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Abstract

In this paper, we introduce a new class of monomial ideals, called d-
fixed ideals, which generalize the class of p-Borel ideals and show how some
results for p-Borel ideals can be transfered to this new class. In particular,
we give the form of a principal d-fixed ideal and we compute the socle of
factors of this ideals, using methods similar as in [3]. This allowed us to
give a generalization of Pardue’s formula, i.e. a formula of the regularity
for a principal d-fixed ideal.
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Introduction

A p-Borel ideal is a monomial ideal which satisfy certain combinatorial condition,
where p > 0 is a prime number. It is well known that any positive integer a has
an unique p-adic decomposition a = )., a;p'. If a,b are two positive integers,
we write a <, b iff a; < b; for any i, where a = Y5, a;p’ and b= Y., bip’. We
say that a monomial ideal I C S = k[zy,...,%,] is p-Borel if for any monomial
u € I and for any indices j < 4, if t <, v;(u) then zlu/z} € I, where vi(u) =
maz{k: z¥|u}.

This definition suggest a natural generalization. The idea is to consider a
strictly increasing sequence of positive integers d : 1 = dg|dy|- - |ds, which we
called a d-sequence. Lemma 1.1 states that for any positive integer a, there exists
an unique decomposition a = Y7, axd;. If a, b are two positive integers, we write
a <q biff a; <b; for any i, where a = ), a;d; and b=}, bid;. We say that
a monomial ideal I is d-fixed if for any monomial u € I and for any indices j < i,
if t <a v;(u) then xﬁu/ zt € I. Obvious, the p-Borel ideals are a special case of
d-fixed ideals for d : 1|p|p?|---.
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A principal d-fixed ideal, is the smallest d-fixed ideal which contain a given
monomial. 1.6 and 1.8 gives the explicit form of a principal d-fixed ideal. In
the second section we compute the socle of factors for a principal d-fixed ideal
(2.1 and 2.4). The proofs are similar as in [3] but we consider that is necessary
to present them in this context. In the third section we give a formula (3.1)
for the regularity of a d-fixed ideal, which generalize the Pardue’s formula for
the regularity of principal p-Borel ideals, proved by Aramova-Herzog [1] and
Herzog-Popescu [4]. Using a theorem of Popescu [6] we compute the extremal
Betti numbers of S/I (3.3). Also, we show that if I is a principal d-fixed ideal
generated by the power of a variable, then I is stable for any e > reg(I) (3.6),
so reg(I) = min{e > deg(I) : I>. is stable} (3.9). Thus a result of Eisenbud-
Reeves-Totaro [2, Proposition 12] holds also in this frame.

The author wish to thanks to his Ph.D.advisor, Professor Dorin Popescu, for
support, encouragement and valuables observations on the contents of this paper.

1 d-fixed ideals.

In the following d : 1 = dy|dy|-- - |ds is a strictly increasing sequence of positive
integers. We say that d is a d-sequence.

Lemma 1.1. Let d be a d-sequence. Then, for any a € N, there exists an unique
sequence of positive integers ag,ay, - - .,as such that:

1. a=Y; jaid; and

2. Ogat<df;t'1,forany0§t<s.

Conversely, ifd : 1 = dy < di < --- < ds is a sequence of positive integers
such that for any a € N there erists an unique sequence of positive integers
ag,a,---,as as before, then d is a d-sequence.

Proof: Let a; be the quotient of a divided by d,. For 0 < t < s let a; be
the quotient of (@ — g41) divided by d¢, where g1 = Z‘;:t 41 a5dj. We will
prove that ag,as,...,as fulfill the required conditions. Indeed, it is obvious that
a =Y oaid;. On the other hand, a — g1 < diy1, since a — gi41 is @ — G40
modulo d;y1. Therefore, since a; is the quotient of (a — gi41) divided by dy, it
follows that a; < df;ifl.

Suppose there exists another decomposition a = ijo bjd; which also fulfill
the conditions 1 and 2. Then, we may assume that there exists an integer 0 < t <

s such that b, = a,, -+ ,byp1 = agyq and by > a,. Notice that dy > Y'_¢ a;d;.
Indeed,
t—1 =1

ajdj < ( 'Zl+1 —l)dj = (dl—d0)+(d2—d1)+-- -+(dt—dt,1) =d;—1< d;.
j=0 j=0 7
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We have 0 = 3°7_o(b; —a;)d; = Ej-:o(bj — a;)d;, but on the other hand:

t—1 t—1
(by — ap)dy > dy > Za]‘dj > Z(aj —b;)d;
j=0 j=0

and therefore (b — a;)d; — Y '_g(a; — bj)d; = Y 'y (b — a;)d; > 0, which is a
contradiction.

