Sequentially Cohen-Macaulay monomial ideals of embedding dimension four

by Sarfraz Ahmad, Dorin Popescu

Abstract

Let I be a monomial ideal of the polynomial ring $S = K[x_1, \ldots, x_4]$ over a field K. Then S/I is sequentially Cohen-Macaulay if and only if S/I is pretty clean. In particular, if S/I is sequentially Cohen-Macaulay then I is a Stanley ideal.

Key Words: Monomial Ideals, Prime Filtrations, Pretty Clean Filtrations, Stanley Ideals.

2000 Mathematics Subject Classification: Primary: 13H10, Secondary: 13P10, 13C14, 13F20.

Introduction

Let $S=K[x_1,\ldots,x_n]$ be a polynomial ring over a field K and $I\subset S$ a monomial ideal. If S/I is Gorenstein of codimension three then a description of I is given in [1, Theorem 6.1] in terms of the minimal system of monomial generators. Here we are interested to describe monomial ideals I when n=4 and S/I is Cohen-Macaulay of codimension two in terms of the primary decomposition of I. As a consequence we get a particular form of [4, Proposition 1.4] for n=4, which says that if S/I is Cohen-Macaulay of codimension two then S/I is clean, that is (after [3]) there exists a prime filtration $I=F_0\subset F_1\subset\ldots\subset F_r=S$ of monomial ideals such that $F_i/F_{i-1}\cong (S/P_i)(a_i)$ for some prime ideals P_i of S with $ht(P_i)=\dim(S/I)$ and $a_i\in\mathbb{Z}, i=1,\ldots,r$.

More general, given a monomial ideal I of S then S/I is called *pretty clean* after [5] if there exists a prime filtration $I \subset F_1 \subset \ldots \subset F_r = S$ of monomial ideals such that $F_i/F_{i-1} \cong S/P_i(a_i)$ for some prime ideals P_i of S with the property that $P_i \subset P_j$ and $i \leq j$ implies $P_i = P_j$, that is, roughly speaking, "bigger primes come first" in the filtration. [5, Corollary 4.3] says that if S/I is pretty clean then S/I is sequentially Cohen-Macaulay, that is the non-zero factors of the dimension filtration of [8] (see next section) are Cohen-Macaulay.

Our Theorem 1.3 says that for n = 4 it is true also the converse, namely that if S/I is sequentially Cohen-Macaulay then S/I is pretty clean.

A decomposition of S/I as a direct sum of linear K-spaces of the form $S/I = \bigoplus_{i=1}^r u_i K[Z_i]$, where u_i are monomials of S and $Z_i \subset \{x_1, \ldots, x_n\}$ are subsets, is called a Stanley decomposition. Stanley [10] conjectured that there always exists such a decomposition such that $|Z_i| \geq \operatorname{depth}(S/I)$. If Stanley conjecture holds for S/I then I is called a Stanley ideal. Our Corollary 1.4 says that if n=4, I is monomial and S/I is sequentially Cohen-Macaulay then I is a Stanley ideal (this follows because I is a Stanley ideal whenever S/I is pretty clean as says [5, Theorem 6.5]).

1 Sequentially Cohen-Macaulay monomial ideals of embedding dimension four are pretty clean

Let $S = K[x_1, ..., x_n]$ be a polynomial ring over a field K. The following result [4, Proposition 1.4] is essential in this section.

Theorem 1.1 (Herzog-Soleyman Jahan-Yassemi). Let $I \subset S$ be a monomial ideal of height two such that S/I is Cohen-Macaulay. Then S/I is clean.

The proof of Herzog, Soleyman Jahan and Yassemi passes the problem to the polarization, where they could use strong tools from simplicial complex theory. In the next section we give a direct proof in the case n=4, which uses just elementary theory of monomial ideals. With this occasion we give also a complete description of all monomials ideals I of height 2 in the case n=4 with S/I Cohen-Macaulay. The conditions given in this description are sometimes difficult but they could easily give nice examples of monomial ideals I with S/I not Cohen-Macaulay, but having all associated primes of height 2 and with S/\sqrt{I} Cohen-Macaulay (see Example 2.7). Certainly if S/I is Cohen-Macaulay then S/\sqrt{I} is too by [6, Theorem 2.6] (this holds only for monomial ideals). We mention that special descriptions of some monomial Cohen-Macaulay ideals of codimension 2 are given in [6, Theorem 3.2].

Let $I \subset S$ be a monomial ideal and $I = \bigcap_{p \in \mathrm{Ass}(S/I)} P_p$, $\sqrt{P_p} = p$, an irredundant primary decomposition of I. Set $D_i(I) = \bigcap_{p \in \mathrm{Ass}^{>i}(S/I)} P_p$, for $-1 \le i < n$, where $\mathrm{Ass}^{>i}(S/I) = \{p \in \mathrm{Ass}(S/I) : \dim(S/p) > i\}$. We get in this way the dimension filtration of S/I

$$I = D_{-1}(I) \subset D_0(I) \subset \ldots \subset D_{n-2}(I) \subset D_{n-1}(I) = S,$$

introduced by Schenzel [8] (n is the number of variables of S). S/I is sequentially Cohen-Macaulay if all non-zero factors of this filtration are Cohen-Macaulay. In the monomial case, the notions of "sequentially Cohen-Macaulay" and "pretty clean" are connected by the following result of [5, Corollary 4.3].

