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Abstract

The purpose of this paper is to present a differential equation with
”maxima”. Existence, uniqueness, inequalities of Čaplygin type and data
dependence (monotony, continuity) results for the solution of the Cauchy
problem of this equation are obtained using weakly Picard operators theory.
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1 Introduction

Differential equations with maximum arise naturally when solving practical pro-
blems, in particular, in those which appear in the study of systems with automatic
regulation. The existence and uniqueness of solutions of equation with maxima is
considered in [1], [3]-[5], [8], [13]. The asymptotic stability of the solution of this
equations and other problems concerning equations with maxima are investigated
in [2], [6], [7], [9], [14].

The purpose of this paper is to study the following Cauchy problem

x′(t) = f(t, x(t), max
a≤ξ≤t

x(ξ)), t ∈ [a, b] (1)

x(a) = α (2)

where

(C1) α ∈ R and f ∈ C([a, b] × R
2) are given;

(C2) there exists Lf > 0 such that

|f(t, u1, u2) − f(t, v1, v2)| ≤ Lf max(|u1 − v1| , |u2 − v2|)

for all t ∈ [a, b] and ui, vi ∈ R, i = 1, 2.
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In the condition (C1) the problem (1)–(2), x ∈ C1[a, b] is equivalent with the
fixed point equation

x(t) = α +

∫ t

a

f(s, x(s), max
a≤ξ≤s

x(ξ))ds, t ∈ [a, b], (3)

x ∈ C[a, b], and the equation (1) is equivalent with

x(t) = x(a) +

∫ t

a

f(s, x(s), max
a≤ξ≤s

x(ξ))ds, t ∈ [a, b], (4)

x ∈ C[a, b].
Let us consider the following operators:

Bf , Ef : C[a, b] → C[a, b]

defined by
Bf (x)(t) := second part of (3)

and
Ef (x)(t) := second part of (4).

For α ∈ R, we consider Xα := {x ∈ C[a, b]| x(a) = α}.
We remark that

C[a, b] = ∪
α∈R

Xα

is a partition of C[a, b].
We have

Lemma 1.1. If (C1) is satisfied, then

(a) Bf (C[a, b]) ⊂ Xα and Ef (Xα) ⊂ Xα, ∀α ∈ R;

(b) Bf |Xα
= Ef |Xα

, ∀α ∈ R.

In this paper we shall prove that if (C1) and (C2) are satisfied and if Lf is small
enough, then the operator Ef is weakly Picard operator ([11]), in (C[a, b], ‖·‖)
where ‖x‖ := max

a≤t≤b
x(t), and we study the equation (1) in the terms of the weakly

Picard operator theory.

2 Weakly Picard operators

Let (X, d) be a metric space and A : X → X an operator. We shall use the
following notations:

FA := {x ∈ X | A(x) = x} - the fixed point set of A;
I(A) := {Y ⊂ X | A(Y ) ⊂ Y, Y 6= ∅} - the family of the nonempty invariant

subsets of A;
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By H we denote the Pompeiu-Housdorff functional, H : P (X) × P (X) →
R+ ∪ {+∞} defined by:

H(Y,Z) := max{sup
y∈Y

inf
z∈Z

d(y, z), sup
z∈Z

inf
y∈Y

d(y, z)}

Definition 2.1. ([11], [12]) Let (X, d) be a metric space. An operator A : X → X

is a Picard operator (PO) if there exists x∗ ∈ X such that:

(i) FA = {x∗};

(ii) the sequence (An(x0))n∈N converges to x∗ for all x0 ∈ X.

Definition 2.2. ([11], [12]) Let (X, d) be a metric space. An operator A : X → X

is a weakly Picard operator (WPO) if the sequence (An(x))n∈N converges for all
x ∈ X, and its limit (which may depend on x) is a fixed point of A.

Definition 2.3. ([11], [12]) If A is weakly Picard operator then we consider the
operator A∞ defined by

A∞ : X → X, A∞(x) := lim
n→∞

An(x).

Remark 2.4. ([11], [12]) It is clear that A∞(X) = FA.

Definition 2.5. ([11], [12]) Let A be a weakly Picard operator and c > 0. The
operator A is c -weakly Picard operator if

d(x,A∞(x)) ≤ cd(x,A(x)), ∀x ∈ X.

For some examples of WPOs see [10], [11], [12].

3 Cauchy problem

Relative to problem (1)–(2) we have

Theorem 3.1. We suppose that:

(a) the condition (C1) and (C2) are satisfied;

(C3) Lf (b − a) < 1.