For the converse, we use induction on 0 < ¢ < s, the assertion being obvious
for t = 0. Suppose t > 0 and dp|d;]|---|d; and consider the decomposition of
dt+1 — 1. Since dt+1 —-1< dt+1, it follows that dt+1 -1 = Z;:O atdt. On
the other hand, since d;y1 — 1 is the largest integer less than diy1, each a; is
maximal between the integers < djy1/d;, for j < t. Therefore a; = djq1/d; — 1
for 0 < j < t. Thus:

dt_|_1 = ].-|-dt+1—]. =14aody+airdi+---+aid; = di +a1di +asds +- - -+ ady =

=dy +agde+ -+ aydy = = (ag + 1)dg, s0 dy|dyq1.

Definition 1.2. Let a, b be two positive integers and consider the d-decompositions
a = )i gaidj and b = 3% _ob;d;. We say that a <q b if a; < b; for any
0<i<s.

Lemma 1.3. Let a,b be two positive integers with a <q b. Suppose b=10 +b",
where b’ and b" are positive integers. Then, there exists some positive integers
a' <g b and a" <qb" such that a =a' +a'.

Proof: Let a = Z::O atdt, b= Z::O btdt, b = Z?:O b;dt, b = Z::O b,lsldt. The
hypothesis implies a; < by < dit1/dy and b, b} < dii1/d; for any 0 < t < s.
We construct the sequences aj, aj’ using decreasing induction on ¢. Suppose we
have already defined a},a!f for j > ¢ such that }°;_;(aj +af)d; = 3°;_; a;d; and
biy1 = by, 1 + by, ;. This is obvious for t = s.

We consider two cases. If by = b} + b}, then we choose a; < b} and a} < b}
such that a} + af = a;. We can do this, because a; < b;. Also, it is obvious from
the induction hypothesis that >;_,(a; + al)d; = _;_, a;d;, so we can pass from
ttot—1.

If by # by +b; we claim that b} +b) = b;—1. Indeed, Z;;é(b}‘}‘b;’)dj < 2d; and
therefore it is impossible to have b} +b; < b;—2, otherwise Zzzo(b;qtb;-’ )d; < bydy
and we contradict the equality b = b’ 4+ b"”. Also, since b; | + b}, ; = bsy1, we
cannot have b} + by > b;. Similarly we get b,_; + b} ; > b;—1. By recurrence, we
conclude that there exists an integer u < t such that: b),_; +b)_; = by, 1, ,b), +
by = by + duy1/du, by + b0 = buyr + dugo/duyr — 1, ..., bj_; + | =
be1 +di/di1 — 1.
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If a; = b; for any j € {u,...,t}, we simply choose a} = b’ and aj = b} for
any j € {u,...,t} and the required conditions are fulfilled, so we can pass from

t to u — 1. If this is not the case, then there exists an integer u < ¢ < t such
that a; = by, .. .,a041 = bgy1 and a; < by. If ¢ =t then for any j € {u,...,t} we
can choose aj < b; and a < b such that a} +a = a;. For j <t the previous
assertion is obvious because b} + b7 > b;, and for j = ¢, since a; < b; we have
in fact a; < b, + b} = by — 1 and therefore we can choose again a; and aj. The
conditions are satisfied so we can pass from ¢ to u — 1.

Suppose g < t. For j € {u,...,q—1} we choose a; < b; and a} < b such that
aj +aj = aj. We can do this because b; + b} > b; > a;. We choose ay and ay
such that aj + ay = a4 + dgy1/d;. We can make this choice, because a, < b, — 1
and by +bj > by +dy41/dy—1. For j > ¢, we simply put a; = b’ and a = b}. To

pass from ¢ to u — 1 is enough to see that Zﬁ:u ajd; = Ez.:u(a;- +a)d;. Indeed,

t q—1 t
> (s +a)d; =Y (af+a))d; + (ay + a)dy + Y (af +af)d; =
j=u

ji=u Jj=q+1

t—1

q—
Z idj + (ag +dgr1/d)dy + Y (a5 +dj/dj — 1)d; + (a; — 1)d; =
j=u Jj=q+1

t
_Za]d —|—dq+1+ Z ]+1 _dtzzajdja
j=u

Jj=q+1

The induction ends when t = —1. Finally, we obtain a’ and a” such that a'+a" =
a, ay < b, and ay < by, as required. O

