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Abstract

In this paper, the principal tool to describe transversal polymatroids
with Gorenstein base ring is polyhedral geometry, especially the Danilov-
Stanley theorem for the characterization of canonical module. Also, we
compute the a-invariant and the Hilbert series of base ring associated to
this class of transversal polymatroids.
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1 Introduction

In this paper we determine the facets of the polyhedral cone generated by the
exponent set of the monomials defining the base ring associated to a transversal
polymatroid. The importance of knowing those facets comes from the fact that
the canonical module of the base ring can be expressed in terms of the relative
interior of the cone. This would allow one to compute the a-invariant of those
base rings. The results presented were discovered by extensive computer algebra
experiments performed with Normaliz [4].

2 Preliminaries

Let n ∈ N, n ≥ 3, σ ∈ Sn, σ = (1, 2, . . . , n) the cycle of length n, [n] :=
{1, 2, . . . , n} and {ei}1≤i≤n be the canonical base of Rn. For a vector x ∈ Rn,
x = (x1, . . . , xn), we will denote | x | := x1 + . . . + xn. If xa is a monomial in
K[x1, . . . , xn] we set log(xa) = a. Given a set A of monomials, the log set of A,
denoted log(A), consists of all log(xa) with xa ∈ A.
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We consider the following set of integer vectors of Nn:

↓ ithcolumn

νσ0[i] :=
(
−(n− i− 1),−(n− i− 1), . . . ,−(n− i− 1), (i + 1), . . . , (i + 1)

)
,

↓ (2)ndcolumn ↓ (i + 1)stcolumn

νσ1[i] :=
(

(i + 1),−(n− i− 1), . . . ,−(n− i− 1), (i + 1), . . . , (i + 1)
)
,

↓ (3)rdcolumn ↓ (i + 2)ndcolumn

νσ2[i] :=
(

(i + 1), (i + 1),−(n− i− 1), . . . ,−(n− i− 1), (i + 1), . . . , (i + 1)
)
,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

↓ (i− 2)ndcolumn ↓ (n− 2)ndcolumn

νσn−2[i] :=
(

. . . ,−(n− i− 1), (i + 1), . . . , (i + 1),−(n− i− 1),−(n− i− 1)
)
,

↓ (i− 1)stcolumn ↓ (n− 1)stcolumn

νσn−1[i] :=
(
−(n− i− 1), . . . ,−(n− i− 1), (i + 1), . . . , (i + 1),−(n− i− 1)

)
,

where σk[i] := {σk(1), . . . , σk(i)} for all 1 ≤ i ≤ n− 1 and 0 ≤ k ≤ n− 1.

Remark: νσk[n−1] = n e[n]\σk[n−1] for all 0 ≤ k ≤ n.
For example, if n = 4, σ = (1, 2, 3, 4) ∈ S4 then we have the following set of
integer vectors:

νσ0[1] = ν{1} = (−2, 2, 2, 2), νσ0[2] = ν{1,2} = (−1,−1, 3, 3),

νσ1[1] = ν{2} = (2,−2, 2, 2), νσ1[2] = ν{2,3} = (3,−1,−1, 3),

νσ2[1] = ν{3} = (2, 2,−2, 2), νσ2[2] = ν{3,4} = (3, 3,−1,−1),

νσ3[1] = ν{4} = (2, 2, 2,−2), νσ3[2] = ν{1,4} = (−1, 3, 3,−1).

νσ0[3] = ν{1,2,3} = (0, 0, 0, 4),

νσ1[3] = ν{2,3,4} = (4, 0, 0, 0),

νσ2[3] = ν{1,3,4} = (0, 4, 0, 0),

νσ3[3] = ν{1,2,4} = (0, 0, 4, 0).
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If 0 6= a ∈ Rn, then Ha will denote the hyperplane of Rn through the origin
with normal vector a, that is,

Ha = {x ∈ Rn | 〈x, a〉 = 0},

where 〈, 〉 is the usual inner product in Rn. The two closed halfspaces bounded
by Ha are:

H+
a = {x ∈ Rn | 〈x, a〉 ≥ 0} and H−

a = {x ∈ Rn | 〈x, a〉 ≤ 0}.

