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Abstract

In this paper we prove a Hermite-Hadamard type inequality for convex-
concave symmetric functions, by considering integral mean values with re-
spect to certain signed measures.

Key Words: Convex function, Borel measure, Hermite-Hadamard
inequality.

2000 Mathematics Subject Classification: Primary 26A51, Se-
condary 26D15

The classical Hermite-Hadamard inequality gives us an estimate, from below
and from above, of the mean value of a convex function f : [a,b] = R :

b
f(“;b)sgégl.ﬂmdmsiﬁé}ﬁﬂ. (HH)

See [8], pp. 50-51, for details. A weighted form of this inequality was proved
by L. Fejér [5]. Precisely, if f is as above and p : [a,b] — R is a nonnegative
integrable function, symmetric with respect to the middle point (a + b) /2, then

b b b
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However, it is Choquet’s theory who provides the best understanding of the
Hermite-Hadamard inequality in the framework of positive Radon measures on
arbitrary compact convex sets. See [8], pp.192-195, for details. Many results are
covered by this theory, in particular the main result in [1] (by using the technique
of pushing forward measures).
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A. M. Fink [5] made an important remark concerning the generality of (HH),
by noticing the possibility to consider certain signed measures. In order to recall
it here we need a preparation.

Let u be a real Borel measure on [a,b], with u([a,b]) > 0. We say that u
is a Hermite-Hadamard measure if for every convex function f : [a,b] — R the
following inequalities hold,

1 b
f@) < e / £() du(z) (LHH)
< P70 pay+ 0 ), (RHH)

where

1 b
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is the barycenter of u. Fejer’s aforementioned result offers plenty of examples of

nonnegative Hermite-Hadamard measures. Moreover, using the Hardy-Littlewood-
Pélya majorization inequality, it is not difficult to built up examples within the

class of signed-measures such as

5 1 5
56,1/2 — 560 + 561/2 on [—1, ].]

A. M. Fink [5] gave a complete characterization of the real-valued Borel mea-
sures u for which (LHH) works for every convex function, precisely the fulfillment
of the following condition of end-positivity:

¢ b
/(t—m)du(m)ZO and /t(a:—t)d,u(a:)zo for every t € [a,b].

In the same paper, A. M. Fink proved a sufficient condition for (RHH), but
his argument can be modified to get a complete characterization of the measures
for which (RHH) works:

Theorem 1. Let u be a real Borel measure on [a, b] with u([a,b]) > 0 and having
the barycenter x,. Then the inequality

b . .
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works for all continuous convez functions f : [a,b] — R if and only if

b—t
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/a (z — a)du(z) + P /t (b—=x)dp(z) >0 forallt € [a,b)].
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Proof: An easy approximation argument shows that the formula (RHH) works
for all continuous convex functions f : [a,b] — R if and only if it works for all
convex functions of class C? on [a, b].

As well known, all such functions admit an integral representation of the form

_ _ b
f@) = 12 1@ + T2 1) + [ Glaor v

where (z—a)(b—t)
@)=t jfa<p<t<b
G(z,t) = {m ifa<t<z<b

represents the Green function of the operator -4
conditions y(a) = y(b) = 0.
Thus, for every convex function f € C2([a,b]) we have

dtg, with homogeneous boundary
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where y(t f G(t,z)du(x) is a continuous function.

When f runs over the class of C? convex functions on [a, b], its second deriva-
tive f" will describe the class of continuous nonnegative functions on [a, b]. Con-
sequently the inequality (HH) holds for all C? convex functions if and only if

b
=/ G(t,z)du(z) <

for all ¢ € [a, b]. O

Using the above results we can easily check that du = (22 — \)dz is a Hermite-
Hadamard measure for all A <1/6.

Remark 1. Using the technique of pushing-forward measures, the inequalities
(LHH) and (RHH) above can be put in a more general form, that encompasses
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also the classical Jensen inequality. If v is a signed Borel measure on X and
T:X = [a,b] is a v-integrable map, then the push-forward measure p = TH#v is
given by the formula u(A) = v(T1(A)). Assuming that u = T#v is a Hermite-
Hadamard measure (which is always the case when v is positive), we get

1) < 5 [ HT@) dvio) o)
S PR =Y CR = I CY

for every continuous convex function f : [a,b] = R. HereT = ﬁ Jx T(x) dv(z)
represents the barycenter of u. For even more general Jensen type inequalities see

[8].

P. Czinder and Z. Péles 3] (see also P. Czinder [4]) have extended the Hermite-
Hadamard inequality in another direction, by considering functions that mix the
up and down convexity:

Theorem 2. Suppose that I is an interval and f : I — R is a function symmetric
with respect to an element m € I, that is,

f@)+ f(2m —=z) =2f(m) for all z € I N (—o0,m]. (S)

If f is convex over the interval I N (—oo,m] and concave over the interval I N
[m, ), then, for every interval [a,b] C I with (a + b)/2 > m, the following
inequalities hold true:

f(““’)z L /abf(w)d:czw- (CP)

2 b—a 2
If (a + b)/2 < 'm, then the inequalities (CP) should be reversed.

An appropriate version is valid for functions that are concave over the interval
IN(—oc0,m] and convezx over I N [m,o0).

