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Abstract

Let I be a monomial ideal of the polynomial ring S = K[z1, ..., z4] over
a field K. Then S/I is sequentially Cohen-Macaulay if and only if S/I is
pretty clean. In particular, if S/I is sequentially Cohen-Macaulay then I is
a Stanley ideal.
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Introduction

Let S = K|z1,...,z,] be a polynomial ring over a field K and I C S a monomial
ideal. If S/I is Gorenstein of codimension three then a description of I is given
in [1, Theorem 6.1] in terms of the minimal system of monomial generators. Here
we are interested to describe monomial ideals I when n = 4 and S/I is Cohen-
Macaulay of codimension two in terms of the primary decomposition of I. As
a consequence we get a particular form of [4, Proposition 1.4] for n = 4, which
says that if S/I is Cohen-Macaulay of codimension two then S/I is clean, that
is (after [3]) there exists a prime filtration I = Fp C Fy C ... C F, = S of
monomial ideals such that F;/F;_1 = (S/P;)(a;) for some prime ideals P; of S
with ht(P;) = dim(S/I) and a; € Z,i =1,...,r.

More general, given a monomial ideal I of S then S/I is called pretty clean
after [5] if there exists a prime filtration I C F; C ... C F. = S of monomial
ideals such that F;/F;_1 = S/P;(a;) for some prime ideals P; of S with the
property that P, C P; and ¢ < j implies P, = P;, that is, roughly speaking,
"bigger primes come first” in the filtration. [5, Corollary 4.3] says that if S/I
is pretty clean then S/I is sequentially Cohen-Macaulay, that is the non-zero
factors of the dimension filtration of [8] (see next section) are Cohen-Macaulay.
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Our Theorem 1.3 says that for n = 4 it is true also the converse, namely that if
S/1 is sequentially Cohen-Macaulay then S/I is pretty clean.

A decomposition of S/I as a direct sum of linear K-spaces of the form S/I =
®_,u;K[Z;], where u; are monomials of S and Z; C {z1,...,2,} are subsets, is
called a Stanley decomposition. Stanley [10] conjectured that there always exists
such a decomposition such that |Z;| > depth(S/I). If Stanley conjecture holds
for S/I then I is called a Stanley ideal. Our Corollary 1.4 says that if n =4, I
is monomial and S/I is sequentially Cohen-Macaulay then I is a Stanley ideal
(this follows because I is a Stanley ideal whenever S/T is pretty clean as says [5,
Theorem 6.5]).

1 Sequentially Cohen-Macaulay monomial ideals of embedding di-
mension four are pretty clean

Let S = K|z1,...,%,] be a polynomial ring over a field K. The following result
[4, Proposition 1.4] is essential in this section.

Theorem 1.1 (Herzog-Soleyman Jahan-Yassemi). Let I C S be a mono-
mial ideal of height two such that S/I is Cohen-Macaulay. Then S/I is clean.

The proof of Herzog, Soleyman Jahan and Yassemi passes the problem to the
polarization, where they could use strong tools from simplicial complex theory.
In the next section we give a direct proof in the case n = 4, which uses just
elementary theory of monomial ideals. With this occasion we give also a complete
description of all monomials ideals I of height 2 in the case n = 4 with S/I Cohen-
Macaulay. The conditions given in this description are sometimes difficult but
they could easily give nice examples of monomial ideals I with S/I not Cohen-
Macaulay, but having all associated primes of height 2 and with S/ VI Cohen-
Macaulay (see Example 2.7). Certainly if S/I is Cohen-Macaulay then S/+/T is
too by [6, Theorem 2.6] (this holds only for monomial ideals). We mention that
special descriptions of some monomial Cohen-Macaulay ideals of codimension 2
are given in [6, Theorem 3.2].

Let I C S be a monomial ideal and I = (\,cass/ry Pos VPr = ps an
irredundant primary decomposition of I. Set D;(I) = [,¢ ass>i(syry Fp» for
—1 < i < n, where Ass”*(S/I) = {p € Ass(S/I) : dim(S/p) > i}. We get in this
way the dimension filtration of S/I

I = D_l(I) C .D()(I) c...C Dn_Q(I) C Dn_l(I) = S,

introduced by Schenzel [8] (n is the number of variables of S). S/I is sequentially
Cohen-Macaulay if all non-zero factors of this filtration are Cohen-Macaulay. In
the monomial case, the notions of ”sequentially Cohen-Macaulay” and ”pretty
clean” are connected by the following result of [5, Corollary 4.3].