We will denote by Hσk[i] the hyperplane of Rn through the origin with normal
vector νσk[i], that is,

Hν
σk[i]

= {x ∈ Rn | 〈x, νσk[i]〉 = 0},

for all 1 ≤ i ≤ n− 1 and 0 ≤ k ≤ n− 1.
An affine space in Rn is the translate of a linear subspace of Rn. Let A ⊂ Rn,

we denote by aff(A) the affine space generated by A. There is a unique linear
subspace V of Rn such that aff(A) = x0 + V, for some x0 ∈ Rn. The dimension
of aff(A) is dim(aff(A)) = dimR(V ).

Recall that a polyhedral cone Q ⊂ Rn is the intersection of a finite number
of closed subspaces of the form H+

a . If Q = H+
a1
∩ . . . ∩ H+

am
is a polyhedral

cone, then aff(Q) is the intersection of those hyperplanes Hai , i = 1, . . . ,m, that
contain Q.(see [3, Proposition 1.2.]) The dimension of Q is the dimension of
aff(Q), dim(Q) = dim(aff(Q)).
If A = {γ1, . . . , γr} is a finite set of points in Rn the cone generated by A,
denoted by R+A, is defined as

R+A = {
r∑

i=1

aiγi | ai ∈ R+ for all 1 ≤ i ≤ n}.

An important fact is that Q is a polyhedral cone in Rn if and only if there
exists a finite set A ⊂ Rn such that Q = R+A (see [3] or [10, Theorem 4.1.1.]).

Next we give some important definitions and results (see [1], [2], [3], [8], [9]).

Definition 2.1. A proper face of a polyhedral cone is a subset F ⊂ Q such that
there is a supporting hyperplane Ha satisfying:

1) F = Q ∩Ha 6= ∅,
2) Q * Ha and Q ⊂ H+

a .

The dimension of a proper face F of a polyhedral cone Q is: dim(F ) =
dim(aff(F )).

Definition 2.2. A cone C is pointed if 0 is a face of C. Equivalently we can
require that x ∈ C and −x ∈ C ⇒ x = 0.

Definition 2.3. The 1-dimensional faces of a pointed cone are called extremal rays.
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Definition 2.4. A proper face F of a polyhedral cone Q ⊂ Rn is called a facet
of Q if dim(F ) = dim(Q)− 1.

Definition 2.5. If a polyhedral cone Q is written as

Q = H+
a1
∩ . . . ∩H+

ar

such that no H+
ai

can be omitted, then we say that this is an irreducible represen-
tation of Q.

Theorem 2.6. Let Q ⊂ Rn, Q 6= Rn, be a polyhedral cone with dim(Q) = n.
Then the halfspaces H+

a1
, . . . ,H+

am
in an irreducible representation Q = H+

a1
∩

. . . ∩H+
am

are uniquely determined. In fact, the sets Fi = Q ∩Hai , i = 1, . . . , n,
are the facets of Q.

Proof: See [3, Theorem 1.6.]

Definition 2.7. Let Q be a polyhedral cone in Rn with dim Q = n and such
that Q 6= Rn. Let

Q = H+
a1
∩ . . . ∩H+

ar

be the irreducible representation of Q. If ai = (ai1, . . . , ain), then we call

Hai(x) := ai1x1 + . . . + ainxn = 0, i ∈ [r],

the equations of the cone Q.

Definition 2.8. The relative interior ri(Q) of a polyhedral cone is the interior
of Q with respect to the embedding of Q into its affine space aff(Q), in which Q
is full-dimensional.

The following result gives us the description of the relative interior of a poly-
hedral cone when we know its irreducible representation.