Notice that the inequality (HH) can be derived from (CP), by choosing m as
one of the endpoints of I.

The aim of this paper is to prove that Theorem 2 works actually in the general
framework of Hermite-Hadamard measures.

Theorem 3. Suppose that f : I — R verifies the symmetry condition (S) and is
convez over the interval I N (—oo,m] and concave over the interval I N [m,c0).

If (a+b)/2 > m and p is a Hermite-Hadamard measure on each of the
intervals [a,2m — a] and [2m — a,b], and is invariant with respect to the map
T(z) =2m — z on [a,2m — a], then

b T, —a
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If (a+1b)/2 < m, then the inequalities (GH H) work in a reverse way, provided p
is a Hermite-Hadamard measure on each of the intervals [a, 2m—b] and [2m—b, b],
and is invariant with respect to the map T'(z) = 2m — x on [2m — b, b].

Proof: Suppose first that (a + b)/2 > m. The case where m ¢ (a,b) is covered
by our assumption on du (of being a Hermite-Hadamard measure on specific
intervals), so we will concentrate only on the case where a < m < b. In order to
prove the left hand side inequality in (GHH) we have to notice that

/abf(w)du /jm_aﬂx)dw/; f (@) du

m—a

2m—a b
f(m) / dp + / f(@)du,  (LGHH)

m—a

due to the invariance properties of f and p. Since f is concave over the interval
[2m — a, b], the last integral in (LGHH) does not exceeds

b
f(ﬁ?ﬁ;;fzﬁﬁpé ) wdu)-u(@ﬂ%—aﬁD

and thus
p(a,2m — a))
iy [, 1@< Mo
p2m=ab) Sy
u((a,2]) w([2m = a,b))

plat) T a(at)  p(2m—ab))

1 b
=f <m/a wd,u) = f(zp)-

due to the symmetry properties of f and g combined with the fact that f is
concave on [m, b).

Now we prove the right hand side inequality in (GHH). Using the symmetry
of f and its property of being concave on the interval [2m — a,b], we infer that

/abf(w)du=f(m)/2m_adu+/2;_af(w)du

> f(m) - p([a,2m — a])
+( b—a! . —2m+a

< f<u<[a,2m—a]>_ L n(2m—ab) fz”m_awdu>

o 2 _ n
b+a—2mf( m—a)+
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where

~

1 b
i = _— Z’d
n mpm—amblmw a

= m </abmdp—/:m_axdu>

2 - p(a,B)) = m - pu([a, 2m — a])
n(@m —a, b)) '

To complete the proof of the right hand side of (GHH), it suffices to show
that

f(m) - ([a,2m — a])

b—z' ' —2m+a
(o pom o+

b+a-—2m

b+a—2m f(b)) - p([2m — a, b))

> (5225 @+ 222 0) - ullast),

Without loss of generality we may assume that u([a,b]) = 1. Put p([a,2m —a]) =
A. Then p([2m — a,b]) =1 — A, and the last inequality becomes

- Xt —2mta
)\f(m)+(1—/\)<mf(2m—a)+ Fp— f(b)>
b—=z T, —a
> f@+ ).

Since f (a) = 2f (m) — f (2m — a), this inequality can be restated as

1-=Xb—2z,+Im z, —Adm —(1—X)(2m — a)

Af(m) + b+a—2m f@m—a)+ b+a-—2m 1)
b— -
> S (2f (m) — £ (2m —a) + L2F (0).

Doing some algebra (including a simplification of both sides by (2—X)b+Xa—2z,,)

we are led to
b+a—2m m—a

f(m) + f),

which is indeed the case since f is concave on the interval [m,b] and 2m —a is a
convex combination of m and b :

f(2m—a) >

b—m b—m

b.

2m —a m +

_b+a—-2m m—a
T b—m b—m
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Notice that (2 — A)b+ Aa — 2z, > 0 is a consequence of our hypotheses on

z,. In fact,
b 2m—a b
z, = / a:d,u:/ a:d,u—i—/ xdp
a a 2m—a
b
= m+ / xdu
2m—a
9 _
< Am+(1=2b< (A)#
The case where (a + b) /2 < m can be treated in a similar way. O

Theorem 2 was applied by Czinder and Péles [3] to prove inequalities for the
Gini and Stolarsky means. The weighted framework offered by Theorem 3 is
suitable to get even more general inequalities, involving averages with respect to
measures that are not necessarily positive.

Theorem 3 extends easily to the context of generalized convex functions in the
sense of E. F. Beckenbach. These functions are attached to Chebyshev systems
i.e., to pairs (w1,ws) of real-valued continuous functions on an interval I, such
that

‘ wi(z) wi(y)

wa(z) wa(y) ‘>0 for z < yin I.

Precisely, a function f : I — R is convex with respect to a Chebyshev system
(wl,wQ) if

f2)  fly)  f2)
wi(z) wi(y) wi(z) |>0 forz<y<zinl.
wa(z) wa(y) wa(2)

As was noticed by M. Bessenyei and Z. Péles [2], there is no loss of generality to
assume that w; is strictly positive and w» /w1 is increasing. But in this case f is

1
(w1,w2)-convex if and only if 1t o (ﬂ) is convex in the usual way.
wi wi
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