Theorem 1.2 (Herzog-Popescu). Let $I \subset S$ be a monomial ideal and

$$I = D_{-1}(I) \subset D_0(I) \subset \ldots \subset D_{n-2}(I) \subset D_{n-1}(I) = S$$

the dimension filtration of S/I. Then the following statements are equivalent:

- 1. S/I is pretty clean,
- 2. S/I is sequentially Cohen-Macaulay and all non-zero factors of the dimension filtration are clean,
- 3. all non-zero factors of the dimension filtration are clean.

From now on S = K[x, y, z, w], that is the case n = 4. The above theorems are main tools in proving the following:

Theorem 1.3. Let $I \subset S = K[x, y, z, w]$ be a monomial ideal. Then S/I is pretty clean if and only if I is sequentially Cohen-Macaulay.

Proof: By Theorem 1.2 it is enough to show that the non-zero factors of the dimension filtration

$$I = D_{-1}(I) \subset D_0(I) \subset D_1(I) \subset D_2(I) \subset D_3(I) = S$$

are clean if they are Cohen-Macaulay. Since S is factorial ring and $D_2(I)$ is an intersection of primary height one ideals we get $D_2(I) = (u)$ for a certain monomial $u \in S$. Clearly S/(u) is clean (see e. g. [9, Lemma 1.9]). As $D_2(I)/D_1(I) \cong S/(D_1(I):u)$ is Cohen-Macaulay of dimension 2 we get $D_2(I)/D_1(I)$ clean by Theorem 1.1. Now note that $D_1(I)/D_0(I)$ and $D_1(I)/I$ are clean by [7, Corollary 2.2] because the prime ideals associated to those modules are of height ≥ 3 .

Corollary 1.4. Let $I \subset S = K[x, y, z, w]$ be a monomial ideal. If S/I is sequentially Cohen-Macaulay then I is a Stanley ideal.

Proof: By the above theorem S/I is pretty clean and it is enough to apply [5, Theorem 6.5].

2 Proof of Theorem 1.1 in the case n=4

Let K be a field and S = K[x, y, z, w] be the polynomial ring in four variables. We denote G(I) to be the set of minimal monomial generators for an ideal I in S. First next lemmas, which involve ideals generated in 3 variables are easy and contained somehow in [9], but we prove them for the sake of our completeness.

Lemma 2.1. Let $I \subset S$ be a monomial ideal such that $Ass(S/I) = \{(x, y), (x, z)\}$. Then S/I is clean.

Proof: Let $I = \bigcap_{i=1}^{s} Q_i$ be the irredundant decomposition of I in irreducible monomial ideals (see [11]). Let $Q_1 = (x^a, y^b)$ and $J = \bigcap_{i=2}^{s} Q_i$, where b is the

maximum power of y, which enters in $G(Q_i)$. Then we have the filtration $I \subset (I, x^a) \subset Q_1 \subset S$.

Clearly S/Q_1 is clean. Apply induction on s. We have $Q_1/(I,x^a) \cong S/((I,x^a):y^b)$. As $G((I,x^a):y^b)$ contains only monomials in $\{x,z\}$ we see that $((I,x^a):y^b)$ is primary because it is the intersection of those (Q_i,x^a) with $\sqrt{Q_i}=(x,z)$. Thus $Q_1/(I,x^a)$ is clean.

On the other hand $(I, x^a)/I \cong S/(I : x^a)$ and $(I : x^a) = \bigcap_{i=2}^s (Q_i : x^a)$. We are done by induction hypothesis on $s \geq 2$, case s = 2 being trivial since $(I : x^a)$ is irreducible. Thus $(I, x^a)/I$ is clean.

Lemma 2.2. Let $I \subset S$ be a monomial ideal such that

$$Ass(S/I) = \{(x, y), (x, z), (y, z)\}.$$

Then S/I is clean.

Proof: Let $I = \bigcap_{i=1}^s Q_i$ be the irredundant decomposition of I in irreducible monomial ideals. Let $Q_1 = (x^a, y^b)$ and $J = \bigcap_{i=2}^s Q_i$, where b is the maximum such that y^b enter in $G(Q_i)$. Then we have the filtration $I \subset (I, x^a) \subset Q_1 \subset S$. Clearly S/Q_1 is clean. Apply induction on s. We have $Q_1/(I, x^a) \cong S/((I, x^a): y^b)$. As $G((I, x^a): y^b)$ contains only monomials in $\{x, z\}$ we see that $((I, x^a): y^b)$ is primary and its radical is (x, z). Thus $Q_1/(I, x^a)$ is clean.

On the other hand $S/(I:x^a)\cong (I,x^a)/I$ and $(I:x^a)=\bigcap_{i=2}^s (Q_i:x^a)$. We apply induction hypothesis on $s\geq 3$, $(I:x^a)$ being in the case s=3 just an irreducible ideal. Thus $(I,x^a)/I$ is clean.

Lemma 2.3. Let $I \subset S$ be a monomial ideal such that $Ass(S/I) = \{(x, y), (z, w)\}$. Then S/I is not Cohen-Macaulay.

Proof: Let $I = P_1 \cap P_2$ be the irredundant decomposition of I in monomial primary ideals, let us say $\sqrt{P_1} = (x,y), \sqrt{P_2} = (z,w)$. Then $S/(P_1 + P_2)$ has dimension 0 and from the exact sequence $0 \to S/I \to S/P_1 \oplus S/P_2 \to S/(P_1 + P_2) \to 0$, we get depth(S/I) = 1 by Depth Lemma (see e. g. [2, Proposition 1.2.9]). Thus S/I is not Cohen-Macaulay.