Theorem 2.9. Let Q ⊂ Rn, Q 6= Rn, be a polyhedral cone with dim(Q) = n
and let

(∗) Q = H+
a1
∩ . . . ∩H+

am

be an irreducible representation of Q with H+
a1

, . . . ,H+
an

pairwise distinct, where
ai ∈ Rn \ {0} for all i. Set Fi = Q ∩Hai

for i ∈ [r]. Then:
a) ri(Q) = {x ∈ Rn | 〈x, a1〉 > 0, . . . , 〈x, ar〉 > 0}, where ri(Q) is the relative
interior of Q, which in this case is just the interior.
b) Each facet F of Q is of the form F = Fi for some i.
c) Each Fi is a facet of Q.

Proof: See [1, Theorems 8.2.15 and 3.2.1].
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Theorem 2.10. (Danilov, Stanley) Let R = K[x1, . . . , xn] be a polynomial
ring over a field K and F a finite set of monomials in R. If K[F ] is normal,
then the canonical module ωK[F ] of K[F ], with respect to standard grading, can
be expressed as an ideal of K[F ] generated by monomials

ωK[F ] = ({xa| a ∈ NA ∩ ri(R+A)}),

where A = log(F ) and ri(R+A) denotes the relative interior of R+A.

The formula above represents the canonical module of K[F ] as an ideal of
K[F ] generated by monomials. For a comprehensive treatment of the Danilov-
Stanley formula see [2], [8] or [9] .

3 Polymatroids

Let K be an infinite field, n and m be positive integers, [n] = {1, 2, . . . , n}. A
nonempty finite set B of Nn is the base set of a discrete polymatroid P if for
every u = (u1, u2, . . . , un), v = (v1, v2, . . . , vn) ∈ B one has u1 + u2 + . . . + un =
v1 + v2 + . . . + vn and for all i such that ui > vi there exists j such that uj < vj

and u + ej − ei ∈ B, where ek denotes the kth vector of the standard basis
of Nn. The notion of discrete polymatroid is a generalization of the classical
notion of matroid, see [5], [6], [7], [11]. Associated with the base B of a discrete
polymatroid P one has a K−algebra K[B], called the base ring of P, defined to be
the K−subalgebra of the polynomial ring in n indeterminates K[x1, x2, . . . , xn]
generated by the monomials xu with u ∈ B. From [7] the algebra K[B] is known
to be normal and hence Cohen-Macaulay.

If Ai are some nonempty subsets of [n] for 1 ≤ i ≤ m, A = {A1, . . . , Am},
then the set of the vectors

∑m
k=1 eik

with ik ∈ Ak is the base of a polymatroid,
called the transversal polymatroid presented by A. The base ring of a transversal
polymatroid presented by A is the ring

K[A] := K[xi1 · · · xim | ij ∈ Aj , 1 ≤ j ≤ m].

4 Cones of dimension n with n + 1 facets

Lemma 4.1. Let 1 ≤ i ≤ n − 2, A := {log(xj1 · · · xjn
) | jk ∈ Ak, for all 1 ≤

k ≤ n} ⊂ Nn the exponent set of generators of the K−algebra K[A], where
A = {A1 = [n], . . . , Ai = [n], Ai+1 = [n] \ [i], . . . , An−1 = [n] \ [i], An = [n]}.
Then the cone generated by A has the irreducible representation

R+A =
⋂

a∈N

H+
a ,

where N = {νσ0[i], νσk[n−1] | 0 ≤ k ≤ n− 1}.
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Proof: We denote Jk =
{

(i + 1) ek + (n− i− 1) ei+1 , if 1 ≤ k ≤ i
(i + 1) e1 + (n− i− 1) ek , if i + 2 ≤ k ≤ n

and

J = n en. Since At = [n] for any t ∈ {1, . . . , i} ∪ {n} and Ar = [n] \ [i] for
any r ∈ {i + 1, . . . , n − 1}, it is easy to see that for any k ∈ {1, . . . , i} and
r ∈ {i + 2, . . . , n} the set of monomials xi+1

k xn−i−1
i+1 , xi+1

1 xn−i−1
r , xn

n is a
subset of the generators of the K−algebra K[A]. Thus one has

{J1, . . . , Ji, Ji+2, . . . , Jn, J} ⊂ A.

