Js,m 6⊆ F . We

have zl1,1, zl1,k /∈ E(F ) for each z ∈ V1 = V (F )\V (L1). We distinguish two cases:

Case 1. k ≤ 2sm − 1. Let L2 = l1,2, l2,2, . . . , l2,t be a longest path in F [V1].
It is clear that 1 ≤ t ≤ k. If t = 1 then the vertices in V1 induce a subgraph
having only isolated vertices. In this case we shall add an edge uv to F , where
u, v ∈ V1 and denote L2 = u, v. In this way we can define inductively the sys-
tem of paths L1, L2, . . . , L sm

2
−1 such that Li is a longest path in F [Vi−1], where

Vi−1 = V (F )\
⋃i−1

j=1
V (Lj) or an edge added to F as above. By denoting the set of

remaining vertices by B, we have |B| ≥ n+ sm
2
−1− ( sm

2
−1)(2sm−1) ≥ sm

2
≥ 3

since s ≥ 2 and m ≥ 3. Let x, y, z ∈ B be three distinct vertices which are not in
any Lj for j = 1, 2, . . . , sm

2
− 1. Clearly, x, y, z are not adjacent to all endpoints

of these Lj . If F1 denotes the graph F or the graph F plus some edges added
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in the process of defining the system of paths, it follows that the endpoints of
these Lj induce in F1 a complete graph Ksm−2 minus a matching having at most
sm
2

− 1 edges if some of the endpoints of same Lj are adjacent in F1. Since x, y, z
are not adjacent to all endpoints of these Lj it is easy to see that vertices x, y, z
and endpoints of the paths Lj form a Js,m ⊆ F1 ⊆ F .

Case 2. k > 2sm − 1. In this case we define sm
2

− 1 quadruple of consecutive
vertices of L1 as follows:

C1 = {l1,2, l1,3, l1,4, l1,5},
C2 = {l1,6, l1,7, l1,8, l1,9},

...
C sm

2
−1 = {l1,2sm−6, l1,2sm−5, l1,2sm−4, l1,2sm−3}.

Let Y = V (F ) \ V (L1). We have |Y | = n + sm
2

− 1 − k ≥ sm
2

since k ≤ n − 1.
Hence we can consider sm

2
distinct elements in Y : y1, y2, . . . , y sm

2
and sm

2
− 1

pairs of elements Yi = {yi, yi+1} for i = 1, . . . , sm
2

− 1. By the maximality of L1

it follows that for each i = 1, . . . , sm
2

− 1 at least one vertex in Ci is not adjacent
to any vertex in Yi. Denote by ci the vertex in Ci which is not adjacent to any
vertex in Yi for i = 1, . . . , sm

2
− 1. We have F ⊇ Js,m, where Js,m consists of the

cycle Csm having V (Csm) = {y1, c1, y2, c2, . . . , y sm

2
−1, c sm

2
−1, y sm

2
, l1,k} and the

hub l1,1.

Theorem 2. For odd s ≥ 3,

R(Pn, Js,m) =







2n − 1 if n ≥ sm
2

(sm − 2), and m ≥ 2 is even,

2n if n ≥ sm−1

2
(sm − 1), and m ≥ 3 is odd.

Proof: To show the lower bound, consider graphs 2Kn−1 and K1 ∪ 2Kn−1 for
the first and second cases of Theorem respectively.

For the reverse inequality, firstly we will prove the result for the first case of
Theorem. Let F be a graph of order 2n − 1 containing no path Pn where
n ≥ sm

2
(sm − 2). We will show that F ⊇ Js,m. Since F does not contain

Pn, by Theorem B, F will contain a wheel Wsm, and so clearly F ⊇ Js,m.