Then the problem (1)–(2) has, in C[a, b], a unique solution and this solution
is the uniform limit of the successive approximations.

Proof: The problem (1)–(2) is equivalent with the fixed point equation

Bf (x) = x, x ∈ C[a, b].
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On the other hand we have that

|Bf (x)(t)−Bf (y)(t)|≤Lf

∫ t

a

max

(
|x(s)−y(s)| ,

∣∣∣∣∣ max
a≤ξ≤s

x(ξ)−max y(ξ)
a≤ξ≤s

∣∣∣∣∣

)
ds.

But

max
a≤s≤b

∣∣∣∣∣ max
a≤ξ≤s

x(ξ) − max y(ξ)
a≤ξ≤s

∣∣∣∣∣ ≤ max
a≤s≤b

|x(s) − y(s)| .

So,

‖Bf (x) − Bf (y)‖ ≤ Lf (b − a) ‖x − y‖ , ∀x, y ∈ C[a, b],

i.e., Bf is a contraction w.r.t. Chebyshev norm on C[a, b]. The proof follows
from the contraction principle.

Remark 3.2. In the conditions of Theorem 3.1, the operator Bf is PO. But

Bf |Xα
= Ef |Xα

, ∀α ∈ R.

Hence, the operator Ef is WPO and FEf
∩ Xα = {x∗

α},∀α ∈ R, where x∗
α is the

unique solution of the problem (1)–(2).

4 Inequalities of Čaplygin type

We have

Theorem 4.1. We suppose that:

(a) the conditions (C1), (C2) and (C3) are satisfied;

(b) f(x, ·, ·) : R
2 → R

2 is increasing, i.e., u1 ≤ v1, u2 ≤ v2 ⇒ f(x, u1, u2) ≤
f(x, v1, v2).

Let x be a solution of equation (1) and y a solution of the inequality

y′(t) ≤ f(t, y(t), max
a≤ξ≤t

y(ξ)), t ∈ [a, b].

Then

y(a) ≤ x(a) implies that y ≤ x.

Proof: In the terms of the operator Ef , we have

x = Ef (x) and y ≤ Ef (y),

and x(a) ≤ y(a).
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From the conditions (C1), (C2) and (C3) we have that the operator Ef is
WPO. From the condition (b), E∞

f is increasing ([11]). If α ∈ R, then we denote
by α̃ the following function

α̃ : [a, b] → R, α̃(t) = α, ∀t ∈ [a, b].

We have

y ≤ Ef (y) ≤ . . . ≤ E∞
f (y) = E∞

f (ỹ(a)) ≤ E∞
f (x̃(a)) = x.

5 Data dependence: monotony

In this section we need the following abstract result.

Lemma 5.1. (Comparison principle, [12]) Let (X, d,≤) an ordered metric space
and A,B,C : X → X be such that:

(a) A ≤ B ≤ C;

(b) the operator A,B,C, are WPOs;

(c) the operator B is increasing.

Then x ≤ y ≤ z imply that A∞(x) ≤ B∞(y) ≤ C∞(z).

From this abstract result we have

Theorem 5.2. Let fi ∈ C([a, b]×R
2), i = 1, 2, be as in Theorem 3.1. We suppose

that:

(i) f1 ≤ f2 ≤ f3;

(ii) f2(t, ·, ·) : R
2 → R

2 is increasing;

Let xi ∈ C1[a, b] be a solution of the equation

x′
i(t) = fi(t, x(t), max

a≤ξ≤t
x(ξ)), t ∈ [a, b] and i = 1, 2, 3.

If x1(a) ≤ x2(a) ≤ x3(a), then x1 ≤ x2 ≤ x3.

Proof: From Theorem 3.1 we have that the operator Efi
, i = 1, 2, 3, are WPOs.

From the condition (ii) the operator Ef2
is monotone increasing. From the con-

dition (i) it follows that
Ef1

≤ Ef2
≤ Ef3

.
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Let x̃i(a) ∈ C[a, b] be defined by x̃i(a)(t) = xi(a), ∀t ∈ [a, b]. It is clear that

x̃1(a)(t) ≤ x̃2(a)(t) ≤ x̃3(a)(t), ∀t ∈ [a, b].

From Lemma 5.1 we have that

E∞
f1

(x̃1(a)) ≤ E∞
f2

(x̃2(a)) ≤ E∞
f3

(x̃3(a)).

But xi = E∞
fi (x̃i(a)), and x1 ≤ x2 ≤ x3.