If we denote by C the n × n−matrix whose rows are the entries of the vectors
J1, . . . , Ji, Ji+2, . . . , Jn, J, then by a simple computation we get |det(C)| = n (i+
1)i (n− i− 1)n−i−1. Therefore the set

{J1, . . . , Ji, Ji+2, . . . , Jn, J}

is linearly independent and it follows that dim R+A = n.
Since {J1, . . . , Ji, Ji+2, . . . , Jn} is linearly independent and lies on the hyperplane
Hσ0[i], we have that dim(Hσ0[i] ∩ R+A) = n− 1.

Now we will prove that R+A ⊂ H+
a for all a ∈ N. It is enough to show that

for all vectors P ∈ A, 〈P, a〉 ≥ 0 for all a ∈ N. Since νσk[n−1] = n e[n]\σk[n−1],
where {ei}1≤i≤n is the canonical base of Rn, we get that 〈P, νσk[n−1]〉 ≥ 0. Let
P ∈ A, P = log(xj1 · · · xji

xji+1 · · · xjn−1xjn
) and let t be the number of jks

such
that 1 ≤ ks ≤ i and jks

∈ [i]. Thus 1 ≤ t ≤ i. Now we have only two cases to
consider:
1) If jn ∈ [i], then

〈P, νσ0[i]〉 = −t(n−i−1)+(i−t)(i+1)+(n−i−1)(i+1)−(n−i−1) = n(i−t) ≥ 0.

2) If jn ∈ [n] \ [i], then

〈P, νσ0[i]〉 = −t(n−i−1)+(i−t)(i+1)+(n−i−1)(i+1)+(i+1) = n(i−t+1) > 0.

Thus
R+A ⊆

⋂
a∈N

H+
a .

To prove the converse inclusion, it is clearly enough to prove that all the
extremal rays of the cone

⋂
a∈N H+

a are contained in R+A. Any extremal ray of
the cone

⋂
a∈N H+

a can be written as the intersection of n − 1 hyperplanes Ha,
with a ∈ N. There are two possibilities to obtain extremal rays by intersection of
n− 1 hyperplanes.
First case.
Let 1 ≤ i1 < . . . < in−1 ≤ n be a sequence and {t} = [n] \ {i1, . . . , in−1}. The

system of equations (∗)


zi1 = 0,
...
zin−1 = 0

admits the solution x ∈ Zn
+, x =

 x1

...
xn

,
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with | x | = n and xk = n · δkt for all 1 ≤ k ≤ n, where δkt is the Kronecker
symbol.
There are two possibilities:
1) If 1 ≤ t ≤ i, then Hσ0[i](x) < 0 and therefore x /∈

⋂
a∈N H+

a .
2) If i + 1 ≤ t ≤ n, then Hσ0[i](x) > 0 and thus x ∈

⋂
a∈N H+

a and is an
extremal ray.
Hence, there exist n− i sequences 1 ≤ i1 < . . . < in−1 ≤ n such that the system
of equations (∗) has a solution x ∈ Zn

+ with | x | = n and Hσ0[i](x) > 0. The
extremal rays are: {nek | i + 1 ≤ k ≤ n}.
Second case.
Let 1 ≤ i1 < . . . < in−2 ≤ n be a sequence and {j, k} = [n] \ {i1, . . . , in−2},
with j < k, and

(∗∗)


zi1 = 0,
...
zin−2 = 0,
−(n− i− 1)z1 − . . .− (n− i− 1)zi + (i + 1)zi+1 + . . . + (i + 1)zn = 0

be the system of linear equations associated to this sequence.
There are two possibilities:
1) If 1 ≤ j ≤ i and i + 1 ≤ k ≤ n, then the system of equations (∗∗) admits the

solution x =

 x1

...
xn

 ∈ Zn
+, with | x | = n and xt = (i + 1)δjt + (n− i− 1)δkt

for all 1 ≤ t ≤ n.
2) If 1 ≤ j, k ≤ i or i + 1 ≤ j, k ≤ n, then there exist no solutions x ∈ Zn

+ with
| x | = n for the system of equations (∗∗) because otherwise Hσ0[i](x) > 0 or
Hσ0[i](x) < 0.
Thus, there exist i(n − i) sequences 1 ≤ i1 < . . . < in−2 ≤ n such that the
system of equations (∗∗) has a solution x ∈ Zn

+ with | x | = n and the extremal
rays are: {(i + 1)ej + (n− i− 1)ek | 1 ≤ j ≤ i and i + 1 ≤ k ≤ n}.