Remark 2.4. The above lemma is trivial when I is a reduced ideal because the simplicial complex associated to I is not connected and so not Cohen-Macaulay. If I is Cohen-Macaulay then \sqrt{I} is too by [6, Theorem 2.6], which gives another proof of this lemma.

Lemma 2.5. Let $I \subset S$ be a monomial ideal such that

$$Ass(S/I) = \{(x, y), (x, z), (x, w)\}\$$

and let $I = P_1 \cap P_2 \cap P_3$ be the irredundant monomial primary decomposition of I, where $\sqrt{P_1} = (x, y)$, $\sqrt{P_2} = (x, z)$, $\sqrt{P_3} = (x, w)$. Then (S/I) is clean.

Proof: Let $I = \bigcap_{i=1}^{s} Q_i$ be the irredundant monomial irreducible decomposition of I. Apply induction on s. If s=3, then $(P_i)_i$ must be irreducible and so P_1 has the form (x^a, y^b) . We consider the filtration $I \subset (I, x^a) \subset (x^a, y^b) \subset S$. Note that $P_1/(I, x^a) \cong S/((I, x^a) : y^b)$. But $((I, x^a) : y^b) = (P_1 \cap (P_2, x^a) \cap ((P_3, x^a) : y^b)) = ((P_2, x^a) : y^b) \cap ((P_3, x^a) : y^b) = (P_2, x^a) \cap (P_3, x^a)$ is clean by Lemma 2.1. Thus $P_3/(I, x^a)$ is clean. Now note that $(I, x^a)/I \cong S/(I : x^a)$. We have $(I : x^a) = (P_2 : x^a) \cap (P_3 : x^a)$ and so $S/(I : x^a)$ is clean by Lemma 2.1. Gluing together the clean filtrations obtained above we get a clean filtration of S/I for s=3. Assume s>3. After renumbering Q_i we may suppose that $Q_1=(x^a,y^b)$ for some a,b. Moreover we may suppose that b is the biggest power of b which can enter in $\bigcup_{i=1}^{s} G(Q_i)$. Consider the filtration as above $a \in A$. We have $a \in A$ is clean. Now note that $a \in A$ is clean by induction hypothesis. As above $a \in A$ is clean $a \in A$ is clean by induction hypothesis. As above

Lemma 2.6. Let $I \subset S$ be a monomial ideal such that

gluing the obtained clean filtrations we get S/I clean.

$$Ass(S/I) = \{(x, y), (x, z), (z, w)\}\$$

and let $I = P_1 \cap P_2 \cap P_3$ be the irredundant monomial primary decomposition of I, where $\sqrt{P_1} = (x, y)$, $\sqrt{P_2} = (x, z)$, $\sqrt{P_3} = (z, w)$. Then the following statements are equivalent:

- i) S/I is clean.
- ii) S/I is Cohen-Macaulay.
- iii) $P_2 \subset P_1 + P_3$.

Proof: $i) \Rightarrow ii$): By [5, Corollary 4.3], we get S/I sequentially Cohen-Macaulay. Since all primes from Ass(S/I) have the same dimension it follows that S/I is

Cohen-Macaulay.

 $iii)\Rightarrow iii)$: Let $J=P_1\cap P_2$. As in the proof of Lemma 2.2, from the exact sequence $0\to S/I\to S/J\oplus S/P_3\to S/(J+P_3)\to 0$, we get that depth(S/I)=1 if $depth(S/(J+P_3))=0$. But $J+P_3=(P_1+P_3)\cap (P_2+P_3)$ and P_1+P_3 is primary of height 4 and P_2+P_3 is primary of height 3. Thus $depth(S/(J+P_3))=0$ if and only if $P_2+P_3\not\subset P_1+P_3$, that is $P_2\not\subset P_1+P_3$. Therefore if $P_2\not\subset P_1+P_3$ then S/I is not Cohen-Macaulay, which proves $ii)\Rightarrow iii$.

 $iii) \Rightarrow i)$: Suppose now that iii) holds and let $I = \bigcap_{i=1}^{s} Q_i$ be the irredundant monomial irreducible decomposition of I. Apply induction on s. If s = 3, then $(P_i)_i$ must be irreducible and so P_3 has the form (z^r, w^t) . We consider the filtration

 $I\subset (I,z^r)\subset (z^r,w^t)\subset S$. Note that $P_3/(I,z^r)\cong S/((I,z^r):w^t)$. But $((I,z^r):w^t)=(((P_1,z^r)\cap (P_2,z^r)\cap P_3):w^t)=((P_1,z^r):w^t)\cap ((P_2,z^r):w^t)=((P_1,z^r)\cap (P_2,z^r))$. As $P_2\subset P_1+P_3$ it follows that $P_2\subset (P_1,z^r)$ and so $(I,z^r):w^t=(P_2,z^r)$ which is primary with $\sqrt{(P_2,z^r)}=(x,z)$. Thus $P_3/(I,z^r)$ is clean. Now note that $(I,z^r)/I\cong S/(I:z^r)$. We have $(I:z^r)=(P_1:z^r)\cap (P_2:z^r)$ and so $S/(I:z^r)$ is clean by Lemma 2.1. Gluing together the clean filtrations obtained above we get a clean filtration of S/I, that is $iii)\Rightarrow i$ for s=3.

