A remarkable transformations group on the tangent bundle

by

MONICA PURCARU AND MARIUS PĂUN

Abstract

In the present paper starting from the notion of metrical structure on the tangent bundle, we determine all metrical d-linear connections in the case when the nonlinear connection is arbitrary and we find important particular cases. We study the role of the torsion tensor fields: T and S in this theory. We find the group of transformations of semi-symmetric metrical d-linear connections, corresponding to the same nonlinear connection N, and its important invariants.

Key Words: Tangent bundle, d-linear connection, curvature, torsion, metrical structure, metrical d-linear connection, semi-symmetric metrical d-linear connection, invariants.

2000 Mathematics Subject Classification: Primary 53C05, Secondary: 53C20, 53C60, 53B40, 58B20.

1 Introduction

The geometry of the tangent bundle \((TM, \pi, M)\) has been studied by M.Matsumoto in [4], by R.Miron and M.Anastasiei in [5], [6], by R.Miron and M.Hashiguchi in [7], by V.Oproiu in [8], by Gh.Atanasiu and I.Ghinea in [1], by R.Bowman in [2], by K.Yano and S.Ishihara in [10], etc.

In the present section we recall the basic notions which are needed. For more details see [5-6].

Let \(M\) be a real \(C^\infty\)-differentiable manifold with dimension \(n\), and \((TM, \pi, M)\) its tangent bundle. If \((x^i)\) is a local coordinates system on a domain \(U\) of a chart on \(M\), the induced system of coordinates on \(\pi^{-1}(U)\) is \((x^i, y^j), (i = 1, \ldots, n)\).

Let \(V(TM) = ker \pi \subset T(TM)\) be the vertical bundle, spanned locally by \(\{\frac{\partial}{\partial y^i}\}\). A nonlinear connection \(N\) determines a supplementary subbundle to \(V(TM)\) in \(T(TM)\), i.e. \(T(TM) = H(TM) \oplus V(TM)\). The adapted basis is \(\frac{\partial}{\partial x^i} = \frac{\partial}{\partial x^i} - N^j \frac{\partial}{\partial y^j}\) where \(N^j(x, y)\) are the coefficients of the nonlinear connection.
A metric structure on TM is a tensor field G which satisfies the conditions: it is nondegenerate, symmetric and with constant signature. In the adapted basis, the metric structure G is:

$$G(x, y) = \frac{1}{2} g_{ij}(x, y) dx^i \otimes dx^j + \frac{1}{2} \tilde{g}_{ij}(x, y) dy^i \otimes dy^j,$$

where $\{dx^i, \delta y^i\}$, is the dual basis of $\{\delta x^i, \partial / \partial y^i\}$, and $(g_{ij}(x, y), \tilde{g}_{ij}(x, y))$ is a pair of given d-tensor fields on TM, of the type $(0,2)$, each of them symmetric and nondegenerate.

The Obata’s operators associated to the metric structure G are Ω^{ir}_{ij}, $\tilde{\Omega}^{ir}_{ij}$, Ω^{*ir}_{ij}, $(\text{see } [5] \text{ p.96})$, which have the same properties as the ones associated with a Finsler space $[7]$.

Let D be a d-linear connection on TM with the local coefficients:

$$D\Gamma(N) = (L^i_{jk}, \tilde{L}^i_{jk}, C^i_{jk}, C^i_{jk}).$$

It is called metrical d-linear connection with respect to G if D preserves by parallelism the vertical distribution $V(TM)$ and $DG=0$. In locally coordinate, these mean:

$$g_{ij;k} = 0, \quad g_{ij;k} = 0, \quad \tilde{g}_{ij;k} = 0, \quad \tilde{g}_{ij;k} = 0,$$

where $\big| \big|$ denote the h- and respective v-covariant derivatives with respect to D.