In conclusion, there exist (i + 1)(n− i) extremal rays of the cone
⋂

a∈NH+
a :

R := {nek | i+1 ≤ k ≤ n}∪{(i+1)ej+(n−i−1)ek | 1 ≤ j ≤ i and i+1 ≤ k ≤ n}.

Since R ⊂ A we have R+A =
⋂

a∈N H+
a .

It is easy to see that the representation is irreducible because if we delete,
for some k, the hyperplane with the normal νσk[n−1], then a coordinate of a
log(xj1 · · · xjixji+1 · · · xjn−1xjn) would be negative, which is impossible; and if
we delete the hyperplane with the normal νσ0[i], then the cone R+A would be
generated by A = {log(xj1 · · · xjn

) | jk ∈ [n], for all 1 ≤ k ≤ n}, which again is
impossible. Thus the representation R+A =

⋂
a∈N H+

a is irreducible.

Lemma 4.2. Let 1 ≤ i ≤ n− 2, 1 ≤ t ≤ n− 1, A := {log(xj1 · · · xjn) | jσt(k) ∈
Aσt(k), 1 ≤ k ≤ n} ⊂ Nn the exponent set of generators of K−algebra K[A], where
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A = {Aσt(k) | Aσt(k) = [n], for 1 ≤ k ≤ i and Aσt(k) = [n] \ σt[i], for i + 1 ≤
k ≤ n − 1, Aσt(n) = [n]}. Then the cone generated by A has the irreducible
representation

R+A =
⋂

a∈N

H+
a ,

where N = {νσt[i], νσk[n−1] | 0 ≤ k ≤ n− 1}.

Proof: The proof goes as that for Lemma 4.1.

5 The a-invariant and the canonical module

Lemma 5.1. The K−algebra K[A], where A = {Aσt(k) | Aσt(k) = [n], for 1 ≤
k ≤ i, and Aσt(k) = [n] \ σt[i], for i + 1 ≤ k ≤ n − 1, Aσt(n) = [n]}, is a
Gorenstein ring for all 0 ≤ t ≤ n− 1 and 1 ≤ i ≤ n− 2.

Proof: Since the algebras from Lemmas 4.1 and 4.2 are isomorphic, it is enough
to prove the case t = 0.

We will show that the canonical module ωK[A] is generated by (x1 · · ·xn)K[A].
Since K− algebra K[A] is normal, using the Danilov-Stanley theorem we get that
the canonical module ωK[A] is

ωK[A] = {xα | α ∈ NA ∩ ri(R+A)}.

Let d = gcd(n, i + 1) be the greatest common divisor of n and i + 1, then the
equation of the facet Hνσ0[i]

is

Hνσ0[i]
: − (n− i− 1)

d

i∑
k=1

xk +
(i + 1)

d

n∑
k=i+1

xk = 0.

The relative interior of the cone R+A is

ri(R+A) = {x ∈ Rn | xk > 0, ∀ k ∈ [n], − (n− i− 1)
d

i∑
k=1

xk+
(i + 1)

d

n∑
k=i+1

xk > 0}.

