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Abstract

We study when Taylor resolutions of monomial ideals are minimal, par-
ticularly for ideals with linear quotients.
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Introduction

Let S = K[Xi,...,X,] be a polynomial ring over a field K and consider a
monomial ideal I C S. Let G(I) = {u1,...,u,} be the minimal set of monomial
generators of I. Then the Taylor resolution (T4(I),d,) of I is defined as follows
(cf. [1] Exer. 17.11): T,(I) = A" L for ¢ = 0,...,r — 1 where L is the S-free
module with the basis {e1,...,e,}and d, : T,(I) — T,—1(I),forg=1,...,7r—1,
is defined by

q )
lem(uig, - - -, i) iy
d(e: N---Ne; ) = —1)* 07777 e e N---"---Ne;
a(Cio io) sg( ) lem(uig, -« o Us,y, - - Ug,) e
and the augumentation € : Top — I is defined by e(e;) = u; fori =1,...,r. In

general, T4 (I) is far from minimal and the aim of this paper is to determine some
of the cases in which this resolution is minimal.

A monomial ideal I C S is said to be an ideal with linear quotients if, for
some specified order uq, ..., u, of the minimal set of generators, the colon ideals
(u1,...,u5-1) : u; are generated by a subset of {X1,...,X,}, for j =1,...,7.
When we consider such an ideal I = (uq,...,u,), we will always assume that I
has linear quotients with this order of the minimal set of generators w1, ..., u,.
We also set set(u;) = {i1,...,4s} when (u1,...,uj—1) : v; = (Xi,...,X;,).
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Stable ideals, squarefree stable ideals and (poly)matroidal ideals are all ideals
with linear quotients and they have Eliahou-Kervaire type minimal resolutions
[4].

We will show that an ideal I = (uy, ..., u,) with linear quotients has a minimal
Taylor resolution if and only if [set(u;)| = ¢—1for ¢ = 1,...,7 (Theorem 1.1),
where |A| denotes the cardinality of the set A. In the case of stable ideal, this
is precisely when 1 < r < n and u; are in the form of u; = X;([Tj—; X3*),
i=1,...,r, for some integers ny,...,n, > 0 (Theorem 2.2). On the other hand,
for a monomial ideal I C S with a linear resolution, I has the minimal Taylor
resolution precisely when I is in the form of I = u - (X;,,...,X;,), where u
is a monomial and {iy,...,ix} C {1,...,n} (Theorem 3.1). Such an ideal also
has linear quotients. We also give several examples such as matroidal ideals and
squarefree stable ideal having minimal Taylor resolutions.

We thank Jiirgen Herzog for valuable discussions and comments. We also
thank an anonymous reviewer for the detailed comments to improve the proof of
Proposition 2.1.

1 Ideal with linear quotients

This section recalls some general facts on ideal with linear quotients and give a
condition for such ideals to have the minimal Taylor resolutions.

Lemma 1. Let I = (uy,-..,u,) be a monomial ideal with linear quotients. Then,
[set(ug)| <i—1 fori=1,...,r

Proof: Since set(u;) = {j | X; € Ui (ur) : wi} = Uih{i | X € () :
u;} and each (ug) : u; is generated by a single variable, we obtain the desired
result. d

Lemma 2 (cf. lemma 1.5 [4]). Let I = (u1,...,u,) be a monomial ideal with
linear quotients and assume that we have deguq < --- < degu,.. Then the Belti
numbers B,(I) of I are as follows:

|set(w)]
By(I) = Z for all ¢ > 0.
N ( q )

u€G(

Remark 1. Recall that a monomial ideal I C S is stable if, for an arbitrary
monomial w € I, we have X;w/X,(,) € I for all i < m(w) where m(u) =
max{j | X; divides u}. If I = (uq,...,u,) is stable, we have

set(u;) = {1,...,m(u;) — 1}

fori=1,...,rif degu; < --- < degu, and u; > u;y1 by reverse lexicographical
order if degu; = degu;+1. Then we can recover the well-known Eliahou-Kervaire
formula [2] from Lemma 2.
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Theorem 1.1. Let I = (uy,...,u,) be a monomial ideal with linear quotients
and assume that we have deguy < --- < degu,. Then I has the minimal Taylor
resolution if and only if |set(u;)| =i —1 fori=1,...,r.