A d-linear connection, D, on TM, is called semi-symmetric d-linear connection if the torsion tensor fields $T_{(0)}^i_{jk}$ and S^i_{jk} have the form:

$$T_{(0)}^i_{jk} = \frac{1}{n-1} (T_j \delta_k^i - T_k \delta_j^i) = \sigma_j \delta_k^i - \sigma_k \delta_j^i;$$
$$S^i_{jk} = \frac{1}{n-1} (S_j \delta_k^i - S_k \delta_j^i) = \tau_j \delta_k^i - \tau_k \delta_j^i,$$

where $T_j = T_{(0)}^i_{ji}$, $S_j = S^i_{ji}$ and $\sigma_j = \frac{T_j}{n-1}, \tau_j = \frac{S_j}{n-1}$.

2 Metrical d-linear connections on TM.

We shall determine the set of all metrical d-linear connections with respect to G.

Let $\Gamma(N)$ be another nonlinear connection on TM, with the coefficients:

$$N^i_{\ j}(x, y), (i, j = 1, ..., n).$$

Let $D\Gamma(N) = (L^i_{jk}, \tilde{L}^i_{jk}, C^i_{jk}, C^i_{jk})$ be the local coefficients of a fixed d-linear connection D on TM. Then any d-linear connection, D, on TM, with local coefficients: $D\Gamma(N) = (L^i_{jk}, \tilde{L}^i_{jk}, C^i_{jk}, C^i_{jk})$, can be expressed...
in the form (see [9]):

\[\begin{align*}
N_i^i &= N_j^j - A_i^i, \quad A_i^0 = 0, \\
L_i^j &= L_j^i + A_j^i C_j^i_l - B_i^l, \quad C_i^j = C_{0}^j = D_i^j, \\
\tilde{L}_i^j &= \tilde{L}_j^i + A_j^i C_j^i_l - \tilde{B}_i^l, \quad \tilde{C}_i^j = \tilde{C}_j^i = \tilde{D}_i^j = \tilde{D}_j^i,
\end{align*} \]

where \((A_i^j, B_i^j, \tilde{B}_i^j, \tilde{D}_i^j, D_i^j)\) are components of the difference tensor fields of \(D\Gamma(N)\) from \(D\Gamma(0)\).

By extension of the R. Miron-M. Hashiguchi method given for the case of Finsler connections in [7], from (4) and (2) we have one of the most important results concerning to the metrical d-linear connections:

Theorem 2.1. The set of all metrical d-linear connections on \(TM\), with local coefficients \(D\Gamma(N) = (L_i^j, \tilde{L}_i^j, \tilde{C}_i^j, C_i^j)\) is given by:

\[\begin{align*}
N_i^i &= N_j^j - X_i^j, \\
L_i^j &= L_j^i + \tilde{C}_j^i m X_m^k + \frac{1}{2} g^{ij}(g_{jk} + g_{kj}) X_m^k + \Omega_{hk}^r X_r^k, \\
\tilde{L}_i^j &= \tilde{L}_j^i + C_j^i m X_m^k + \frac{1}{2} \tilde{g}^{ij}(\tilde{g}_{jk} + \tilde{g}_{kj}) X_m^k + \tilde{\Omega}_{hk}^r \tilde{X}_r^k, \\
\tilde{C}_i^j &= \tilde{C}_j^i + \frac{1}{2} g^{ij} g_{js} X_s^k + \Omega_{hk}^r \tilde{Y}_r^k, \\
C_i^j &= C_j^i + \frac{1}{2} \tilde{g}^{ij} \tilde{g}_{js} X_s^k + \tilde{\Omega}_{hk}^r Y_r^k, \\
X_i^0 &= 0,
\end{align*} \]

where \(X_i^j, X_j^i, \tilde{X}_i^j, \tilde{Y}_i^j, Y_j^i\) are arbitrary tensor fields on \(TM\).

Particular cases:

1. If we take \(X_i^j = X_j^i = \tilde{X}_i^j = \tilde{Y}_i^j = Y_j^i = 0\) in Theorem 2.1., we obtain an example of metrical d-linear connection on \(TM\), given in (1.12) p.96 from [5].