Theorem 1.2 (Herzog-Popescu). Let I C S be a monomial ideal and
I = D_l(I) C Do(I) Cc...C Dn_Q(I) C Dn_l(I) =5
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the dimension filtration of S/I. Then the following statements are equivalent:
1. S/I is pretty clean,

2. S/I is sequentially Cohen-Macaulay and all non-zero factors of the dimen-
sion filtration are clean,

3. all non-zero factors of the dimension filtration are clean.

From now on S = K|z,y, z,w], that is the case n = 4. The above theorems
are main tools in proving the following:

Theorem 1.3. Let I C S = K|z,y,2,w] be a monomial ideal. Then S/I is
pretty clean if and only if I is sequentially Cohen-Macaulay.

Proof: By Theorem 1.2 it is enough to show that the non-zero factors of the
dimension filtration

I: D_l(.[) C Do(I) C Dl(I) C DQ(I) C D3(I) = S,

are clean if they are Cohen-Macaulay. Since S is factorial ring and Dy(I) is
an intersection of primary height one ideals we get Dy(I) = (u) for a cer-
tain monomial v € S. Clearly S/(u) is clean (see e. g. [9, Lemma 1.9]).
As Do(I)/Dy(I) = S/(D1(I) : w) is Cohen-Macaulay of dimension 2 we get
D»(I)/Dy(I) clean by Theorem 1.1. Now note that Dy(I)/Do(I) and D (I)/I
are clean by [7, Corollary 2.2] because the prime ideals associated to those mod-
ules are of height > 3. d

Corollary 1.4. Let I C S = K|z,y, z,w] be a monomial ideal. If S/I is sequen-
tially Cohen-Macaulay then I is a Stanley ideal.

Proof: By the above theorem S/T is pretty clean and it is enough to apply [5,
Theorem 6.5]. O

2 Proof of Theorem 1.1 in the case n =4

Let K be a field and S = K|z,y, z,w] be the polynomial ring in four variables.
We denote G(I) to be the set of minimal monomial generators for an ideal I in
S. First next lemmas , which involve ideals generated in 3 variables are easy and
contained somehow in [9], but we prove them for the sake of our completeness.

Lemma 2.1. Let I C S be a monomial ideal such that Ass(S/I) = {(z,y), (z,2)}.
Then S/I is clean.
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Proof: Let I = () Q; be the irredundant decomposition of I in irreducible
i=1

monomial ideals (see [11]). Let @; = (z%,%%) and J = () Q;, where b is the

=2
maximum power of y, which enters in G(Q;). Then we have the filtration I C
(I,z*)C Q1 CS.
Clearly S/Q); is clean. Apply induction on s. We have Q;/(I,z*) = S/((I,z*) :
y®). As G((I,z%) : y®) contains only monomials in {z, 2} we see that ((I,z%) : y?)
is primary because it is the intersection of those (Q;, %) with \/Q; = (z, z). Thus
Q1/(I,z%) is clean.

8

On the other hand (I,2%)/I = S/(I : z%) and (I : 2*) = [](Q; : z*). We are

i=2
done by induction hypothesis on s > 2, case s = 2 being trivial since (I : %) is
irreducible. Thus (I,z%)/I is clean. |

Lemma 2.2. Let I C S be a monomial ideal such that

Ass(S/I) = {(z,y), (z, 2), (y, 2)}.
Then S/I is clean.

Proof: Let I = () @; be the irredundant decomposition of I in irreducible
i=1

monomial ideals. Let Q1 = (z2,9°%) and J = [ Q;, where b is the maximum
i=2

such that y® enter in G(Q;). Then we have the filtration I C (I,2%) C Q; C S.

Clearly S/ is clean. Apply induction on s. We have Q1/(I,z*) = S/((I,z*) :

y®). As G((I,z%) : y®) contains only monomials in {z, 2z} we see that ((I,z%) : y°)

is primary and its radical is (z, z). Thus Q1/(I,z%) is clean.

