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A viability result for a class of nonconvex differential
inclusions with memory
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Abstract

We prove the existence of viable solutions for an autonomus functional
differential inclusion in the case when the multifunction that define the
inclusion is upper semicontinuous compact valued and contained in the
Clarke subdifferential of an uniformly regular function.
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1 Introduction

Differential inclusions with memory, known also as functional differential inclu-
sions, express the fact that the velocity of the system depends not only on the
state of the system at a given instant but depends upon the history of the tra-
jectory until this instant.

The class of functional differential inclusions encompasses a large variety of
differential inclusions and control systems. In particular, this class covers the
differential inclusions, the differential-difference inclusions and the Volterra in-
clusions. For a detailed discussion on this topic we refer to [1].

Let R™ be the m-dimensional euclidian space. We consider C'(—o0,0; R™)
the space of continuous functions from (—o00,0) to R™ supplied with the to-
pology of uniform convergence on compact intervals. For ¢ € R, the operator
T(t) : C(—o00,00;R™) = C(—00,0;R™) is defined by (T'(t)z)(s) := z(t + s),
s € (—00,0). If K is a given nonempty subset in R™ then we introduce the
following set K =: {¢ € C(—00,0; R™); p(0) € K}.

For a given multifunction F' : £ — P(R™) we consider the following functional
differential inclusion

x' € F(T(t)x) (1.1)
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and we are interested in finding sufficient conditions for such that for each ¢ € K
there exist 7 > 0 and a solution z(.) : [-o0, 7] = R™ of (1.1) satisfying the initial
condition
T(0)x = (1.2)
and the viability constraint
z(t) e K Vt>0. (1.3)

The existence of solutions of problem (1.1)-(1.3), well known as viable solu-
tions, in the case when F' is single valued were studied by many authors. For
results and references in this framework we refer to [9)].

In general the results concerning differential inclusions defined by upper semi-
continuous multifunctions can be extended to functional differential inclusions.
The first viability result for functional differential inclusions was given by Haddad
([7], [8]) in the case when F' is upper semicontinuous with convex compact values.

Recently in [4], the situation when the multifunction is not convex valued is
considered. More exactly, in [4] it is proved the existence of solutions of problem
(1.1)-(1.3) when F(.) is an upper semicontinuous multifunction contained in the
subdifferential of a proper convex function V(.). Afterwards, the convexity of
V(.) was relaxed in [5], [6] for special classes of functions V' (.).

The aim of the present paper is to provide an alternative improvement of the
result in [4]. More precisely, we relax the convexity assumption on the function
V'(.) that appear in [4], in the sense that we assume that F(.) is contained in the
Clarke subdifferential of an uniform regular function.

The proof of our result follows the general ideas in [1] and [8] and is essentially
based on the corresponding viability result for differential inclusions ([2]).

The paper is organized as follows: in Section 2 we recall some preliminary
facts that we need in the sequel and in Section 3 we prove our main result.

2 Preliminaries

For z € R™ and for a closed subset A C R™ we denote by d(z, A) the distance
from z to A given by d(z, A) := inf{|ly — z||;y € A}. By co(A) we denote the
convex hull of A and by ¢6(A) we denote the closed convex hull of A

Consider a locally Lipschitz continuous function V' : R™ — R. For every
direction v € R™ its Clarke directional derivative at x in the direction v is
defined by

DcV(z;v) = limsup Viy+tv) - V(y)
y—z,t—0+ t

The Clarke subdifferential (generalized gradient) of V at z is defined by
OcV(z)={qeR™, <quv><DcV(z;v) YveR™}
We recall that the prozimal subdifferential of V'(.) is defined by
OpV(z) ={¢geR™, 34,0 >0 such that
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V(y)=V(z) +olly—z|” ><q,y—z> Vy€ B(z,0)}.

Definition 2.1 Let V : R™ — R U {00} be a lower semicontinuous function
and let O C dom(V) be a nonempty open subset. We say that V is uniform
regular over O if there exists a positive number > 0 such that for all x € O and
for all £ € 0pV (z) one has

<&y—z><V(y) —V(z)+Blly—=|> VyeO.

We say that V is uniformly regular over the closed set K if there exists an open
set O containing K such that V is uniformly regular over O.

In [2] there are several examples and properties of such maps. For example,
according to [2], any lower semicontinuous proper convex function V is uniformly
regular over any nonempty compact subset of its domain with 8 = 0; any lower
- C? function V is uniformly regular over any nonempty convex compact subset
of its domain.

The next lemma, will be used in the proof of our main result.

Lemma 2.2 ([2]) Let V : R™ — R be a locally Lipschitz function and let
0 # K C dom(V) a closed set. If V is uniformly regular over K then
i) OcV(z) = 0pV(z) Vz € K.
it) If z(.) : [0,7] = R™ is absolutely continuous and 2'(t) € OcV (z(t)) a.e.
([0,7]), then
(Vo2) (@) =®I, ae.([0,7]).