We will show that NA ∩ ri(R+A) = (1, . . . , 1) + (NA ∩ R+A).
It is clear that ri(R+A) ⊃ (1, . . . , 1) + R+A. If (α1, α2, . . . , αn) ∈ NA ∩

ri(R+A), then αk ≥ 1 for all 1 ≤ k ≤ n and

− (n− i− 1)
d

i∑
k=1

αk +
(i + 1)

d

n∑
k=i+1

αk ≥ 1 and
n∑

k=1

αk = t n for some t ≥ 1.
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We claim that there exists (β1, β2, . . . , βn) ∈ NA∩R+A such that (α1, α2, . . . , αn) =
(β1 + 1, β2 + 1, . . . , βn + 1). Let βk = αk − 1 for all 1 ≤ k ≤ n. It is clear that
βk ≥ 0 and

− (n− i− 1)
d

i∑
k=1

βk+
(i + 1)

d

n∑
k=i+1

βk = − (n− i− 1)
d

i∑
k=1

αk+
(i + 1)

d

n∑
k=i+1

αk−
n

d
.

If

− (n− i− 1)
d

i∑
k=1

αk +
(i + 1)

d

n∑
k=i+1

αk = j with 1 ≤ j ≤ n

d
− 1,

then we will get a contradiction. Indeed, since n divides
∑n

k=1 αk, it follows that
n
d divides j, which is false. So we have

− (n− i− 1)
d

i∑
k=1

βk +
(i + 1)

d

n∑
k=i+1

βk =

− (n− i− 1)
d

i∑
k=1

αk +
(i + 1)

d

n∑
k=i+1

αk −
n

d
≥ 0.

Thus (β1, β2, . . . , βn) ∈ NA ∩ R+A and (α1, α2, . . . , αn) ∈ NA ∩ ri(R+A).
Since NA ∩ ri(R+A) = (1, . . . , 1) + (NA ∩ R+A), we get that ωK[A] = (x1 · · ·
xn)K[A].

Let S be a standard graded K−algebra over a field K. Recall that the
a−invariant of S, denoted a(S), is the degree as a rational function of the Hilbert
series of S, see for instance ([9, p. 99]). If S is Cohen-Macaulay and ωS is the
canonical module of S, then

a(S) = −min{i | (ωS)i 6= 0},

see [2, p. 141] and [9, Proposition 4.2.3]. In our situation S = K[A] is normal
[7] and consequently Cohen-Macaulay, thus this formula applies. We have the
following consequence of Lemma 5.1.

Corollary 5.2. The a−invariant of K[A] is a(K[A]) = −1.

Proof: Let {xα1 , . . . , xαq} be generators of the K−algebra K[A]. Then K[A] is
a standard graded algebra with the grading

K[A]i =
∑
|c|=i

K(xα1)c1 · · · (xαq )cq , where |c| = c1 + . . . + cq.

Since ωK[A] = (x1 · · · xn)K[A], it follows that min{i | (ωK[A])i 6= 0} = 1, thus
a(K[A]) = −1.
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6 Ehrhart function

We consider a fixed set of distinct monomials F = {xα1 , . . . , xαr} in a polynomial
ring R = K[x1, . . . , xn] over a field K. Let

P = conv(log(F ))

be the convex hull of the set log(F ) = {α1, . . . , αr}. The normalized Ehrhart ring
of P is the graded algebra

AP =
∞⊕

j=0

(AP)j ⊂ R[T ],

where the jth component is given by

(AP)j =
∑

α∈Z log(F )∩ jP

K xα T j .

The normalized Ehrhart function of P is defined as

EP(j) = dimK(AP)j = | Z log(F ) ∩ jP |.

From [9, Proposition 7.2.39 and Corollary 7.2.45] we have the following important
result.

Theorem 6.1. If K[F ] is a standard graded subalgebra of R and h is the Hilbert
function of K[F ], then:
a) h(j) ≤ EP(j) for all j ≥ 0, and
b) h(j) = EP(j) for all j ≥ 0 if and only if K[F ] is normal.

In this section we will compute the Hilbert function and the Hilbert series for
the K−algebra K[A], where A satisfies the hypothesis of Lemma 4.1.

Proposition 6.2. In the hypothesis of Lemma 4.1, the Hilbert function of the
K−algebra K[A] is

h(t) =
(i+1)t∑
k=0

(
k + i− 1

k

)(
nt− k + n− i− 1

nt− k

)
.