On the other hand S/(I : z%) = (I,2%)/I and (I : z%) = () (Q; : z*). We apply
=2

induction hypothesis on s > 3, (I : %) being in the case s = 3 just an irreducible

ideal. Thus (I,z%)/I is clean. g

Lemma 2.3. Let I C S be a monomial ideal such that Ass(S/I) = {(z,y), (z,w)}.
Then S/I is not Cohen-Macaulay.

Proof: Let I = P, N P, be the irredundant decomposition of I in monomial
primary ideals, let us say P, = (z,v),vV/P> = (2,w). Then S/(P; + P,) has
dimension 0 and from the exact sequence 0 — S/I — S/P & S/P, — S/(P +
P,) — 0, we get depth(S/I) = 1 by Depth Lemma (see e. g. [2, Proposition
1.2.9]). Thus S/I is not Cohen-Macaulay. O
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Remark 2.4. The above lemma is trivial when I is a reduced ideal because the
simplicial complex associated to I is not connected and so not Cohen-Macaulay.
If I is Cohen-Macaulay then /T is too by [6, Theorem 2.6], which gives another
proof of this lemma.

Lemma 2.5. Let I C S be a monomial ideal such that

Ass(S/I) = {(z,y), (z, 2), (z,w)}

and let I = Py N P, N P; be the irredundant monomial primary decomposition of

I, where /P = (z,y), VP2 = (z,2), VP;s = (z,w). Then (S/I) is clean.

i
Proof: Let I = () @; be the irredundant monomial irreducible decomposition

=1
of I. Apply induction on s. If s = 3, then (P;); must be irreducible and so P;
has the form (z2,y®). We consider the filtration
I c (I,z%) C (z%,y%) C S. Note that P,/(I,z%) = S/((I,z%) : y®). But
((L,2%) :y") = (PLN (P, 2) N ((P3,27) : 9°)) = (P2, 2%) :9") N ((Ps,2%) 1 9°) =
(Py,z*) N (Ps,z%) is clean by Lemma 2.1. Thus P3/(I,z%) is clean.
Now note that (I,z*)/I =2 S/(I : z*). We have (I : z%) = (P2 : %) N (P5 : 2%)
and so S/(I : z%) is clean by Lemma 2.1. Gluing together the clean filtrations
obtained above we get a clean filtration of S/I for s = 3.
Assume s > 3. After renumbering (); we may suppose that Q1 = (22, y®) for some
a,b. Moreover we may suppose that b is the biggest power of y which can enter

in LSJ G(Q;). Consider the filtration as above I C (I,z%) C Q1 = (z%,y°) C S.
i=1

We have Q1/(I,z%) = S/((I,z%) : y°) and (I,2°) : y* = (P,2%) N (Ps,2?) as
above. Thus Q1/(I,z") is clean. Now note that (I,z*)/I = S/(I : z°) and

(I:2%) = N(Q;:z%) and S/(I : z*) is clean by induction hypothesis. As above
i=2
gluing the obtained clean filtrations we get S/I clean. a

Lemma 2.6. Let I C S be a monomial ideal such that

ASS(S/I) = {(may)a (.’L‘,Z), (Z,’LU)}

and let I = PN P, NP3 be the irredundant monomial primary decomposition of I,
where /P, = (z,y), VP2 = (z,2), V/P3 = (2,w). Then the following statements
are equivalent:

i) S/T is clean.

i1) S/I is Cohen-Macaulay.

7,7,7,) P, C P, + P;.

Proof: i) = ii) : By [5, Corollary 4.3], we get S/I sequentially Cohen-Macaulay.
Since all primes from Ass(S/I) have the same dimension it follows that S/I is
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Cohen-Macaulay.