For the second case, to prove R(Pn, Js,m) ≤ 2n let F be a graph on 2n vertices
containing no Pn. Let L1 = (l11, l12, · · · , l1k−1, l1k) be a longest path in F and
so k ≤ n − 1. If k = 1 we have F ≃ K2n, which contains Js,m. Suppose that
k ≥ 2 and F does not contain Js,m. Obviously, zl11, zl1k are not in E(F ) for each
z ∈ V1, where V1 = V (F ) \ V (L1). Let L2 = (l21, l22, · · · , l2t−1, l2t) be a longest
path in F [V1]. It is clear that 1 ≤ t ≤ k. Let V2 = V (F ) \ (V (L1) ∪ V (L2)). We
distinguish three cases.
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Case 1 : k < sm − 1. If t = 1 then the vertices in V1 induce a subgraph hav-
ing only isolated vertices. In this case we shall add an edge uv to F , where
u, v ∈ V1 and denote L2 = u, v. In this way we can define inductively the sys-
tem of paths L1, L2, · · · , L sm−1

2

such that Li is a longest path in F [Vi−1], where

Vi−1 = V (F ) \
⋃i−1

j=1
V (Lj) or an edge added to F as above. If F1 denotes the

graph F or the graph F plus some edges added in the process of defining the
system of paths, it follows that endpoints of these Lj , where j = 1, 2, · · · , sm−1

2

induce in F1 a complete graph Ksm−1 minus a matching having at most sm−1

2

edges if some of the endpoints of same Lj are adjacent in F1. Since s,m ≥ 3
there exist at least two vertices x, y which are not adjacent to all endpoints of
these Lj . Thus, it is easy to see that vertices x, y together with all endpoints of
paths Lj form a Js,m ⊆ F1 ⊆ F .

Case 2: k ≥ sm − 1 and t ≥ sm − 1. For i = 1, 2, · · · , sm−3

2
define the couples

Ai in path L1 as follows:

Ai =

{

{l1i+1, l1i+2} for i odd,

{l1k−i, l1k−i+1} for i even.

Similarly, define couples Bi in path L2 as follows:

Bi =

{

{l2i+1, l2i+2} for i odd,

{l2t−i, l2t−i+1} for i even.

Since t ≤ k ≤ n − 1 and |F | = 2n, there exist at least two vertices x, y which
are not in L1 ∪L2. Since L1 is a longest path in F , there exists one vertex of Ai

for each i, say ai which is not adjacent with x. Similarly, since L2 is a longest
path in V (F ) \ V (L1) there must be one vertex, say bi, in couple Bi which is
not adjacent to x for each i. By maximality of path L1, biai and aibi+1 are not
in E(F ) for each i. Thus {l11, b1, a1, b2, a2, · · · , b sm−3

2

, a sm−3

2

, l2t, y} will form a

cycle Csm in F and since x is adjacent with at least sm− 1 vertices of cycle Csm

in F , we have a subgraph in F which contain Js,m , so Js,m ⊆ F .

Case 3: k ≥ sm − 1 and t < sm − 1. Since k ≤ n − 1 ( F has no Pn), V1 will
have at least n + 1 vertices. Then, we can define the same process as in Case 1,
since n + 1 − (sm − 2) sm−1

2
≥ sm+1

2
≥ 5.

In the following theorem we derive Ramsey number R(tPn, Js,m) for any integer
t ≥ 1, even s and m ≥ 3, where n is large enough with respect to s and m as
follows.

Theorem 3. R(tPn, Js,m) = tn + sm
2

− 1 if n ≥ ( sm
2

− 1)(2sm − 1) + 1,
s ≥ 2 is even, m ≥ 3 and t is any positive integer.

Proof: Since graph G = K sm

2
−1 ∪ Ktn−1 contains no tPn and G contains no

Js,m, then R(tPn, Js,m) ≥ tn + sm
2

− 1. For proving the upper bound, let F be
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a graph of order tn + sm
2

− 1 such that F contains no Js,m. We will show that
F contains tPn. We use induction on t. For t = 1 this is true from Theorem
1. Now, let assume that the theorem is true for all t

′

≤ t − 1. Take any graph
F of tn + sm

2
− 1 vertices such that its complement contains no Js,m. By the

induction hypothesis, F must contain t − 1 disjoint copies of Pn. Remove these
copies from F , then by Theorem 1 the subgraph F [H] on remaining vertices will
induce another Pn in F since F 6⊇ Js,m, so F [H] 6⊇ Js,m. Therefore F ⊇ tPn.
The proof is complete.
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