Assume s>3. After renumbering Q_i we may suppose that $Q_1=(z^r,w^t)$ for some r,t. Moreover we may suppose that t is the biggest power of w which can enter in $\bigcup_{i=1}^s G(Q_i)$. Consider the filtration as above $I\subset (I,z^r)\subset Q_1=(z^r,w^t)\subset S$. We have $Q_1/(I,z^r)\cong S/((I,z^r):w^t)$ and $((I,z^r):w^t)=((P_1,z^r):w^t)\cap ((P_2,z^r):w^t)\cap ((P_3,z^r):w^t)=(P_1,z^r)\cap (P_2,z^r)=(P_2,z^r)$ as above. Thus $Q_1/(I,z^r)$ is clean. Now note that $(I,z^r)/I\cong S/(I:z^r)$ and $(I:z^r)=\bigcap_{i=2}^s (Q_i:z^r)$ and we apply the induction hypothesis for $(I:z^r)$ if we see that (I,z^r) holds for it. Clearly (I,z^r) can be a proper ideal in this case). As above gluing the obtained clean filtrations we get S/I clean.

Example 2.7. Let $I = (x^2, y) \cap (x, z) \cap (z, w)$. Then S/I is not Cohen-Macaulay by the above lemma, but S/\sqrt{I} is Cohen-Macaulay, because the simplicial complex associated to \sqrt{I} is shellable.

Lemma 2.8. Let $I \subset S$ be a monomial ideal such that

$$Ass(S/I) = \{(x, y), (x, w), (y, w), (x, z)\}\$$

and let $I = P_1 \cap P_2 \cap P_3 \cap P_4$ be the irredundant monomial primary decomposition of I, where $\sqrt{P_1} = (x,y)$, $\sqrt{P_2} = (x,w)$, $\sqrt{P_3} = (y,w)$, $\sqrt{P_4} = (x,z)$. Then the following statements are equivalent:

- i) S/I is clean.
- ii) S/I is Cohen-Macaulay.
- *iii*) $P_1 \subset P_3 + P_4$ or $P_2 \subset P_3 + P_4$.

Proof: i) $\Rightarrow ii$) as in Lemma 2.6.

 $iii)\Rightarrow iii)$: Let $J=P_1\cap P_2\cap P_4$. From the exact sequence $0\to S/I\to S/J\oplus S/P_3\to S/(J+P_3)\to 0$, we get that depth(S/I)=1 if $depth(S/J+P_3)=0$. But $(J+P_3)=(P_1+P_3)\cap (P_2+P_3)\cap (P_4+P_3)$, where (P_4+P_3) is primary of height 4 and $(P_1+P_3), (P_2+P_3)$ are primary of height 3. Thus $depth(S/(J+P_3))=0$ if and only if $P_1+P_3\not\subset P_4+P_3$ and $P_2\neq P_4+P_3$, that is $P_1\not\subset P_4+P_3$ and $P_2\not\subset P_4+P_3$. Therefore if $P_1\not\subset P_4+P_3$ and $P_2\not\subset P_4+P_3$ then S/I is not Cohen-Macaulay, which proves $ii)\Rightarrow iii)$.

 $iii) \Rightarrow i)$: Let $I = \bigcap_{i=1}^{s} Q_i$ be the irredundant monomial irreducible decomposition of I. Applying induction on s. If s=4, then (P_i) must be irreducible and so P_1 has the form (x^a,y^b) . Let iii) holds, let us say $P_1 \subset P_3 + P_4$. Consider the filtration $I \subset (I,x^a) \subset (x^a,y^b) \subset S$. Note that $P_1/(I,x^a) \cong S/((I,x^a):y^b)$. But $((I,x^a):y^b) = (P_1 \cap (P_2,x^a) \cap (P_3,x^a) \cap ((P_4,x^a):y^b) = ((P_2,x^a):y^b) \cap ((P_3,x^a):y^b) \cap (P_4,x^a)$. As $P_1 \subset P_4 + P_3$ it follows that b is the biggest power of y appearing in

$$\{G(P_1), G(P_3)\}$$

and so $(I, x^a) : y^b$ is generated by the variables in x, z, w only, and hence clean by Lemma 2.1.

Now note that $(I, x^a)/I \cong S/(I : x^a)$. We have $(I : x^a) = (P_2 : x^a) \cap (P_3 : x^a) \cap (P_4 : x^a)$, again since by hypothesis $(I : x^a) = P_2 \cap P_3$, and so $S/(I : x^a)$ is clean by Lemma 2.2. Gluing together the filtration described above we get a clean filtration of S/I.

Similarly, if $P_2 \subset P_3 + P_4$, and $P_2 = (x^n, w^p)$, then the filtration $I \subset (I, x^n) \subset (x^n, w^p) \subset S$ is refined to a clean one. That is $iii) \Rightarrow i$ for s = 4.

Assume s > 4. After renumbering Q_i we may suppose that $Q_1 = (x^a, y^b)$ for some a, b. Moreover we may suppose that b is the biggest power of y which can enter in $G(Q_i)$ with $\sqrt{Q_i} = (x, y)$. Consider the filtration as above $I \subset (I, x^a) \subset Q_1 = (x^a, y^b) \subset S$. We have $Q_1/(I, x^a) \cong S/((I, x^a) : y^b)$ and $(I, x^a) : y^b = (P_2, x^a) \cap ((P_3, x^a) : y^b) \cap (P_4, x^a)$. As $P_1 \subset P_3 + P_4$ it follows that b is the biggest power of y, which appear in $G(P_3)$. Thus $(I, x^a) : y^b = (P_2, x^a) \cap (P_4, x^a)$ and so $Q_1/(I, x^a)$ is clean by Lemma 2.1. Now note that $(I, x^a)/I \cong S/(I : x^a)$ and $(I : x^a) = \bigcap_{i=2}^s (Q_i : x^a)$ and we apply the induction hypothesis for $(I : x^a)$ if we

see that iii) holds for it. Clearly iii) implies $(P_1:x^a) \subset (P_3:x^a) + (P_4:x^a)$ which is enough. As above gluing the described clean filtration we get S/I clean. Similarly for $P_2 \subset P_3 + P_4$, choosing $Q_1 = (x^n, w^p)$, we complete the proof as above.