Definition 1.4. We say that a monomial ideal I C S = k[z1,...,2,] is d-fized,

if for any monomial u € I and for any indices 1 < j < i < n, if t <a v;(u)

(where v;(u) denotes the exponent of the variable x; in w) then u - % /x! € I.
Notice that if d : 1|p|p?|p?| - -- then I is a p-Borel ideal.

Definition 1.5. A d-fized ideal I is called principal if it is generated, as a d-
fixed ideal by one monomial u, i.e. I is the smallest d-fized ideal which contain

u. We write I =< u >q. More generally, if uy,...,u, € S are monomials, the
d-fized ideal generated by uy, ..., u, is the smallest d-fixed ideal I which contains
ULy ..., Up. Wewrite I =< wuy,...,u, >d.

Our next goal is to describe the principal d-fixed ideals. The easiest case
is when we have a d-fixed ideal generated by the power of a variable. Denote
m = (z1,...,2,) and ml¥ = (2¢,... z2) for some nonnegative integer d. We
have the following proposition.

Proposition 1.6. If u = 22, then I =< u >g= Hfzo(m[dt])o“, where o =
E::O atdt.
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Proof: Let I' = [[;_,(ml%])®. The minimal generators of I' are monomials of

¢
the type w = [[;_o [T, a:;‘tj'dt, where 0 < M and Y27, Aij = oy First, let

us show that I' C I. In order to do this, we choose w a minimal generator of
I' (the one bellow). We write z& like this: 2 = gQedotardit-Fasds — gaodo .
x%ldl . -:c;‘{sd“. Since A\g1do <q aody +a1dy +- - -+ asds and I is d-fixed it follows
that -,L.i\mdox%—kmdo el AISO, Xoado < a — Ag1dy = (Ol() — /\Ol)dO +oqdy +---+
asds, and since I is d-fixed it follows that z}0' % z)02% z&—Aordo—re2do ¢ [ Using
iteratively this argument, one can easily see that 27919 ... glondoga—aodo ¢ T,
Also a — apdy = aqdy + - - - + apd,. Again, using an inductive argument, we get:

As1ds |

(@t (@}

:\LOndo) X (xi\ndl . ;\L1nd1) .

-z -z gty =we .

For the converse, i.e. I C I', is enough to verify that I’ is d-fixed. In order to
do this, is enough to prove that the minimal generators of I’ fulfill the definition
of a d-fixed ideal. Let w be a minimal generator of I'. Let 2 < i < n. Then
I/Z(’w) = Z::O /\tidt- If B Sd Vz'(UJ) then ,3 = Z::O ,Btdt with Bt < )\tz'- Let
1 <k <. We have

A

s
w - $£/.’L’;B — H( H w;\tjdt) . ng\ti—ﬁt)dt i .’L'g:)\tk—i_ﬁt)di.
=0 j£ik

Thus w - & /&7 € I' and therefore I' is d-fixed. Since I is the smallest d-fixed
ideal which contains =% it follows that I C I'. O

Proposition 1.7. If a < f then < 28 >4C< 2% >4.

Proof: The case a = f is obvious, so we may assume a < . We denote
I =<z% >gand I' =< 28 >q. We write a = Y, joud; and B = Y5 Bidy.
If w is a minimal generator of I' then w = [[;_, [1i, z}***, where 0 < \;; and
Yo i Avi = Bi. We claim that w € I and therefore I' C I as required.

Since o < J there exists t € {0,...,s} such that as = Bs,...,041 = Bi41
and a; < ;. We may assume Ay > 0. We have

s n t—1 o1 n n
w= [T = TL ot s Eimbests [ g ] [T
j=0 =2

j=0i=1 J>ti=l

and now it is obvious that w € I. O

We have the general description of a principal d-fixed ideal given by the
following proposition. In the proof, we will apply Lemma 1.3.
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Proposition 1.8. Let 1 < iy < is < --- < i = n and let ay,...,a, be some
positive integers. If u = x'xf? --- 27" then:

I =<u>q=< 2" >q- <2 >q - <Y >q= HH )2,
q=1t=0

—_ 8
where my = (21,%2,...,%;,) and og = Y, Ogedy.