Proof: We have .
B <Y (’ . 1) for all ¢ > 0 (1)
i=1

by Lemma 1 and 2. On the other hand, the Taylor resolution T4(I) is minimal
if and only if B,(I) = (1) = Xi, (’;1). Thus the inequality in (1) must be
equality, which implies |set(u;)| = ¢ — 1 for all ¢ by Lemma 1. |

2 Stable ideals having the minimal Taylor resolutions

The goal of this section is to determine precisely the stable ideals that have the
minimal Taylor resolutions.
We first prepare a formal characterization of such ideals.

Proposition 2.1. Let I be a stable ideal of S. Then the following conditions are
equivalent :

(i) I has the minimal Taylor resolution;
(ii) max{m(u) | u € G(I)} = [G(I)] ;

<1<
(iii) ma(I) = 1 for1<i< |G(I)|
0 for |G(I)| <i<n,
where we define m;(I) = |[{u € G(I) | m(u) =i},
Proof: We first show that m;(I) > 1 for i =1,...,by, where

bo := max{m(u) | u € G(I)}.
Suppose m;(I) > 1 for all i > j but m;(I) = 0 for some j > 1. Then there exists
v € G(I) such that v = wX?; with m(w) < j+1 and a > 0. Since I is stable,
we have v’ = wX§' € I and there exists u € G(I) that divides v'. As m;(I) =0,
we see that u divides w. This implies u divides v, which is a contradiction since
u,v € G(I). Thus m;(I) > 1 for 1 <4 < by and we have by < |G(I)|.

Now we show (i) = (ii) : Assume that I has the minimal Taylor resolution.
Since I is stable, we have by Theorem 1.1 (see also Remark 1) m(u;) = 7 for
i =1,...,r. Thus we have by = |G(I)|. (ii) = (iii) is clear from the inequality
bo < |G(I)|. Finally we show (iii) = (i) : By (iii), we have G(I) = {u1,...,us}
with m(u;) =i fori=1,...,7. We claim that, with this order of the generators,
I is an ideal with linear quotients with set(u;) = {1,...,m(u;) — 1}. Since I is
stable, m(u;) =i fori =1,...,r implies that u; > w;41 by reverse lexicographical
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order when degu; = degu;41. Thus, to prove the claim we have only to show
that degu; < degu;i1 for all ¢ (see Remark 1). We can set u; = vX? and
uir1 = v' X, for some monomials v and v’ with m(v) < i and m(v') < i+1 and
integers p,q > 0. Then, since I is stable, we have w := v'X] € I so that there
exists u; € G(I) that divides w. In particular, m(u;) < i and degu; < degw =
deguiy1- If m(u;) < i, then u; divides v', which implies that u; divides u;y1,
a contradiction. Thus m(u;) = ¢ so that by (iii) we must have u; = u;. Then
degu; < degu;y1 as required. Now we have [set(u;)] =4 — 1, so that I has the
minimal Taylor resolution by Theorem 1.1. g

Using above proposition we can determine the stable ideals with the minimal
Taylor resolutions.

Theorem 2.2. Let I C S be a stable ideal. Then I has the minimal Taylor
resolution if and only if it is in the following form: I = (u1,...,u,) for some
r <n, where

i
ui=Xi'HX;clk (i=1,...,T)
k=1

for some integers ay,...,a, > 0.

Proof: We can easily check that an ideal in the above form is stable and it has
the minimal Taylor resolution by Proposition 2.1. Now we show the converse.
By Proposition 2.1 we can assume that G(I) = {uq,...,u,} with m(u;) =i for
i=1,...,7 and r <n. Thus we can write u; as follows

i
Ui:Xi'HXZi’k (7::1,...,7‘)
k=1

for some integers a;; > 0,1 < ¢ <r and 1 <k <i. We will show that each a;
is constant with regard to i.
Since I is stable, we have

w = UTXT—I/XT =X, 1- H;:l X;:r’k e€l,

so that there exists u € G(I) that divides w. We claim that v = u,_1. In fact,
we have m(u) < r — 1 since u # u,. If m(u) < r — 1, then u divides w/X, ; =
| XZ“’“, which implies that u divides w,, contradicting the assumption that
both u and wu, are from G(I). Thus we must have m(u) = r — 1, which implies
% = Uup_1. Then we know that

r—1p < app foralll<k<r—1.

Thus, at least the exponents of X; to X, _» in u,._1 are less than or equal to those
of u,. Moreover, if a,_1, 1 < ar,_1, then the exponent 1 +a,_ 1,1 of X; 4
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in u,_; is less than or equal to the exponent a,,—1 of X;_; in u, so that u,_;
divides u,, a contradiction. Consequently, we must have a,_1 r—1 = arr_1.