Lemma 2.9. Let $I \subset S$ be a monomial ideal such that

$$Ass(S/I) = \{(x, y), (x, z), (z, w), (y, w)\}\$$

and let $I = P_1 \cap P_2 \cap P_3 \cap P_4$ be the irredundant monomial primary decomposition of I, where $\sqrt{P_1} = (x, y)$, $\sqrt{P_2} = (x, z)$, $\sqrt{P_3} = (z, w)$, $\sqrt{P_4} = (y, w)$. Then the following statements are equivalent:

- i) S/I is clean.
- ii) S/I is Cohen-Macaulay.
- *iii*) $\{P_1 \subset P_2 + P_4 \text{ or } P_3 \subset P_2 + P_4\}$ and $\{P_2 \subset P_1 + P_3 \text{ or } P_4 \subset P_1 + P_3\}$.

Proof: i) $\Rightarrow ii$) as in Lemma 2.6.

 $iii)\Rightarrow iii)$: Let $J=P_1\cap P_2\cap P_3$. From the exact sequence $0\to S/I\to S/J\oplus S/P_4\to S/(J+P_4)\to 0$, we get that depth(S/I)=1 if $depth(S/J+P_4)=0$. But $(J+P_4)=(P_1+P_4)\cap (P_2+P_4)\cap (P_4+P_3)$, where (P_2+P_4) is primary of height 4 and $(P_1+P_4), (P_3+P_4)$ are primary of height 3. Thus $depth(S/J+P_4)=0$ if and only if $P_1+P_4\not\subset P_2+P_4$ and $P_3+P_4\not\subset P_2+P_4$, that is $P_1\not\subset P_2+P_4$ and $P_3\not\subset P_2+P_4$. Therefore if $P_1\not\subset P_2+P_4$ and $P_3\not\subset P_2+P_4$ then S/I is not Cohen-Macaulay.

On the other hand if $J = P_1 \cap P_2 \cap P_4$ then the exact sequence $0 \to S/I \to S/J \oplus S/P_3 \to S/(J+P_3) \to 0$ gives the other conditions i.e. $P_2 \subset P_1 + P_3$ or $P_4 \subset P_1 + P_3$. Remaining choices for J, are equivalent to these two cases, which proves $ii) \Rightarrow iii$.

 $(iii) \Rightarrow i)$: Suppose now that (iii) holds, let us say $\{P_1 \subset P_2 + P_4, P_2 \subset P_1 + P_3\}$ holds. Let $I = \bigcap^s Q_i$ be the irredundant monomial irreducible decomposition of

I. Apply induction on s. If s = 4, then (P_i) must be irreducible and so P_1 has the form (x^a, y^b) . We consider the filtration

 $I \subset (I, x^a) \subset (x^a, y^b) \subset S$. Note that $P_1/(I, x^a) \cong S/((I, x^a) : y^b)$. But $(I, x^a) : y^b = (P_1 \cap (P_2, x^a) \cap (P_3, x^a) \cap (P_4, x^a)) : y^b = ((P_2, x^a) : y^b) \cap ((P_4, x^a) : y^b) \cap ((P_4, x^a) : y^b)$.

As $P_1 \subset P_2 + P_4$, so b is the biggest power of y in $\{G(P_1), G(P_4)\}$. It follows that $(I, x^a): y^b = (P_2, x^a) \cap (P_3, x^a)$. Since $P_2 \subset P_1 + P_3$ it follows that $(P_2, x^a) = P_2 \subset (P_3, x^a)$. Thus $(I, x^a): y^b$ is primary and so clean.

Now note that $(I, x^a)/I \cong S/(I : x^a)$. We have $(I : x^a) = (P_2 : x^a) \cap (P_3 : x^a) \cap (P_4 : x^a)$. As above a is the biggest power of x in $G(P_2)$ because $P_1 \subset P_2 + P_4$. Thus $I : x^a = P_3 \cap P_4$ and so $S/(I : x^a)$ is clean by again Lemma 2.1. Gluing together the clean filtrations obtained above we get a clean filtration of S/I, that is when s = 4, then i) holds for $\{P_1 \subset P_2 + P_4, P_2 \subset P_1 + P_3\}$.