Proof: Let I' = [];_, [[;—o(mg ml! )@at. The minimal generators of I’ are mono-
mials of the type w = [T, [T;—, H] ) thj'dt7 where 0 < Agi; and 377 Mgy =
ag¢. First, we show that I' C I. In order to do this, it is enough to prove that
by iterative transformations we can modify u such that we obtain w.

The idea of this transformations is the same as in the proof of 1.6. Without
given all the details, one can see that if we rewrite u as

aigdo Otlldl CLp01sds o (aredo par1dy | L0sds
(le T; xil ) (xz‘r xir xi,. )7

s . .
where g = )7, aqds, we can pass to w, using the transformations

/\ d Als ”
a1odo|_>H 10]0 a1ss|_>Hl,11 7”_’:L.;?:odo|_>
in i
Aroj do Qrsds Arsjds
= [T, airet = []
j=1 j=1

Therefore w € I, and thus I' C I. For the converse, it is enough to see that
I' is a d-fixed ideal. Let w be a minimal generator of I'. We choose an index
2 <i <. Then vi(w) = Y374 >7_g Ageids- Let f < vi(w). Using Lemma 3.1,
we can choose some positive integers f1,. .., 3 such that:

> Byand (0)By <a > Agridh,
q=1,iy>1 t=0

i.e. Byt < Agri, where 8, = >0 o Bpeds. Let k < i. Then,

2q

B _ Agtj-dt (Agti —Bqt)de  (Aqir+Bqt)ds
w -z /7] HH Il = Ti Tk :

g=1t=0 \j=1,j#k,i

Now, it is easy to see that w - /:c € I', and therefore I' is d-fixed. O
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Example 1.9. Let d : 1|2]4|12.

1. Letu=x3'. Wehave21=1-1+0-2+2-4+1-12. From 1.6, we get:

<u>a= (CL’l,.’L'g,1’3)(15"11,1'%,$§)2($%2,$’%2,.’L’é2)-

2. Letu=x?2523%. Wehave9=1-1+2-4 and 16 =1-4+1-12. From 1.8,
we get
<u>aq=23 <) >a< 738 >a=
= ':C% ("1"17 .1'2)(1'%,.733)2(.7311,:53, .’IJ%)(.{E%{ 7%27:5%2)'
Definition 1.10. We say that a monomial ideal I C k[x1,...,2,] is a Borel type
ideal if
Iiz®=1:(z1,...,2;)7, forany j=1,...,n.

Proposition 1.11. Any d-fized ideal I is o Borel type ideal.

Proof: Indeed, [3, Proposition 2.2] says that an ideal I is of Borel type if and

only if for any 1 < j < i < n, there exists an positive integer ¢ such that
) (u/:z:z'-”'(u)) € I. Choosing t = v;(u), is easy to see that the definition of a
d-fixed ideal implies the condition above. a

Definition 1.12. Let S = k[z1,...,z,] and let M be a finitely generated graded
S-module. The module M is sequentially Cohen-Macaulay if there exists a finite
filtration 0 = My C My C --- C M, = M of M by graded submodules of M such
that:

o M;/M;_1 are Cohen-Macaulay for anyi=1,...,r and
L] d’lm(Ml/Mo) < dlm(Mz/Ml) <2< dim(MT/Mr,l).

In particular, if I C S is a graded ideal then R = S/I is sequentially Cohen-
Macaulay if there exists a chain of ideals I = Io C I C --- C I, = S such
that I;/I;_1 are Cohen-Macaulay and dim(I;/I;_1) < dim(I;11/1;) for any j =
1,...,r—1.

Remark 1.13. Let I C S be a monomial ideal. Recursively we define an ascend-
ing chain of monomial ideals as follows: We let Iy := I. Suppose I, is already
defined. If I; = S then the chain ends. Otherwise, let ng = max{i: x;|u for an
u € G(I)}. Weset Iyq = (I : x30). It is obvious that ng > ng_1, and therefore
the chain Iy C I C --- C I, = S is finite and has length r < n. We call this
chain of ideals, the sequential chain of I.