1) = 1) : Let J = Py N P2. As in the proof of Lemma 2.2, from the exact se-
quence 0 = S/I = S/J®S/Ps = S/(J+ P3) — 0, we get that depth(S/I) =1 if
depth(S/(J+P3)) =0. But J+P; = (Pl +P3)ﬂ (PQ +P3) and P, + Ps is primary
of height 4 and P» + Pj is primary of height 3. Thus depth(S/(J + P5)) = 0 if
andonlyifP2+P3 ¢P1 +P3,that is P2 ¢P1 +P3 ThereforeifP2 ¢P1 +P3
then S/T is not Cohen-Macaulay, which proves ii) = m)

i4i) = 1) : Suppose now that 4ii) holds and let I = ﬂ Q; be the irredundant

monomial irreducible decomposition of I. Apply 1nduct10n on s. If s =3, then
(P;); must be irreducible and so P; has the form (2", w!). We consider the filtra-
tion
C (I,z") C (z",w') C S. Note that P;/(I,2") = S/((1,z") : w'). But
(( ,27) s w') = ((Pr,27) N (P, 2") N Py) = w') = ((Pr,27) : w') N ((Pp,2") :
wt) = (Pl, )N (P2, 2"). As P, C P, + P it follows that Pg (P1,2") and so
(I, 2") : wt = (P, 2") which is primary with \/(P,2") = . Thus Ps/(I,2")
is clean. Now note that (I, 2")/I = S/(I : 2"). We have (I z ) (P:2")N(Py:
z") and so S/(I : 2") is clean by Lemma 2.1. Gluing together the clean filtrations
obtained above we get a clean filtration of S/I, that is i#4) = i) for s = 3.
Assume s > 3. After renumbering ; we may suppose that Q; = (2", w?)
for some r,t. Moreover we may suppose that ¢ is the biggest power of w which

can enter in U G(Q;). Consider the filtration as above I C (I,2") C @1 =
i=1

(z",w') C S. Wehavte/(I,zT) = S/((I,z’) cwt) and ((1,27) : wt) = ((P1,27) :
w') N (P, 2") : w') N ((Ps,27) : w') = (P1,2") N (Py,2") = (P, 2") as above.
Thus Q1/(1,2") is clean. Now note that (I,2")/I = S/(I : 2") and (I : 2") =

ﬂ (Q; : 2") and we apply the induction hypothesis for (I : 2") if we see that

zzz) holds for it. Clearly i4) implies (P2 : 2") C (P, : 2") + (P3 : 2") which is
enough (note that (P; : 2") can be a proper ideal in this case). As above gluing
the obtained clean ﬁltrations we get S/I clean. g

Example 2.7. Let I = (z%,y) N (x,2) N (z,w). Then S/I is not Cohen-Macaulay
by the above lemma, but S/ VT is Cohen-Macaulay, because the simplicial com-
plex associated to v/T is shellable.

Lemma 2.8. Let I C S be a monomial ideal such that

Ass(S/1) = {(z,y), (z,w), (y,w), (z, 2)}
and let I = PN Py N P3N Py be the irredundant monomial primary decomposition
Of I, where \/?1 = (way); \/E = (SL“,’IU), \/?3 = (y,w), \/E = (.Z,Z). Then the
following statements are equivalent:
i) S/I is clean.
1) S/I is Cohen-Macaulay.
ZZZ) PrCP3+ Py or P, C P3+ Py
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Proof: i) = ii) as in Lemma 2.6.
1) = 4i1) : Let J = Pp N P, N Py. From the exact sequence 0 — S/I — S/J @
S/P3 — S/(J+Ps) — 0, we get that depth(S/I) = 1if depth(S/J+ Ps) = 0. But
(J + P3) = (P1 + P3) N (P2 + P3) n (P4 + P3), where (P4 + P3) is primary of height
4 and (P1 + Ps), (P> + Ps) are primary of height 3. Thus depth(S/(J + P3)) =0
if and only 1fP1—|—P3 ¢ P4—|—P3 and P2—|-P3 ¢ P4+P3,that is P1 ¢ P4+P3
and P» ¢ Py + Ps. Therefore if P, ¢ Py + P; and P, ¢ Py + P3 then S/I is not
Cohen-Macaulay, which proves ii) = ii4).
s

i1i) = 1) : Let I = [ Q; be the irredundant monomial irreducible decomposition

i=1
of I. Applying induction on s. If s = 4, then (P;) must be irreducible and so
Py has the form (z%,y%). Let 4ii) holds, let us say P, C P3 + P;. Consider the
filtration I C (I,z?) C (22,y%) C S. Note that P, /(I,z%) = S/((I,z?) : y*). But
(L 2%) : 4) = (PO (s, 5N (P, 2N ((Pay ) = 4) = ((Po,5) : yP)(Py,2°) :
") N (Pr, %) : y°) = (P2, 2%) N (B3, %) 1 y°) N (Py, 2%).
As P, C Py + Ps it follows that b is the biggest power of y appearing in