Assume s>4. After renumbering Q_i we may suppose that $Q_1=(x^a,y^b)$ for some a,b. Moreover we may suppose that b is the biggest power of y which can enter in $G(Q_i)$ with $\sqrt{Q_i}=(x,y)$. Consider the filtration as above $I\subset (I,x^a)\subset Q_1=(x^a,y^b)\subset S$. We have $Q_1/(I,x^a)\cong S/((I,x^a):y^b)$ and $(I,x^a):y^b=(P_2,x^a)\cap (P_3,x^a)\cap ((P_4,x^a):y^b)=(P_2,x^a)\cap (P_3,x^a)$ as above because $P_1\subset P_2+P_4$. Since $P_2\subset P_1+P_3$ we see that $(P_2,x^a)\subset (P_3,x^a)$ and so $(I,x^a):y^b=(P_2,x^a)$ is primary. Thus $Q_1/(I,x^a)$ is clean. Now note that $(I,x^a)/I\cong S/(I:x^a)$ and $(I:x^a)=\bigcap_{i=2}^s (Q_i:x^a)$ and we apply the induction hypothesis for $(I:x^a)$ if we see that $(P_1:x^a)\subset (P_2:x^a)+(P_4:x^a)$ and

 $(P_2:x^a)\subset (P_1:x^a)+(P_3:x^a)$ which is clear. As above gluing the obtained clean filtrations we get S/I clean.

Other cases from *iii*), i.e. $\{P_1 \subset P_2 + P_4, P_4 \subset P_1 + P_3\}$, $\{P_3 \subset P_2 + P_4, P_2 \subset P_1 + P_3\}$ and $\{P_3 \subset P_2 + P_4, P_4 \subset P_1 + P_3\}$ are similar.

Lemma 2.10. Let $I \subset S$ be a monomial ideal such that

$$Ass(S/I) = \{(x, y), (x, z), (z, w), (y, w), (y, z)\}\$$

and let $I = P_1 \cap P_2 \cap P_3 \cap P_4 \cap P_5$ be the irredundant monomial primary decomposition of I, where $\sqrt{P_1} = (x, y)$, $\sqrt{P_2} = (x, z)$, $\sqrt{P_3} = (z, w)$, $\sqrt{P_4} = (y, w)$, $\sqrt{P_5} = (y, z)$. Then the following statements are equivalent: i) S/I is clean.

ii) S/I is Cohen-Macaulay.

iii) $\{P_1 \subset P_2 + P_4 \text{ or } P_3 \subset P_2 + P_4 \text{ or } P_5 \subset P_2 + P_4\}$ and $\{P_2 \subset P_1 + P_3 \text{ or } P_4 \subset P_1 + P_3 \text{ or } P_5 \subset P_1 + P_3\}.$

Proof: i) $\Rightarrow ii$) as in Lemma 2.6.

 $iii)\Rightarrow iii):$ Let $J=P_1\cap P_2\cap P_3\cap P_5.$ From the exact sequence $0\to S/I\to S/J\oplus S/P_4\to S/(J+P_4)\to 0$, we get that depth(S/I)=1 if $depth(S/J+P_4)=0.$ But $(J+P_4)=(P_1+P_4)\cap (P_2+P_4)\cap (P_3+P_4)\cap (P_5+P_4),$ where (P_2+P_4) is primary of height 4 and $(P_1+P_4), (P_3+P_4), (P_4+P_5)$ are primary of height 3. Thus $depth(S/J+P_4)=0$ if and only if $P_1+P_4\not\subset P_2+P_4$ and $P_3+P_4\not\subset P_2+P_4$ and $P_3+P_4\not\subset P_2+P_4$ and $P_5\not\subset P_2+P_4$. Therefore if $P_1\not\subset P_2+P_4$ and $P_3\not\subset P_2+P_4$ and $P_5\not\subset P_2+P_4$ then S/I is not Cohen-Macaulay.

On the other hand if $J = P_1 \cap P_2 \cap P_4 \cap P_5$ then the exact sequence $0 \to S/I \to S/J \oplus S/P_3 \to S/(J+P_3) \to 0$ gives the other conditions i.e. $P_2 \subset P_1 + P_3$ or $P_4 \subset P_1 + P_3$ or $P_5 \subset P_1 + P_3$. Remaining choices for J, are equivalent to these two cases, which proves $ii) \Rightarrow iii$.

 $iii) \Rightarrow i)$: Suppose now that iii) holds, let us say $\{P_1 \subset P_2 + P_4, P_2 \subset P_1 + P_3\}$ holds. Let $I = \bigcap_{i=1}^s Q_i$ be the irredundant monomial irreducible decomposition of I. Apply induction on s. If s = 5, then (P_i) must be irreducible and so P_1 has the form (x^a, y^b) .

Here we can suppose b to be the biggest power of y in $\{P_1,P_4\}$ because $P_1 \subset P_2 + P_4$. If $y^b \in G(P_5)$ then we consider the filtration $I \subset (I,x^a) \subset (x^a,y^b) \subset S$. Note that $P_1/(I,x^a) \cong S/((I,x^a):y^b)$. But $((I,x^a):y^b) = (P_2,x^a) \cap (P_3,x^a) = (P_2,x^a)$ because $P_2 \subset P_1 + P_3$. Thus $P_1/(I,x^a)$ is clean. Also note that $(I,x^a)/I \cong S/(I:x^a)$ and $I:x^a = P_3 \cap P_4 \cap P_5$ because $P_1 \subset P_2 + P_4$. Thus $(I,x^a)/I$ is clean by Lemma 2.2. If $y^b \notin G(P_5)$ then let $P_5 = (y^r,z^t)$ and we consider the filtration $I \subset (I,z^t) \subset (y^r,z^t) \subset S$. As above we have $P_5/(I,z^t) \cong S/((I,z^t):y^r)$ and $((I,z^t):y^r) = (P_2,z^t) \cap (P_3,z^t)$. Thus $P_5/(I,z^t)$ is clean by Lemma 2.1. Also note that $(I,z^t)/I \cong S/(I:z^t)$. Since $I:z^t=$