2. If we take a metrical d-linear connection on \(TM\) (e.g. canonical d-linear connection of \(G\), with local coefficients: \(\Gamma(N) = (L_i^j, \tilde{L}_i^j, \tilde{C}_i^j, C_i^j)\), (see (1.11) p.96 from [5]) as \(D\), in Theorem 2.1., we have:

Proposition 2.1. The set of all metrical d-linear connections on \(TM\), with local coefficients: \(D\Gamma(N) = (L_i^j, \tilde{L}_i^j, \tilde{C}_i^j, C_i^j)\) is given by:
Proposition 2.2. \(R.Miron \) and \(M.Anastasiei \) in (2.6) p.98 from [5].

Conversely, given \(\sigma \) a transformation of a semi-symmetric metrical d-linear connection \(\sigma \).

The set of all semi-symmetric metrical d-linear connections

3. If we take \(X^i_j = 0 \) in Proposition 2.1 we obtain: Theorem 1.3 p.96 from [5].

4. If we shall try replace the arbitrary tensor fields \(X^i_j, Y^i_j \) in Theorem 2.1 with \(X^i_j = 0 \), by the torsion fields \(T^i_{(0)jk}, S^i_{jk} \) we find a result obtained by \(R.Miron \) and \(M.Anastasiei \) in (2.6) p.98 from [5].

Taking into account (3) and (2.6) p.98, [5] we obtain:

Proposition 2.2. The set of all semi-symmetric metrical d-linear connections with local coefficients: \(D\Gamma(N) = (L^i_{jk}, \tilde{L}^i_{jk}, \tilde{C}^i_{jk}, \tilde{C}^i_{jk}) \), is given by:

\[
\begin{align*}
L^i_{jk} &= L^i_{jk} + C^i_{jk} X^m_k + \Omega^i_{jk} X^h r_k, \\
\tilde{L}^i_{jk} &= \tilde{L}^i_{jk} + \tilde{C}^i_{jk} X^m_k + \tilde{\Omega}^i_{jk} X^h r_k, \\
\tilde{C}^i_{jk} &= \tilde{C}^i_{jk} + \tilde{\Omega}^i_{jk} X^h r_k, \\
C^i_{jk} &= C^i_{jk} + \Omega^i_{jk} X^h r_k, \\
X^i_{j|k} &= 0.
\end{align*}
\]

(6)

\[
\begin{align*}
L^i_{jk} &= L^i_{jk} + C^i_{jk} X^m_k + \Omega^i_{jk} X^h r_k, \\
\tilde{L}^i_{jk} &= \tilde{L}^i_{jk} + \tilde{C}^i_{jk} X^m_k + \tilde{\Omega}^i_{jk} X^h r_k, \\
\tilde{C}^i_{jk} &= \tilde{C}^i_{jk} + \tilde{\Omega}^i_{jk} X^h r_k, \\
C^i_{jk} &= C^i_{jk} + \Omega^i_{jk} X^h r_k.
\end{align*}
\]

(7)

3 The group of transformations of semi-symmetric metrical d-linear connections.

We study the transformations \(t(\sigma_j, \tau_j) : D\Gamma(N) \rightarrow D\tilde{\Gamma}(N) \) of the semi-symmetric metrical d-linear connections, on \(TM \), with respect to \(G \).