{G(P),G(Ps)}

and so (I,z%) : y® is generated by the variables in x, z, w only, and hence clean
by Lemma 2.1.
Now note that (I,z*)/I = S/(I : z*). We have (I : %) = (P> : z*) N (P :
z*) N (Py : ), again since by hypothesis (I : z*) = P, N Ps, and so S/(I : 2%)
is clean by Lemma 2.2. Gluing together the filtration described above we get a
clean filtration of S/I.
Similarly, if P> C P3 + Py, and P> = (™, wP), then the filtration I C (I,z2™) C
(z™,wP) C S is refined to a clean one. That is i) = i) for s = 4.
Assume s > 4. After renumbering Q; we may suppose that Q; = (2%,y%) for
some a,b. Moreover we may suppose that b is the biggest power of y which can
enter in G(Q;) with v/@Q,; = (z,y). Consider the filtration as above I C (I,z%) C
Q1 = (z%,9%) C S. We have Q/(I,z%) = S/((I,z%) : y*) and (I,z2?) : y* =
(P2, 2*)N((Ps,2%) : y°)N(Py,2%). As P, C P3+ P it follows that b is the biggest
power of y, which appear in G(P3). Thus (I,z%) : y* = (P, z%) N (Py,2%) and
so Q1/(I,z%) is clean by Lemma 2.1. Now note that (I,z*)/I = S/(I : z*) and
(I :2z%) = N(Q; : z*) and we apply the induction hypothesis for (I : z*) if we
i=2
see that i7¢) holds for it. Clearly 4ii) implies (P; : 2%) C (P3 : %) + (P4 : 2%)
which is enough. As above gluing the described clean filtration we get S/I clean.
Similarly for P, C P; + P4, choosing Q1 = (z™,wP), we complete the proof as
above. a

Lemma 2.9. Let I C S be a monomial ideal such that

ASS(S/I) = {(m,y), (.Z',Z), (z,w), (yaw)}
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and let I = P, NP, N P3N Py be the irredundant monomial primary decomposition
Of I, where \/?1 = (xay): \/—E = (.’E,Z), \/I_)Ii = (Z,’UJ), \/E = (yaw)‘ Then the
following statements are equivalent:

i) S/I is clean.

1) S/I is Cohen-Macaulay.

Z’ll) {Pl CP+P,orP3C P +P4} and {P2 CP+P3orPL,CP —|—P3}.

Proof: i) = ii) as in Lemma 2.6.

1) = 4ii) : Let J = Pp N P, N P3. From the exact sequence 0 — S/I — S/J @

S|Py — S/(J+ Ps) — 0, we get that depth(S/I) = 1if depth(S/J+ P;) = 0. But

(J+Py) = (P + Py)N (P2 + P4) N (Py + Ps), where (P2 + Py) is primary of height

4 and (P + P4), (P + P,) are primary of height 3. Thus depth(S/J + P;) =0

if and only 1fP1—|—P4 ¢ P2—|—P4 and P3—|-P4 ¢ P2+P4, that is P1 ¢ P2+P4

and P3 ¢P2 +P4 ThereforeifP1 ¢P2+P4 and P3 ¢P2 +P4 then S/I is not

Cohen-Macaulay.