 $P_1 \cap (P_2:z^t) \cap (P_3:z^t) \cap P_4$ we see that $(I,z^t)/I$ is clean by Lemma 2.9. Gluing together the clean filtrations obtained above we get a clean filtration of S/I, that is when s = 5, then i) holds for $\{P_1 \subset P_2 + P_4, P_2 \subset P_1 + P_3\}$. Assume s > 5. After renumbering Q_i we may suppose that $Q_1 = (x^a, y^b)$ for some a, b. Moreover we may suppose that b is the biggest power of y which can enter in $G(Q_i)$ with $\sqrt{Q_i} = (x, y)$. If $y^b \in G(P_5)$ consider the filtration as above $I \subset (I,x^a) \subset Q_1 = (x^a,y^b) \subset S$. We have $Q_1/(I,x^a) \cong S/((I,x^a):y^b)$ and $(I, x^a): y^b = (P_2, x^a) \cap (P_3, x^a)$ because $P_1 \subset P_2 + P_4$. Also we get $x^a \in G(P_2)$. Since $P_2 \subset P_1 + P_3$ we have $P_2 \subset (P_3, x^a)$ and so $(I, x^a) : y^b = P_2$ is primary. Thus $Q_1/(I,x^a)$ is clean. Now note that $(I,x^a)/I \cong S/(I:x^a)$ and $(I:x^a)=$ \bigcap $(Q_i:x^a)$ and we apply the induction hypothesis because $(I:x^a)$ satisfies the condition similar to iii). Gluing the obtained clean filtrations we get S/I clean. If $y^b \notin G(P_5)$ then $y^r \in G(P_5)$ for some r > b. After renumbering Q_i we may suppose that $Q_1 = (y^r, z^t)$. We consider the filtration $I \subset (I, z^t) \subset Q_1 \subset S$. We have $Q_1/(I, z^t) \cong S/((I, z^t) : y^r)$ and $((I, z^t) : y^r) = (P_2, z^t) \cap (P_3, z^t)$ and applying Lemma 2.1 we get $Q_1/(I,z^t)$ clean. Now the proof goes as above. Other cases from iii) are similar.

Lemma 2.11. Let $I \subset S$ be a monomial ideal such that

$$Ass(S/I) = \{(x, y), (x, z), (z, w), (y, w), (y, z), (x, w)\}$$

and let $I=P_1\cap P_2\cap P_3\cap P_4\cap P_5\cap P_6$ be the irredundant monomial primary decomposition of I, where $\sqrt{P_1}=(x,y),\ \sqrt{P_2}=(x,z),\ \sqrt{P_3}=(z,w),\ \sqrt{P_4}=(y,w),\ \sqrt{P_5}=(y,z),\ \sqrt{P_6}=(x,w).$ Then the following statements are equivalent: i) S/I is clean.

ii) S/I is Cohen-Macaulay.

iii)
$$\{P_1 \subset P_5 + P_6 \text{ or } P_2 \subset P_5 + P_6 \text{ or } P_3 \subset P_5 + P_6 \text{ or } P_4 \subset P_5 + P_6\}$$

and $\{P_1 \subset P_2 + P_4 \text{ or } P_3 \subset P_2 + P_4 \text{ or } P_5 \subset P_2 + P_4 \text{ or } P_6 \subset P_2 + P_4\}$
and $\{P_2 \subset P_1 + P_3 \text{ or } P_4 \subset P_1 + P_3 \text{ or } P_5 \subset P_1 + P_3 \text{ or } P_6 \subset P_1 + P_3\}.$

Proof: i) $\Rightarrow ii$) as in Lemma 2.6.

 $iii)\Rightarrow iii):$ Let $J=P_1\cap P_2\cap P_3\cap P_4\cap P_5.$ From the exact sequence $0\to S/I\to S/J\oplus S/P_6\to S/(J+P_6)\to 0$, we get that depth(S/I)=1 if $depth(S/J+P_6)=0.$ But $(J+P_6)=(P_1+P_6)\cap (P_2+P_6)\cap (P_3+P_6)\cap (P_4+P_6)\cap (P_5+P_6),$ where (P_5+P_6) is primary of height 4 and $\{(P_1+P_6),(P_2+P_6),(P_3+P_6),(P_4+P_6)\}$ are primary of height 3. Thus $depth(S/J+P_6)=0$ if and only if $P_1+P_6\not\subset P_5+P_6$ and $P_2+P_6\not\subset P_5+P_6$ and $P_3+P_6\not\subset P_5+P_6$ and $P_4+P_6\not\subset P_5+P_6$, that is $P_1\not\subset P_5+P_6$ and $P_2\not\subset P_5+P_6$ and $P_3\not\subset P_5+P_6$ and $P_4\not\subset P_5+P_6$. So this gives one condition of iii).

On the other hand if $J = P_1 \cap P_2 \cap P_3 \cap P_5 \cap P_6$ then the exact sequence $0 \to S/I \to S/J \oplus S/P_4 \to S/(J+P_4) \to 0$ gives the second condition of iii). And finally if $J = P_1 \cap P_2 \cap P_4 \cap P_5 \cap P_6$ then the exact sequence $0 \to S/I \to S/J \oplus S/P_3 \to S/I \to S/I \to S/I$

 $S/(J+P_3) \to 0$ gives the second condition of iii). Remaining choices for J, are equivalent to these three cases, which proves $ii) \Rightarrow iii$).