If I is a Borel type ideal, [3, Lemma 2.4] says that

Ig+1 = Ig H (1’1,33'2,. .. ,ZL'W)OO
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From [3, Corollary 2.5], it follows that R = S/I is sequentially Cohen-Macaulay
with the sequential chain Iy C I; C --- C I, = S defined above. Moreover
Inp1 /I &2 J3% ) Jo[@n,41, - - -, &n), where Jp = I N k[zy, ..., z0,] and J5% = J;
(X1, . yTn,)™

Let u = a3tai? ---xp7 and I =< wu >a=[[}_, Hfzo(mgdt])aqt, where m,; =
(1,.--,24,) and ag = i _qagdy. Let I . = [[;_; H;O(mgd‘])a‘“. Then
I=I5yclL C---ClI, =S is the sequential chain of I. Let ny = i4,_,. Indeed,
since Tn, “Ipy1 C Iy = Ipyx C (I 2 22). For the converse, let w € (I : x3)
be any minimal generator. Then there exists an integer b such that w - x’,’u € 1.
We may assume that w is a minimal generator of I;. Then w - w%e =w' -y for
[d;]

aw € Iy and y € H;ZQ(mT_l)"T—LJ‘ with z% ly. Thus w'|w, and therefore

w e Ig+1.

Let S = k[z1,...,z,] and let M be a finitely graded generated S-module with
the minimal graded free resolution 0 - Fy — Fs_; — --- - Fy - M — 0. Let
Syzi(M) = Ker(F; — Fi_1). The module M is called (r,t)-regular if Syz,(M)
is (r + t)-regular in the sense that all generators of F} for ¢t < j < s have degrees
< j+r. The t-regularity of M is by definition (t—reg)(M) = min{r| M is (r,t)—
regular}.

Obvious (t — reg)(M) < ((t — 1) — reg)(M). If the equality is strict and
r = (t —reg)(M) then (r,t) is called a corner of M and B¢ r4++(M) is an extremal
Betti number of M, where 8;; = dimyTor;(k, M); denotes the ij-th graded Betti
number of M. Later, we will use the following result:

Theorem 1.14. [6, Theorem 3.2] If I C S is a Borel type ideal, then S/I has at
most  + 1-corners among (ng, s(J§%/J;)) and the corresponding extremal Betti
numbers are

Bres(azat 11y +ne (/1) = dimy (T3 [ J0) ss50 3, -

2 Socle of factors by principal d-fixed ideals.

In the following, we suppose n > 2.

Lemma 2.1. Letd:1=dy|di| - |ds, @ € N and I =< z& >q= [[;_,(ml®])a.
Let g = 375, ojdj. Let

J = Z (-'171 . mn)dt_l(m[dt])at—l H(m[dj])aj-

t=0,0;,>0 >t
Then:
1. Soc(S/T) = L+

2. Let e be a positive integer. Then (ZH), #0& e=q +(n—1)(d,—1)—1,
for some 0 <t < s with a; > 0.
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3. maz{e|(ZH). # 0} = asds + (n — 1)(d; — 1) — 1.
Proof: 1. First we prove that 2+ C Soc(S/I). Since Soc(S/I) = (O :g/; m),

it is enough to show that mJ C I.
We have J = 37/ .0 Ji, Where

Jp = (1 -+ - @)%~ (mldd )=t Hj>t(m[dj])aj

It is enough to prove that z;J; C I for any ¢ and any ¢. Suppose i = 1:

1Ty = 2 (@)l [l € (@)t [ ml4h)
>t jzt
On the other hand, (25 ---z,)% ! € [1;ci(m [4i]ye5 | because d; —1 > e aid;.
Thus z1J; C 1.
For the converse, we apply induction on a. If @ = 1 then s = 0 and

I = (z1,...,2n) = m. J = (21,...,2,)% 1 = S, and obvious Soc(S/I) =
Soc(S/m) = S/m. Let us suppose that @ > 1. We prove that if w € S\ I
is a monomial such that mw C I, then w € J. Let t, = maxz{t : z% '|w}.
Renumbering 1,...,2, which does not affect either I or J, we may suppose
that t; >ty > --- > t,,. We have two cases: (i)t; > t, and (ii)t; = t,. But first,
let’s make the following remark: (¥) If u = 25" --- 2P~ € [T m% and §; < d;
for certain 7 then u/xf el ml%! (the proof is similarly to [3, Lemma 3.5]).

