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Abstract

The aim of this paper is to analyze the set of prime numbers p > 3 for
which p − a2 is four times a prime for any positive odd integer a such that
a2 < p (we consider that 1 is a prime number). We show that for such prime
numbers p we have p = x2+4, where x is a prime number. We compute also
the class number h(−4p) for the quadratic imaginary field Q(i

√
p) using a

famous formula of Gauss. There are only six prime numbers with the above
property.
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1 Introduction

Finding all the positive integers N such that N − 2n2 is a prime for any
nonnegative integers n such that 2n2 ≤ N is an open problem. Examples of such
N ’s are the numbers

5, 7, 13, 31, 61, 181, 199.

There is not known until now if there is an N > 199 with the above property (see
[6], page 35, exercise 4). In [3] and [4] we studied the following.

Problem: Which are the positive integers n such that n − a2 is a prime
for any positive even integer a such that a2 ≤ n and that n − a2 is four times a
prime for any positive odd integer a such that a2 ≤ n. Here and throughout this
paper we consider (as the ancient scholars did) that 1 is a prime number.

We proved the following results.

Theorem 1.1. Let n a positive integer such that n−a2 is a prime for any positive
even integer a such that a2 ≤ n and that n − a2 is four times a prime for any
positive odd integer a such that a2 ≤ n. Then
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i) n = p(p + 4), where p and p + 4 are prime numbers and
ii) h(−4n) = p + 1, where h(−4n) is the class number of the quadratic imag-

inary field Q(i
√

n).

The main goal of this paper is to study the following.

Problem: Which are the primes p > 3 such that p−a2 is four times a prime
for any positive odd integer a such that a2 ≤ p. If we compare the two problems,
we observe that in the second one we impose the stronger condition that p is a
prime number and we ignore what happens with p − a2 for even integers a. We
will prove the following.

Theorem 1.2. Let p > 3 a prime number such that p− a2 is four times a prime
for any positive odd integer a such that a2 ≤ p. Then

i) p = x2 + 4, where x is a prime number.

ii)
(

p

q

)

= −1, for any prime q such that 2 < q < x.

iii) p−a2 is a prime number for any even nonnegative integer a 6= 2 such that
a2 < p.

iv) the ring Z[
1+

√

p

2
] is principal.

v) h(−4p) = x + 1 if x ≡ 1 (mod 4) and h(−4p) = x − 1 if x ≡ 3 (mod 4),
where h(−4p) is the class number of the quadratic imaginary field Q(i

√
p).

vi) There are only six prime numbers with the property asserted in the state-
ment of the theorem: 5, 13, 29, 53, 173, 293.

2 p = x2 + 4 and x is prime.

We prove in this section the first three statements of the theorem.

Proof: Let us first prove that p = 8k + 5, where k is a nonnegative integer. If
we apply the hypothesis for a = 1, we infer that p = 4q + 1, where q is a prime
number. If q is even, then q = 2 and p = 9; this is impossible since p is prime.
Then q = 2k + 1 and p = 8k + 5. We will show now that p = x2 + 4, where x

is an odd positive integer. Since p is a prime number, p ≡ 1 (mod 4), we have
p = x2 +y2, where x and y are nonnegative integers and x is odd. By hypothesis,
we know that y2 = p − x2 is four times a prime. The only possibility is y2 = 4
(we recall that we consider 1 as a prime number). Therefore, p = x2 + 4, where
x is an odd positive integer. We will show later that x is prime.

For proving the second statement of the theorem let us suppose that

there exists a prime number q such that 2 < q < x and
(

p

q

)

= 1. We deduce the

existence of an odd positive integer a such that p ≡ a2 (mod q) and 1 ≤ a ≤ q−2.
We have a2 < q2 < x2 < x2 + 4 = p and q divides p − a2. By these and the
hypothesis we obtain the equality p = a2+4q which leads to a contradiction since

p = a2 + 4q ≤ (x − 2)2 + 4q < (x − 2)2 + 4x = x2 + 4 = p.
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We have now the tools for proving that x is a prime number. If not, then
there is a prime q < x which is a divisor of x (obviously, q 6= 2 since x is odd).
But in this case 2 < q < x, p = x2 + 4 ≡ 4 (mod q) and

(

p

q

)

=

(

4

q

)

= 1,

which contradicts the second statement of the theorem proved above. In this
moment, the first statement of the theorem is completely proved.

The third statement of the theorem is obvious for a = 0. Let us suppose
that the statement is not true and there exist an even integer, 4 ≤ a <

√
p such

that the number A = p − a2 is not prime. Since A is odd and not prime, there
exists a prime q 6= 2 divisor of A such that q ≤

√
A. But

q ≤
√

A =
√

p − a2 <
√

p − 4 = x

and the second statement of the theorem ensure us that
(

p

q

)

= −1. But this is

not true since p ≡ a2 (mod q) and, therefore,
(

p

q

)

=
(

a
2

q

)

= 1.