We recall that the contingent cone to the set K C R™ at z € K is defined by
1
T = ™ liminf — K) =0}.
k(z) = {veR™, im inf hd(x + hv, K) = 0}
The following viability result for differential inclusions is due to Bounkhel
([2))-

Theorem 2.3 Let K C R™ be a nonempty closed set, G : K — P(R™) be
an upper semicontinuous multifunction with nonempty closed values and V(.) :
R™ — R be a locally Lipschitz function that is uniform regular over K such that

G(z) C0cV(z) VzeK,
Glx)NTk(z) #0 Vre K.
Then, for any xo € K, there exists T > 0 such that the following problem

Z‘IEG(.Z‘), w(tO):'TO GK,

z(t) e K Vit >t
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admits a solution on [tg, T].
If K C R™ we introduce the following set
K =:{p € C(~00,0;R™);p(0) € K}.
In what follows we consider the functional differential inclusion (1.1) under
the following assumptions.

Hypothesis 2.4 a) K C R™ is a locally closed set and F : K — P(R™) is

an upper semicontinuous multifunction with nonempty compact values.
b) There exists a locally Lipschitz function V : R™ — R uniform regular over

K such that the following conditions are satisfied
F(p) NTk(p(0)) #0 Vo €K, (2.1)

F(p) COcV(p(0) VeeK.

3 The main result

We are now able to prove our main result.

Theorem 3.1 We assume that Hypothesis 2.4 is satisfied.
Then, for any ¢ € K there exists a solution to

z' € F(T(t)z) a.e. t>0,

T0)z=¢, zt)eK Vt>O0.
Proof: We divide the interval [0,00) into the subintervals [Z, L] j € N.
For any j € N, z € R™ and ¢(.) € C(—o0,Z;R™) we consider the function

f{(2)(.) € C(~00,0;R™) defined by

j+1
Iy @)s) = { iiiié;il gy i o3 ieq 6D
Obviously, _ )
F@h=ed), @0 == (3.2)
We define the set-valued maps G : K — P(R™) by
(3.3)

G¥(2) == F(f?(2))
and we note that G¥ (.) is upper semicontinuous with nonempty closed values and

satisfy, via (2.1), (2.2) and (3.2),
G%(z) COcV(x) VzeK, 34
G?(2) NTk(z) #0 Vo€ K. (3.4)
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Consequently, by (3.4) the assumptions of Theorem 2.3 are satisfied and there-

fore there exists a viable solution z(.) : [%, %] — R™ to the problem

z' € GY (x) a.e.([%, %]), 33(%) = ‘P(%) €K
(3.5)
o(t) e K Vte[i, .

n’ n
We construct next by induction a sequence of approximate solutions z,(.) to
(1.1). If t <0 we define z,(t) := ¢(t).
Assume now that z,(.) is defined on (—o0, %] We take for ¢ € [%, %] the
solution z,(.) := 7" (.) of problem (3.5) with ¢(.) := @ (.).
We prove that for almost all t € R

(T(t), (1) € graph(F) + 27 | ImF||.B x {0}, (3.6)

where B denotes the unit ball of C(—1,0; R™).
Ift € [£,2H] by (3.3) and (3.5), (fi™(zn(t)), z;,(t)) € graph(F). On the

n’> n
other hand, one has

T(t)za(t) — i (za(t))(s) =
0 if
{ (sn + 1)(zn(t + 8) = 24(8)) — sn(za(t +5) —a(L)) if -

and thus, it belongs to 226(F(K)), since

7
3I=IA
w 3=

IN |

Tt +8) — an(t) = / T (s)ds € %w(F(IC)),

. t+s
Tn(t + 3) —mn(%) :/ o (s)ds € %E(F(IC)).

J

Hence 9
IT@)zn = f7 @n@®))lloc-1,0mm) < —lfo(F(K))].

We infer that

|lz5 ()] < [lco(F(K))I,
zn(t) € p(0) + tco(F(K) which is relatively compact.

We apply Theorem 0.3.4 in [1] to deduce that z,(.) converges uniformly over
compact intervals to some function z(.) in C(—o0, 00; R™), so that, for all ¢ > 0,
T(t)zy, converges to T'(t)z in C'(—o0,0; R™) and z/,(.) converges weakly to z'(.) in
L*(0,00;R™), i.e for all 7 > 0 z! (.) converges weakly to z'(.) in L2([0, 7], R™).

Since the assumptions of Theorem 1.4.1 in [1] are satisfied we obtain that

z'(t) € coF (T (t)z) C OcV (z(t)) a.e. ([0,7]). (3.7
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On the other hand, by construction
z(t) € OcV (zn(t)) a.e. ([0,7]). (3.8)

We apply Lemma 2.2 and we get

i [l OIPdt = fim [(V 0 2,)(r) = (V 02,)(0)] =

n—o0

=Voz)(r) = (Voz)(0) = / ||z ()] |dt,
0
i.e. /() converges strongly in L?([0,7],R™) to z'(.). Hence, there exists a
subsequence (still denoted) ! (.) that converges pointwise to z'(.).
On the other hand, from Hypothesis 2.4 graph(F') is closed and from (3.6) it
follows that for almost all ¢, z'(t) € F(T'(t)x); at the same time T'(0)z = ¢ and
z(t) € K and the proof is complete. O

Remark 3.2 If in Theorem 2.3 V'(.) is assumed to be a convex function then
from Theorem 3.1 we obtain Theorem 2.2 in [4].

The result in Theorem 3.1 remains valid if instead of R™ we work on a
real Hilbert space X. The main tool in the proof will be, this time, an infinite
dimensional version of Theorem 2.3, namely Theorem 2.3 in [3].
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