Let \(N \) be a given nonlinear connection. Then any semi-symmetric metrical d-linear connection with local coefficients \(D\tilde{\Gamma}(N) = (\tilde{L}^i_{jk}, \tilde{L}^i_{jk}, \tilde{C}^i_{jk}, \tilde{C}^i_{jk}) \) is given by (7). We have:

Proposition 3.1. Two semi-symmetric metrical d-linear connections with local coefficients \(D\Gamma(N) = (L^i_{jk}, \tilde{L}^i_{jk}, \tilde{C}^i_{jk}, \tilde{C}^i_{jk}) \) and \(D\tilde{\Gamma}(N) = (\tilde{L}^i_{jk}, \tilde{L}^i_{jk}, \tilde{C}^i_{jk}, \tilde{C}^i_{jk}) \) are related as follows:

\[
\begin{align*}
\tilde{L}^i_{jk} &= L^i_{jk} + \sigma_j \delta^i_k - g_{jk} g^{im} \sigma_m, \\
\tilde{L}^i_{jk} &= \tilde{L}^i_{jk}, \\
\tilde{C}^i_{jk} &= \tilde{C}^i_{jk}, \\
\tilde{C}^i_{jk} &= C^i_{jk} + \tau_j \delta^i_k - \tilde{g}_{jk} g^{im} \tau_m, \\
\tilde{C}^i_{jk} &= C^i_{jk}.
\end{align*}
\]

(8)

Conversely, given \(\sigma_j \in \mathcal{X}^*(M), \tau_j \in \mathcal{X}^*(M) \) the above (8) is thought to be a transformation of a semi-symmetric metrical d-linear connection \(D \), with local
coincide with the nonlinear connection N, transitively.

We shall denote this transformation by: $t(\sigma_j, \tau_j)$.

Thus we have:

Proposition 3.2. The set \mathcal{T}_N of all transformations $t(\sigma_j, \tau_j) : D(N) \to D(N)$ of semi-symmetric metrical d-linear connections given by (8) is an abelian group, together with the mapping product:

$$t(\sigma_j, \tau_j) \circ t(\sigma_j, \tau_j) = t(\sigma_j + \sigma_j, \tau_j + \tau_j).$$

This group acts on the set of all semi-symmetric metrical d-linear connections, corresponding to the same nonlinear connection N, transitively.

In order to find invariants of the group \mathcal{T}_N, let us consider the transformation formulas of the torsion and the curvature tensor fields by a transformation of d-linear connections corresponding to the same nonlinear connection $N (A^i_j = 0)$:

$$t(0, B^i_jk, \bar{B}^i_jk, \tilde{D}^i_jk, D^i_jk) : D(N) \to D(N)$$

$$N^i_j = N^i_j, \quad \bar{L}^i_jk = L^i_jk - B^i_jk, \quad \tilde{L}^i_jk = \tilde{L}^i_jk - \bar{B}^i_jk,$$

$$\bar{C}^i_jk = C^i_jk - \bar{D}^i_jk, \quad \bar{S}^i_jk = S^i_jk - D^i_jk.$$ \hspace{1cm} (9)

Proposition 3.3. By a transformation (9) of d-linear connections, corresponding to the same nonlinear connection $N, D(N) \to D(N)$, the torsion and curvature tensor fields, $T_{(0)}^i jak, T_{(1)}^i jak, P_{(1)}^i jak, P_{(2)}^i jak, S^i jkl, S^i_{(0)} jkl, S^i_{(1)} jkl, P^i_{(1)} jkl, P^i_{(2)} jkl, S^i_{(0)} jkl, S^i_{(1)} jkl$ are transformed as follows:

$$\bar{T}_{(0)}^i jak = T_{(0)}^i jak + (B^i_{kj} - B^i_{jk}), \quad \bar{T}_{(1)}^i jak = T_{(1)}^i jak,$$ \hspace{1cm} (10)

$$\bar{P}_{(1)}^i jak = P_{(1)}^i jak - \bar{D}^i jk, \quad \bar{P}_{(2)}^i jak = P_{(2)}^i jak + \bar{B}^i jk,$$ \hspace{1cm} (11)

$$\bar{S}_{\bar{S}}^i jak = S^i jak + (D^i_{kj} - D^i_{jk}).$$ \hspace{1cm} (12)