On the other hand if J = P, N P, N Py then the exact sequence 0 — S/I —

S/J® S/P;s — S/(J + P3) = 0 gives the other conditions i.e. P, C P, + P3 or

P, C P, + P3. Remaining choices for J, are equivalent to these two cases, which

proves i) = iii).

i44) = 1) : Suppose now that 4ii) holds, let us say {P; C P, + Py, P» C P, + Ps}
s

holds. Let I = [\ Q; be the irredundant monomial irreducible decomposition of

=1

I. Apply induction on s. If s = 4, then (P;) must be irreducible and so P; has

the form (2%, y%). We consider the filtration

I c (I,z%) C (z%,9%) C S. Note that P,/(I,2%) = S/((I,z%) : y*). But

(I,2%) : g = (PO (P, %) 1 (Ps, %) N (Py,2%)) : 3 = ((Pa,2%) : 4%) N (P, 27) :

v 0 ((Pa,2%) : 9%) = (Po,%) N (Py, 2%) 0 (1, 2%) - 31).

As P, C Py + Py, so b is the biggest power of y in {G(Py), G(Py)}. It follows that

(I,z%) : y* = (Py,2%) N (Ps,2%). Since P, C P, + P; it follows that (P, z?) =

P, C (P, 2%). Thus (I,z?) : y° is primary and so clean.

Now note that (I,z*)/I = S/(I : z*). We have (I : %) = (P2 : z*) N (P :

x®)N(Py : ). As above a is the biggest power of x in G(P») because Py C Py+P;.

Thus I : 2* = PsN Py and so S/(I : z®) is clean by again Lemma 2.1. Gluing

together the clean filtrations obtained above we get a clean filtration of S/I, that

is when s = 4, then 4) holds for {P, C P, + Py, P, C P, + P3}.

Assume s > 4. After renumbering (); we may suppose that Q; = (22,y%) for

some a,b. Moreover we may suppose that b is the biggest power of y which

can enter in G(Q;) with /Q; = (x,y). Consider the filtration as above I C

(I,2*) C Q1 = (z%y") C S. We have Q1/(,2%) = S/((I,2*) : y*) and (I,2%) :

y® = (P, 2%) N (Ps,2%) N ((Py,2%) : 4°) = (P, z%) N (P3,2%) as above because

P, C P, + P,. Since P, C P, + P; we see that (P,2%) C (P3,z%) and so

(I,2%) : y* = (P,2%) is primary. Thus Q;/(I,2%) is clean. Now note that
s

(I,z%)/I =2 S/(I : z*) and (I : %) = () (Q: : %) and we apply the induction
i=2

hypothesis for (I : z%) if we see that (P : %) C (P2 : 2%) + (Py : 2°) and
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(P2 : %) C (P, : %) + (P53 : %) which is clear. As above gluing the obtained
clean filtrations we get S/I clean.

Other cases from 4ii), i.e. {P, C P, + Py,Py C P+ P}, {Ps C P+ P;,P, C
P+ P3} and {Pg CP+P,PLCP + P3} are similar. O

Lemma 2.10. Let I C S be a monomial ideal such that

Ass(S/1) = {(z,y), (v, 2), (z,w), (y,w), (y,2)}

and let I = P, N P, N P3N Py N Ps be the irredundant monomial primary decom-
position Of I, where \/I_)l = (‘T;y); \/I_)Z = (.’L’,Z), \/?3 = (Z,'LU), \/E = (yaw);
VPs = (y,2). Then the following statements are equivalent:

i) S/I is clean.

1) S/I is Cohen-Macaulay.

’LZZ) {P1 CP,+Pyor P C P+ Py or Py C P2+P4} and {P2 C P, + P; or
Py C P, + P; or P CP1+P3}

Proof: i) = ii) as in Lemma 2.6.
1) = i) : Let J = P, N P, N P3N P;. From the exact sequence 0 — S/I —
S/J®S/Py — S/(J+Py) — 0, we get that depth(S/I) = 1if depth(S/J+P;) = 0.
But (J+ Py) = (Pi + Py) N (P + Py) N (Ps + Py) N (Ps + Py), where (P, + Py) is
primary of height 4 and (P1 + Py), (Ps + Py), (Py + P5) are primary of height 3.
Thus depth(S/J+Py) = 0 if and only if P + Py ¢ Py +Ps and P+ Py ¢ P+ P
andP3+P4 ¢P5+P4,thatisP1 ¢P2—|—P4 andP3 ¢P2+P4 a,ndP5 ¢P2+P4
Therefore if Py ¢ P, + Py and P; ¢ Po + Py and Ps ¢ P> + Py then S/I is not
Cohen-Macaulay.
On the other hand if J = P; N P, N Py N P5 then the exact sequence 0 — S/I —
S/J® S/P; — S/(J + Ps) — 0 gives the other conditions i.e. P» C P, + P; or
P, C P, + P; or P; C P; + P;. Remaining choices for J, are equivalent to these
two cases, which proves i) = ii1).
i41) = 1) : Suppose now that 4ii) holds, let us say {P; C P, + Py, P> C P, + Ps}
El