Proof: From [7] we know that the K−algebra K[A] is normal. Therefore, to
compute the Hilbert function of K[A] is equivalent to compute the Ehrhart func-
tion of P, where P = conv(A).
It is clearly enough to show that P is the intersection of the cone R+A with the
hyperplane x1 + . . . + xn = n, that is,

P = {α ∈ Rn | αk ≥ 0 for any k ∈ [n], 0 ≤ α1+. . .+αi ≤ i+1 and α1+. . .+αn = n},
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whence it follows that

t P = {α ∈ Rn | αk ≥ 0, ∀ k ∈ [n], 0 ≤ α1+. . .+αi ≤ (i+1) t and α1+. . .+αn = n t}.

Since for any 0 ≤ k ≤ (i + 1) t the equation α1 + . . . + αi = k has
(
k+i−1

k

)
nonnegative integer solutions and the equation αi+1 + . . . + αn = n t − k has(
nt−k+n−i−1

nt−k

)
nonnegative integer solutions, we get that

EP(t) = | Z A ∩ t P | =
(i+1)t∑
k=0

(
k + i− 1

k

)(
nt− k + n− i− 1

nt− k

)
.

Corollary 6.3. The Hilbert series of the K−algebra K[A], where A satisfies the
hypothesis of Lemma 4.1, is

HK[A](t) =
1 + h1 t + . . . + hn−1 tn−1

(1− t)n
,

where

hj =
j∑

s=0

(−1)s h(j − s)
(

n

s

)
and h(s) is the Hilbert function of K[A]

Proof: Since the a−invariant of K[A] is a(K[A]) = −1, it follows that to com-
pute the Hilbert series of K[A] it is necessary to know the first n values of the
Hilbert function of K[A], h(i) for 0 ≤ i ≤ n− 1. Since dim(K[A]) = n, applying
n times the difference operator ∆ (see [2]) on the Hilbert function of K[A] we
get the conclusion.

Let ∆0(h)j := h(j) for any 0 ≤ j ≤ n − 1. For k ≥ 1 let ∆k(h)0 := 1 and
∆k(h)j := ∆k−1(h)j −∆k−1(h)j−1 for any 1 ≤ j ≤ n− 1. We claim that

∆k(h)j =
k∑

s=0

(−1)sh(j − s)
(

k

s

)
for any k ≥ 1 and 0 ≤ j ≤ n− 1. We proceed by induction on k.

If k = 1, then

∆1(h)j = ∆0(h)j −∆0(h)j−1 = h(j)− h(j − 1) =
1∑

s=0

(−1)sh(j − s)
(

1
s

)
for any 1 ≤ j ≤ n− 1.
If k > 1, then

∆k(h)j = ∆k−1(h)j −∆k−1(h)j−1 =
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k−1∑
s=0

(−1)sh(j−s)
(

k − 1
s

)
−

k−1∑
s=0

(−1)sh(j−1−s)
(

k − 1
s

)
= h(j)

(
k − 1

0

)
+

k−1∑
s=1

(−1)sh(j−s)
(

k − 1
s

)
−

k−2∑
s=0

(−1)sh(j−1−s)
(

k − 1
s

)
+(−1)kh(j−k)

(
k − 1
k − 1

)

= h(j)+
k−1∑
s=1

(−1)sh(j−s)
[(

k − 1
s

)
+

(
k − 1
s− 1

)]
+(−1)kh(j−k)

(
k − 1
k − 1

)

= h(j)+
k−1∑
s=1

(−1)sh(j−s)
(

k

s

)
+(−1)kh(j−k)

(
k − 1
k − 1

)
=

k∑
s=0

(−1)sh(j−s)
(

k

s

)
.

Thus, if k = n it follows that

hj = ∆n(h)j =
n∑

s=0

(−1)sh(j − s)
(

n

s

)
=

j∑
s=0

(−1)sh(j − s)
(

n

s

)
for any 1 ≤ j ≤ n− 1.
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