 $(iii) \Rightarrow i)$: Suppose now that (iii) holds, let us say $\{P_1 \subset P_5 + P_6, P_1 \subset P_2 + P_4, P_2 \subset P_1 + P_3\}$ holds. Let $I = \bigcap_{i=1}^s Q_i$ be the irredundant monomial irreducible

decomposition of I. Apply induction on s. If s = 6, then (P_i) must be irreducible and so P_1 has the form (x^a, y^b) . We consider the filtration

 $I \subset (I, x^a) \subset (x^a, y^b) \subset S$. Note that $P_1/(I, x^a) \cong S/((I, x^a) : y^b)$. But $(I, x^a) : y^b = (P_2, x^a) \cap (P_3, x^a) \cap ((P_4, x^a) : y^b) \cap ((P_5, x^a) : y^b) \cap (P_6, x^a)$.

As $P_1 \subset P_2 + P_4$ and $P_1 \subset P_5 + P_6$, b is biggest power of y in $\{G(P_1), G(P_4), G(P_5)\}$ and thus $(I, x^a) : y^b = (P_2, x^a) \cap (P_3, x^a) \cap (P_6, x^a)$. Also since $P_2 \subset P_1 + P_3$ it follows that $(P_2, x^a) = P_2 \subset (P_3, x^a)$. Thus $(I, x^a) : y^b = (P_2, x^a) \cap (P_6, x^a)$ and $P_1/(I, x^a)$ is clean by Lemma 2.1.

Now note that $(I,x^a)/I \cong S/(I:x^a)$. We have $(I:x^a)=(P_2:x^a)\cap (P_3:x^a)\cap (P_4:x^a)\cap (P_5:x^a)\cap (P_6:x^a)$. As above a is the biggest power of x in $G(P_1),G(P_2),G(P_6)$. It follows $I:x^a=P_3\cap P_4\cap P_5$, so $S/(I:x^a)$ is clean by Lemma 2.2. Gluing together the clean filtrations obtained above we get a clean filtration of S/I, that is when s=5, then i) holds for $\{P_1\subset P_5+P_6,P_1\subset P_2+P_4,P_2\subset P_1+P_3\}$.

Assume s>5. After renumbering Q_i we may suppose that $Q_1=(x^a,y^b)$ for some a,b. Moreover we may suppose that b is the biggest power of y which can enter in $G(Q_i)$ with $\sqrt{Q_i}=(x,y)$. Consider the filtration as above $I\subset (I,x^a)\subset Q_1=(x^a,y^b)\subset S$. We have $Q_1/(I,x^a)\cong S/((I,x^a):y^b)$ and $(I,x^a):y^b=(P_2,x^a)\cap (P_3,x^a)\cap (P_6,x^a)$ because $P_1\subset P_2+P_4$, $P_1\subset P_5+P_6$. We get also $x^a\in P_2$. Since $P_2\subset P_1+P_3$ we have $(P_2,x^a)\subset (P_3,x^a)$ and so $(I,x^a):y^b=(P_2,x^a)\cap (P_6,x^a)$. Thus $Q_1/(I,x^a)$ is clean by Lemma 2.1. Now note that $(I,x^a)/I\cong S/(I:x^a)$ and $(I:x^a)=\bigcap_{i=2}^s (Q_i:x^a)$ and we apply the induction hypothesis for $(I:x^a)$ because the condition iii are fulfilled in this case. As above gluing the obtained clean filtrations we get S/I clean. Other cases from iii, are similar.

References

- [1] W. Bruns, J. Herzog, On multigraded resolutions, Math. Proc. Camb. Phil. Soc., 118,(1995), 245-257.
- [2] W. Bruns, J. Herzog, Cohen-Macaulay rings, Revised Edition, Cambridge, 1996.
- [3] A. Dress, A new algebraic criterion for shellability, Beitr. Algebr. Geom. **340**(1), (1993), 45-55.

- [4] J. Herzog, A. Soleyman Jahan, S. Yassemi, Stanley decompositions and partitionable simplicial complexes, Preprint 2007, Arxiv:Math.AC/0612848v2.
- [5] J. Herzog, D. Popescu, Finite filtrations of modules and shellable multi-complexes, Manuscripta Math. 121, (2006), 385-410.
- [6] J. HERZOG, Y. TAKAYAMA, N. TERAI, On the radical of a monomial ideal, Archiv Math. 85, (2005), 397-408.
- [7] D. Popescu, Criterions for shellable multicomplexes, An. St. Univ. Ovidius, Constanta 14(2), (2006),73-84, Arxiv:Math.AC/0505655.
- [8] P. Schenzel, On the dimension filtrations and Cohen-Macaulay filtered modules, In: *Commutative algebra and algebraic geometry (Ferrara)*, Lecture Notes in Pure and Appl. Math. **206**, Dekker, New York, 1999, 245-264.
- [9] A. Soleyman Jahan, Prime filtrations of monomial ideals and polarizations, to appear in J. Alg., Arxiv:Math.AC/0605119.
- [10] R. P. Stanley, Linear Diophantine equations and local cohomology, Invent. Math. 68, (1982), 175-193.
- [11] R. H. VILLARREAL, Monomial algebras, Dekker, New York, 2001.

Received: 1.02.2007.

School of Mathematical Sciences, 68-B New Muslim Town, Lahore,Pakistan. E-mail: sarfraz110gmail.com

Institute of Mathematics "Simion Stoilow",
University of Bucharest,
P.O.Box 1-764,
Bucharest 014700, Romania.
E-mail: dorin.popescu@imar.ro