holds. Let I = [] Q; be the irredundant monomial irreducible decomposition of

=1
I. Apply induction on s. If s = 5, then (FP;) must be irreducible and so P; has
the form (2%, y?).
Here we can suppose b to be the biggest power of y in {P;, P4} because P, C
Py + Py. If yb € G(Ps) then we consider the filtration I C (I,z%) C (z2,4°) C
S. Note that Py/(I,z%) = S/((I,z%) : yb). But ((I,z%) : y*) = (P, z%) N
(P3,z%) = (Py,x%) because P, C P; + P3. Thus P, /(I,z%) is clean. Also note
that (I,z*)/I = S/(I : %) and I : 2 = P3N Py N P; because P, C P2 + Py.
Thus (I,z%)/I is clean by Lemma 2.2. If 4 ¢ G(Ps) then let P5 = (y7,2%)
and we consider the filtration I C (I,2!) C (y",2!) C S. As above we have
Ps/(I,2") = S/((I,2") :y") and ((I,2") : y") = (P2, 2") N (Ps,2"). Thus P5/(I,2")
is clean by Lemma 2.1. Also note that (I,2%)/I = S/(I : z%). Since I : 2% =
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PN (Py:2Y) N (Ps: 2t) N Py we see that (I,2%)/1 is clean by Lemma 2.9. Gluing
together the clean filtrations obtained above we get a clean filtration of S/I, that
is when s = 5, then ¢) holds for {P, C P, + Py, P, C P, + Ps}.
Assume s > 5. After renumbering Q; we may suppose that Q; = (2¢,y%) for
some a,b. Moreover we may suppose that b is the biggest power of y which can
enter in G(Q;) with \/Q, = (z,y). If y* € G(Ps) consider the filtration as above
Ic (I,2%) Cc Q1 = (z%y%) C S. We have Q,/(I,2%) = S/((I,z%) : y*) and
(I,2%): y* = (Py,2%) N (P3,2%) because Py C Py + P;. Also we get 2 € G(P).
Since P, C P; + P; we have P, C (P3,z%) and so (I,z%) : y* = P, is primary.
Thus Q1/(I,z%) is clean. Now note that (I,z%)/I = S/(I : z*) and (I : z%) =
S
N (Q; : z*) and we apply the induction hypothesis because (I : z%) satisfies the
=2
condition similar to ¢i¢). Gluing the obtained clean filtrations we get S/I clean.
If y* & G(Ps) then y" € G(Ps) for some r > b. After renumbering ; we may
suppose that Q1 = (y", 2%). We consider the filtration I C (I,2!) Cc Q1 C S.
We have Q1/(I,z") = S/((1,2") : y") and ((,2%) : y") = (P2,2") N (P3,2") and
applying Lemma 2.1 we get Q1/(I,2") clean. Now the proof goes as above.
Other cases from 444) are similar. O

Lemma 2.11. Let I C S be a monomial ideal such that

Ass(S/1) = A{(=,y), (z, 2), (z,w), (y,w), (y, 2), (v, w)}

and let I = PPN PN P;NP,N Ps N P be the irredundant monomial primary
decomposition of I, where /P, = (z,y), VP = (z,2), VP = (2,w), VP, =
(y,w), VPs = (y,2), VPs = (z,w). Then the following statements are equivalent:
i) S/T is clean.

1) S/I is Cohen-Macaulay.

7,7,7,) {Pl CPs+FPsorP,CPs+Ps or PsCPs+ Ps or Py CP5+P6}

and{P1 CPy+PyorPsCPy+Pyor PsCPy+ Py or Py CP2+P4}

and{Pz CPi+PsorPA,CPi+Ps0orPsCP+P; or PBsCP +P3}

Proof: i) = ii) as in Lemma 2.6.