Now assume that there exists 1 < k < r — 2 such that a,_11 < arr. Then
since w' 1= Xjpur_1/Xr—1 € I, there exists v’ € G(I) dividing w' such that
u' # ur_1,ur. Then we easily have lem(v',u,—1,ur) = lem(u,_1,u,), which
contradicts the minimality of the Taylor resolution. Consequently, we must have
Gr_1p =0rp foralll <k <r-—1.

Now since (u1, ..., u,_1) is also stable and has the minimal Taylor resolution
by Proposition 2.1, an inductive argument shows that for all ¢ = 1,...,r and
j=1,...,r—1wehavea;; = a; for all 1 <k < j, which means that ui,...,u,
are in the form stated above. a

Corollary 1. Assume that I C S is a stable ideal generated by monomials of the
same degree d > 1. Then I has the minimal Taylor resolution if and only if I is
in the form of X¥ (X1, Xo,...,X,) for somer <n.

3 Linear minimal Taylor resolutions

In this section, we consider non-stable cases of ideals with linear quotients.

Theorem 3.1. Let I be a monomial ideal with o linear resolution. Then the
following conditions are equivalent:

(i) I has the minimal Taylor resolution:
(i) I =u-(X4,...,X;) for some 1 <iy <---<ip <n and a monomial u.
In this case, I is an ideal with linear quotients.

Proof: It is clear that ideals in the form of (ii) have linear quotients. We only
have to show (i) = (ii), and the converse is clear. We prove by induction on
|G(I)|]. Let G(I) = {u1,--.,ur} (r > 2) and let T¢(I) be the linear minimal
Taylor resolution. Since we have

lem(wr, us,y, - - -, ui4,) o lem(uig e, u,)

lem(ut, Wiy, -y Wiy Uiy)  lem(Wigs ..., Ui,y e Ui, )

forall 1 < iy < ...,ig < r, by truncating all the bases in the form of e; A ---
from T4(I), we obtain the linear minimal Taylor resolution of J = (us,...,u,).
Thus by the induction hypothesis we have uy = uX;,, k = 2,...,r, for some
monomial v and 1 < 4; < --- < 4; < n. Now we show that w; is in the form
of uX;, for some iy ¢ {i1,...,i;}. Since T,(I) is linear, both lem(u1,u;)/u; and
lem(uq,u;)/u; must be linear for ¢ = 2,...,r. Then we easily know that u must
divide u; and conclusion follows. O
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Remark 2. Notice that we can also give a more naive proof for Theorem 3.1
based on the observation that both lem(uq,u;)/ur and lem(ug,w;)/u; must be
linear for i = 2,...,7.

Now we show some examples produced by Theorem 3.1.

Example 1. Let I = X7X[ (X1,Xs,...,X}) with 1 < k < n and p,q >
1. Then I is a non-stable ideal with linear quotients whose Taylor resolution is

minimal.

Example 2. A Stanley-Reisner ideal I C S generated by squarefree monomials
with the same degree is called matroidal if it satisfies the following exchange pro-
perty: For all u,v € G(I) and all i with vi(u) > v;(v), there exists an integer j
with vj(u) < v;j(v) such that X;(u/X;) € G(I), where we define v;(u) = a; for
u=X"--- X% _ A matroidal ideal I has a linear resolution (cf. [4]). If it has
the minimal Taylor resolution, we know that I is in the form of

IZXil"'X’ip(Xj17"'7qu)

for {iv,...,ipy N {j1,...,dg} =0 withp+q <n.

Example 3. A squarefree stable ideal is a Stanley-Reisner ideal I C S satisfying
the condition that, for all i < m(u) such that X; does not divide u, one has
Xi(u/Xm)) € I. Let I be a squarefree stable ideal generated by monomials
with the same degree. If I has the minimal Toaylor resolution, then I is in the
form of I = (u1,...,u,) with uy = vX,s and u; = vXpyi_1 for i > 2 where

U=X1---\S/---prorsomelgsgpgn.

Remark 3. After finishing this work, one of the authors and his colleagues found
that Proposition 2.1 holds in a more general setting. Namely, instead of a stable
monomial ideal, we can assume I C S to be a componentwise linear monomial
ideal. Then it turns out that I is a Gotzmann ideal if its Taylor resolution is
minimal. See Theorem 1.5 in [3].
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