6 Data dependence: continuity

Consider the Cauchy problem (1)–(2) and suppose the conditions of the Theorem
3.1 are satisfied. Denote by x∗(·;α, f) the solution of this problem.

We need the following well known result (see [11]).

Theorem 6.1. Let (X, d) be a complete metric space and A,B : X → X two
operators. We suppose that

(i) the operator A is a α -contraction;

(ii) FB 6= ∅;

(iii) there exists η > 0 such that

d(A(x), B(x)) ≤ η, ∀x ∈ X.

Then, if FA = {x∗
A} and x∗

B ∈ FB , we have

d(x∗
A, x∗

B) ≤
η

1 − α
.

We can state the following result:

Theorem 6.2. Let αi, fi, i = 1, 2 be as in the Theorem 3.1. Furthermore, we
suppose that there exists ηi > 0, i = 1, 2 such that

(i) |α1(t) − α2(t)| ≤ η1,∀t ∈ [a, b];

(ii) |f1(t, u1, u2) − f2(t, u1, u2)| ≤ η2,∀t ∈ [a, b], ui ∈ R, i = 1, 2.

Then

‖x∗
1(t;α1, f1) − x∗

2(t;α2, f2)‖ ≤
η1 + (b − a)η2

1 − Lf (b − a)
,

where x∗
i (t;αi, fi), i = 1, 2 are the solution of the problem (1)–(2) with respect to

αi, fi and Lf = max(Lf1
, Lf2

).
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Proof: Consider the operators Bαi,fi
, i = 1, 2. From Theorem 3.1 these operators

are contractions.
Additionally

‖Bα1,f1
(x) − Bα2,f2

(x)‖ ≤ η1 + (b − a)η2,

∀x ∈ C[a, b].
Now the proof follows from the Theorem 6.1, with A :=Bα1,f1

, B=Bα2,f2
, η=

η1 + (b − a)η2 and α := Lf (b − t0), where Lf = max(Lf1
, Lf2

).

In what follow we shall use the c-WPOs techniques to give some data depen-
dence results.

Theorem 6.3. ([10], [12]) Let (X, d) be a metric space and Ai : X → X, i = 1, 2.

Suppose that

(i) the operator Ai is ci-weakly Picard operator, i=1, 2;

(ii) there exists η > 0 such that

d(A1(x), A2(x)) ≤ η, ∀x ∈ X.

Then H(FA1
, FA2

) ≤ η max(c1, c2).

We have

Theorem 6.4. Let f1 and f2 be as in the Theorem 3.1. Let SEf1
, SEf2

be the
solution set of system (1) corresponding to f1 and f2. Suppose that there exists
η > 0, such that

|f1(t, u1, u2) − f2(t, u1, u2)| ≤ η (5)

for all t ∈ [a, b], ui ∈ R, i = 1, 2.

Then

H‖·‖C
(SEf1

, SEf2
) ≤

(b − a)η

1 − Lf (b − a)
,

where Lf = max(Lf1
, Lf2

) and H‖·‖C
denotes the Pompeiu-Housdorff functional

with respect to ‖·‖C on C[a, b].

Proof: In the condition of Theorem 3.1, the operators Ef1
and Ef2

are ci-weakly
Picard operators, i = 1, 2.

Let
Xα := {x ∈ C[a, b]| x(a) = α}.

It is clear that Ef1
|Xα

= Bf1
, Ef2

|Xα
= Bf2

. Therefore,

∣∣E2
f1

(x) − Ef1
(x)

∣∣ ≤ Lf1
(b − a) |Ef1

(x) − x| ,
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∣∣E2
f2

(x) − Ef2
(x)

∣∣ ≤ Lf2
(b − a) |Ef2

(x) − x| ,

for all x ∈ C[a, b].
Now, choosing

α1 = Lf1
(b − a) and α2 = Lf2

(b − a),

we get that Ef1
and Ef2

are ci-weakly Picard operators, i = 1, 2 with c1 =
(1 − α1)

−1 and c2 = (1 − α2)
−1. From (5) we obtain that

‖Ef1
(x) − Ef2

(x)‖
C
≤ (b − a)η,

∀x ∈ C[a, b]. Applying Theorem 6.3 we have that

H‖·‖C
(SEf1

, SEf2
) ≤

(b − a)η

1 − Lf (b − a)
,

where Lf = max(Lf1
, Lf2

) and H‖·‖C
is the Pompeiu-Housdorff functional with

respect to ‖·‖C on
C[a, b].
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