$$\bar{R}_{(0)}^i jkl = R_{(0)}^i jkl - \bar{D}^i jk + \bar{D}^i_{hk} + B^i_{jh} T_{(0)}^h jkl + A_{kl} \{-B^i_{jkl} + B^h_{jh} B^i_{hlk}\},$$ \hspace{1cm} (13)

$$\bar{R}_{(1)}^i jkl = R_{(1)}^i jkl - D^i_{jh} + \bar{D}^i_{hk} + B^i_{jh} T_{(0)}^h jkl + A_{kl} \{-B^i_{jkl} + B^h_{jh} B^i_{hlk}\},$$ \hspace{1cm} (14)

$$\bar{P}_{(0)}^i jkl = P_{(0)}^i jkl - \bar{D}^i jh + \bar{D}^i_{hk} + B^i_{jh} \bar{C}^h_{kl} - B^i_{jklh} + \bar{D}^i_{jhl},$$ \hspace{1cm} (15)

$$+ B^h_{jh} \bar{D}^i_{hl},$$

$$\bar{P}_{(1)}^i jkl = P_{(1)}^i jkl - D^i jh + \bar{D}^i_{hk} + B^i_{jh} \bar{C}^h_{kl} - B^i_{jklh} + \bar{D}^i_{jhl},$$ \hspace{1cm} (16)

$$+ B^h_{jh} \bar{D}^i_{hl},$$

$$\bar{S}_{(0)}^i jkl = S_{(0)}^i jkl - \bar{D}^i jh + \bar{D}^i_{hl} + A_{kl} \{-D^i_{jkl} + B^h_{jh} \bar{D}^i_{hl}\},$$ \hspace{1cm} (17)

$$\bar{S}_{(1)}^i jkl = S_{(1)}^i jkl - D^i jh + \bar{D}^i_{hl} + A_{kl} \{D^i_{jkl} + B^h_{jh} \bar{D}^i_{hl}\}.$$ \hspace{1cm} (18)
We consider the tensor fields:

\[K_{i(0)}^jkl = R_{i(0)}^jkl - \tilde{C}_{ih}^j R_{hkl}^i, \]
(19)

\[K_{i(1)}^jkl = R_{i(1)}^jkl - C_{ih}^j R_{hkl}^i, \]
(20)

\[P_{i(0)}^jkl = A_{kl} \left\{ P_{i(0)}^jkl - \tilde{C}_{ih}^j \partial N_h^i \partial y^l \right\}, \]
(21)

\[P_{i(1)}^jkl = A_{kl} \left\{ P_{i(1)}^jkl - C_{ih}^j \partial N_h^i \partial y^l \right\}. \]
(22)

Proposition 3.4. By a transformation (9) of d-linear connections corresponding to the same nonlinear connection \(N \), the tensor fields \(K_{i(0)}^jkl, K_{i(1)}^jkl, P_{i(0)}^jkl, P_{i(1)}^jkl \) are transformed as follows:

\[\bar{K}^i_{(0)}^jkl = K_{i(0)}^jkl + 2A_{kl} \left\{ -B_{ij}^l + B_{ij}^h \tilde{B}_h^i \right\}, \]
(23)

\[\bar{K}^i_{(1)}^jkl = K_{i(1)}^jkl - \tilde{B}_{ij}^l + \tilde{B}_{ij}^h \tilde{B}_h^i, \]
(24)

\[\bar{P}_{(0)}^i_jkl = P_{(0)}^i_jkl + A_{kl} \left\{ -B_{ij}^l + \tilde{B}_{ij}^l + B_{ij}^h \tilde{D}_h^i \right\}, \]
(25)

\[\bar{P}_{(1)}^i_jkl = P_{(1)}^i_jkl + A_{kl} \left\{ -\tilde{B}_{ij}^l + D_{ij}^l + \tilde{B}_{ij}^h \tilde{D}_h^i \right\}. \]
(26)