1) = 4i1) : Let J = PLN P, N P3N PyN Ps. From the exact sequence 0 — S/I —
S/J®S/Ps — S/(J+Ps) — 0, we get that depth(S/I) = 1if depth(S/J+Ps) = 0.
But (J+P6) =(P1 +P6)ﬂ(P2+P6)ﬂ(P3+P6)O(P4+P6)H(P5+P6),where
(P5—|—P6) is primary ofhelght 4 and {(Pl +P6), (P2—|—P6), (P3 +P6), (P4+P6)} are
primary of height 3. Thus depth(S/J + Ps) = 0if and only if P, + Ps ¢ Ps + P
and P2—|—P6 ¢P5+P6 and P3+P6 ¢P5+P6 and P4—|—P6 ¢P5+P6,that is
P1 ¢ P5+P6 and P2 ¢ P5+P6 and P3 ¢ P5+P6 and P4 ¢ P5+P6. So this
gives one condition of #74).

On the other hand if J = PN PN PsNP5;N Ps then the exact sequence 0 — S/I —
S/J & S|Py — S/(J + Py) — 0 gives the second condition of #3i). And finally if
J =P NP,NP,N Ps N Ps then the exact sequence 0 — S/I — S/J® S/P; —
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S/(J + P3) — 0 gives the second condition of 4i7). Remaining choices for .J, are
equivalent to these three cases, which proves ii) = 4i7).
i11) = 1) : Suppose now that m) holds, let us say {P, C Ps + Ps,P, C P> +

Py, P, C P, + P;} holds. Let I = ﬂ Q; be the irredundant monomial irreducible

decomposition of I. Apply 1nduct10n on s. If s = 6, then (P;) must be irreducible

and so P, has the form (z2,y%). We consider the filtration

I c (I,z%) C (z%y%) C S. Note that P,/(I,z%) = S/((I,z%) : y°). But

(Iﬂ aja) : yb = (P2ama) n (P37xa) n ((P47$a) : yb) N ((P5axa) : yb) n (PGama)'

As P, C P,+Pyand P, C Ps+PFg, bis biggest power of y in {G(P1),G(P,),G(Ps)}

and thus (I,z%) : y* = (P, z%) N (P3,z2%) N (Ps,x). Also since Py, C P, + P; it

follows that (Py,z®) = P, C (Ps,2%). Thus (I,2%) : y® = (P, 2%) N (Ps, z%) and

Py /(I,z%) is clean by Lemma, 2.1.

Now note that (I,z*)/I = S/(I : z*). We have (I : z%) = (P2 : z*) N (P :

)N (Py: z*) N (Ps : %) N (Ps : %). As above a is the biggest power of z in

G(P1),G(P2),G(Ps). It follows I : 2* = PsN Py N Ps, so S/(I : %) is clean by

Lemma 2.2. Gluing together the clean filtrations obtained above we get a clean

filtration of S/I, that is when s = 5, then ¢) holds for {P, C Ps + P, P, C

P, + Py, P, C P, + P3}.

Assume s > 5. After renumbering (); we may suppose that Q; = (z2,y%) for

some a,b. Moreover we may suppose that b is the biggest power of y which

can enter in G(Q;) with \/Q; = (z,y). Consider the filtration as above I C

(I,z%) C Q1 = (z%,9%) € S. We have Q/(I,2%) = S/((I,z?) : y*) and (I,2°) :

Y = (P, 2%) N (P3,2%) N (Ps,2%) because P, C P, + Py, P, C Ps + P;. We

get also z* € P,. Since P, C P, + P; we have (P,z%) C (Ps,z%) and so

(I,z%) : y* = (Py,2%) N (Ps,z%). Thus Q1/(I,z?) is clean by Lemma 2.1. Now

S

note that (I,z%)/I = S/(I : z%) and (I : %) = () (Q; : %) and we apply the
=2

induction hypothesis for (I : %) because the condition #i7) are fulfilled in this

case. As above gluing the obtained clean filtrations we get S/I clean.

Other cases from 444), are similar. |
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