3 Class numbers.

In this section we wil prove the statements iv) and v) of Theorem 1.2.

Proof: Let us first prove that the ring R = Z[
1+

√

p

2
] is principal (that is, the

class number for the field Q(
√

p) is one). It is sufficient (see [1], Corolary 4.3.7.,

page 224) to show that any maximal ideal I of R with N(I) <
√

p

2
is principal

(
√

p

2
is Minkowski’s constant for the field Q(

√
p)). Since the result is obvious for

p = 5, we can suppose that p > 5, which implies that x ≥ 2. Since p ≡ 5 (mod 8)
(see the previous section), then 2R is a maximal ideal (see [1], Theorem 3.4.19.,
page 160). Let q > 2 a prime number which is smaller than Minkowski’s constant
√

p

2
. Then (since x ≥ 2)

2 < q <

√
p

2
=

√
x2 + 4

2
<

x + 1

2
< x.

Taking into account the inequalities 2 < q < x and the second statement of the
theorem, we see that

(

p

q

)

= −1.

But this means that qR is a maximal ideal (see [1], Theorem 3.4.18., page 158).

We proved that any maximal ideal I of R with N(I) <
√

p

2
is principal and this

means that R = Z[
1+

√

p

2
] is principal.
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For the last statement of the theorem we need a formula which goes back
to Gauss (in the fifth section of the celebrated book Disquisitiones Arithmeticae).
The formula says that for a squarefree integer n > 4, n ≡ 1, 2, 5, 6 (mod 8) we
have

r3(n) = 12h(−4n),

where we denote by h(−4n) the cardinal of the ideal class group for the field
Q(i

√
n) and by r3(n) the number of triplets (x, y, z) such that x, y, z are integers

satisfying the equality n = x2 + y2 + z2. There are two others equalities of the
same type: r3(n) = 0 if n ≡ 7 (mod 8) and r3(n) = 24h(−n) if n ≡ 3 (mod 8)
(as above, n > 4 is a squarefree integer and by h(−n) we denote the cardinal of
the ideal class group for the field Q(i

√
n)). We need only the first formula.

We have to count the number of triplets (t, y, z) such that t, y, z are nonnegative
integers with p = t2 + y2 + z2, t < y, t and y are even and z is odd. For finding
this number we take into account the third statement of the theorem: if a 6= 2
is a nonnegative even integer such that a2 < p, then p − a2 is a prime number
(and obviously p − a2 ≡ 1 (mod 4)). Therefore, in this case, we have only one
writing p − a2 = b2 + c2, where b, c are nonnegative integers, b being even and
c being odd (see [5], Theorem 5.2.6., page 122 for this result). If a = 2, then
p − 4 = x2 and since x is prime we have two writings p − 4 = b2 + c2 (b, c are
nonnegative integers, b being even and c being odd) if x ≡ 1 (mod 4) and only
one such writing if x ≡ 3 (mod 4) (see again [5], the formula which ends Theorem
5.2.6., page 122). Therefore we have to split the proof in two cases.

The case x ≡ 1 (mod 4): Taking into account the above facts we infer
that there are x+3

4
triplets (t, y, z) such that t, y, z are nonnegative integers with

p = t2 + y2 + z2, t < y, t and y being even and z being odd. If we change the
order and the sign of t, y, z we obtain 48 triplets if t 6= 0 and 24 triplets if t = 0.
Puting together all these informations we obtain that

12h(−4p) = r3(p) = 48 · x − 1

4
+ 24 = 12x + 12, h(−4p) = x + 1.

The case x ≡ 3 (mod 4): Taking into account the above facts we infer
that there are x+1

4
triplets (t, y, z) such that t, y, z are nonnegative integers with

p = t2 + y2 + z2, t < y, t and y being even and z being odd. If we change the
order and the sign of t, y, z we obtain 48 triplets if t 6= 0 and 24 triplets if t = 0.
Puting together all these informations we obtain that

12h(−4p) = r3(p) = 48 · x − 3

4
+ 24 = 12x − 12, h(−4p) = x − 1.

4 5,13,29,53,173,293.

It is easy to check that if p ≤ 10.000 has the property that p − a2 is four
times a prime for any positive odd integer a such that a2 ≤ p, then p =
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5, 13, 29, 53, 173, 293. In fact, there are no other prime numbers with the above
property. This is a consequence of Yokoi’s conjecture proved by A. Biro (see [2]).

Theorem 4.1. Let n = m2 + 4, where m is an odd positive integer. The ring

Z[ 1+
√

n

2
] is principal only for six values of m: m = 1, 3, 5, 7, 13, 17.

Now it is easy to prove the last statement of Theorem 1.2.

Proof: We proved above (point i) of Therem 1.2) that p = x2 + 4, where x is

an odd prime and that the ring Z[
1+

√

p

2
] is principal (point iv) of Theorem 1.2).

The above quoted result of A. Biro ends now the proof of the last statement of
Theorem 1.2.
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