Substituting in (9):

\[B_{ij}^l = -2\tilde{\Omega}_{kij}^m \sigma_m, \quad \tilde{B}_{ij}^l = 0, \quad \tilde{D}_{ij}^l = 0, \quad D_{ij}^l = -2\tilde{\Omega}_{kij}^ml, \]
(27)

we have the transformation (8)

Proposition 3.5. By a transformation (8) of semi-symmetric metrical d-linear connections corresponding to the same nonlinear connection \(N \), the tensor fields \(K_{i(0)}^jkl, K_{i(1)}^jkl, S_{i(0)}^jkl, S_{i(1)}^jkl \) are transformed as follows:

\[\bar{K}_{(0)}^i_jkl = K_{(0)}^i_jkl + 2A_{kl} \left\{ \Omega_{kij}^m \sigma_m \right\}, \]
(28)

\[\bar{K}_{(1)}^i_jkl = K_{(1)}^i_jkl, \]
(29)

\[\bar{S}_{(0)}^i_jkl = S_{(0)}^i_jkl, \]
(30)

\[\bar{S}_{(1)}^i_jkl = S_{(1)}^i_jkl + 2A_{kl} \tilde{\Omega}_{kij}^ml. \]
(31)

where:
A remarkable transformations group

\[
\sigma_{ml} = \sigma_{m|l} - \sigma_{m} \sigma_{l} + \frac{1}{2} g_{ml} \sigma - \frac{g^{rm} \sigma_{r} \sigma_{m}}{n-1}, \quad (\sigma = g^{rm} \sigma_{r} \sigma_{m}), \tag{32}
\]

\[
\tau_{ml} = \tau_{m|l} - \tau_{m} \tau_{l} + \frac{1}{2} \tilde{g}_{ml} \tau - \frac{\tau_{m} s_{n}}{n-1}, \quad (\tau = g^{rm} \tau_{r} \tau_{m}). \tag{33}
\]

Using this results we can determine the invariants of the group \(\mathcal{T}^{n} \) using a well-known elimination method:

Theorem 3.1. For \(n > 2 \) the following tensor fields:

\[
H_{(0)}^{i} j kl, \quad H_{(1)}^{i} j kl, \quad M_{(0)}^{i} j kl, \quad M_{(1)}^{i} j kl
\]

are invariants of the group \(\mathcal{T}^{n} \) of transformations, of semi-symmetric metrical d-linear connections on TM, corresponding to the same nonlinear connection N:

\[
H_{(0)}^{i} j kl = \mathcal{K}_{(0)}^{i} j kl + \frac{2}{n-2} A_{kl} \{ \mathcal{K}_{(0)}^{i} r l (\mathcal{K}_{(0)}^{r} r l - \frac{\mathcal{K}_{(0)}^{r} g_{rl}}{2(n-1)}) \}, \tag{34}
\]

\[
H_{(1)}^{i} j kl = \mathcal{K}_{(1)}^{i} j kl, \tag{35}
\]

\[
M_{(0)}^{i} j kl = S_{(0)}^{i} j kl, \tag{36}
\]

\[
M_{(1)}^{i} j kl = S_{(1)}^{i} j kl + \frac{2}{n-2} A_{kl} \{ \mathcal{K}_{(1)}^{i} r l (S_{(1)}^{r} r l - \frac{S_{(1)}^{r} \tilde{g}_{rl}}{2(n-1)}) \}, \tag{37}
\]

where:

\[
\mathcal{K}_{(0)}^{i} j k l = \mathcal{K}_{(0)}^{i} j k l, \quad \mathcal{K}_{(0)} = g^{ik} \mathcal{K}_{(0)}^{i} k l, \quad S_{(1)}^{i} j k l = S_{(1)}^{i} k l, \quad S_{(1)} = g^{ik} S_{(1)}^{i} k l.
\]

We note that the results obtained from Theorem 3.1 in the particular case of the normal d-linear connections support the findings of R. Miron and M. Hashiguchi in their paper [7].

References

Received: 06.06.2005.

Revised: 29.05.2006.