In the case (i), there exists an index e such that t. > teqy1 = -+ = tn.
Then we have w = (2, -~ Teyqq)%n ! -g¥e™' .y, for a monomial y € S. We
consider two cases (a) z, does not divide y and (b) z. divide y. (a) From z,w =
(Tpy - Tegr ) 1zl TN oy € T we see that y € [1;5;, (ml41), by ().

d

Tn'"
dy, 1 s ot -

Therefore w € I, because ze* ™ € [],,, (ml?)2, which is an contradiction.

. dy, —1,.0tc 1 ! :
) - n """ de ) - e-
(b) In this case, w (.’L‘ T +1) n " Te °Y where Yy y/w We claim

that there exist A < ¢, such that a) # 0. Indeed, if all @y = 0 for A < t., then
I= H 41 (m[di‘])ai and z,w € I implies y' € I because of the maximality of
t, and ( ) It follows w € I, which is false. Choose A < t, maximal possible with
ay # 0. Set w' = w/z%. Note that mw C I implies

mw C I' = (mlé:])oa—t H(m[d
J#A
It is obvious that z,w' € I' for ¢ # e. Also, since z2e* does not divide z.w
implies z.w' € I'. Choosing o' = a—dy, we get o, = a; for j # X and oy = ay—1
and therefore we can apply our induction hypothesis for I’ (because o < a) and
for the ideal .J' associated to I', which has the form:

J = Z ($1 )dq 1 q]a*IH

q=0,a} #0 Jj>aq
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and so w = zhw' € g J' C J.

It remains to consider the case (ii) in which we have in fact ¢, =t = -+ = ¢,,.
Ify=w/(x1---2n)%" ! € m, then there exists e such that z.|y, and we apply
our induction hypothesis as in the case (b) above. Thus we may suppose y = 1,
ie. w= (z1---2,)% 1. Since mw C I, we see that a; = 0 for j > ¢, and
at, = 1 (otherwise w € I, which is absurd). Thus w € J.

2. Let v = 2% " (@y---2,)%~". Then deg(v) = ¢ + (n — 1)(dy — 1) — 1. But
v € J and v ¢ I, therefore v # 0 in Soc(S/I) = 2.

. Leteg=q+(n—1)(dg—1)—1for 0 <t <s. Let t <s. Then

etr1 — €t = Q1 — g + (n — 1)(dy1 — di) =
= —aydy + (n — 1)(dg11 — di) > diy1 — (g +1)dy > 0, s0
maz{e|((J+1)/I). #0} = e; = asds + (n —1)(ds — 1) — 1.

Remark 2.2. From the proof of the above lemma, we may easily conclude that for
n>3,e =ey if and only if t =1t', and if n = 2, then e, = ey (t < t') if and only
if

ap_y =dy/dy_1,...,0; = dy1/dy.

Corollary 2.3. With the notations of previous lemma and remark, let 0 <t < s
be an integer such that oy # 0. Let hy = dimg ((I + J¢)/I). Then:

1. GU)NT + Jp) =0 for0<t' <s, t' #4¢.

2. hy = ("t?) [Ls (.

hq, ifn>3ande=e; forag<s
with oy # 0.
3. dimg (Soc(S/I)e) = ¢ 3o, hg, ifn=2andq€ {ele=e fore<s.
with a. # 0}.
0, otherwise.

Proof: 1. First suppose t' < ¢t. A minimal generator z° = a:’f L...gP of J; has
the form

n . .
. . a; 7 >t
(21 2n) " [ @Y ki ®), where Y7 N ={ i
v=1

= ap—1, ifj=t~

Thus, f; = dy—1+3__, Aijd;. On the other hand, d;—1 = Y"'Z¢ (d;11/d;—1)d;,
SO ,Bz has the writing Z;:o ,Bz'jdj, where ,Bz'j = dj+1/dj -1 fOI‘j <t and B’ij = /\ij
for j > t.
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Assume that 27 € I + Jy for a certain ¢’ < t. Then there exists v € N* such
that 27 € G(I) (or 7 € G(Jy)) and z”|2P, that is v; < B; for all 1 < i < n. Let
Y = E;:o 7ijd;, the d— decomposition of v;. We notice that (Bis,...,Bi0) >
(isy - - - »Yi0) in the lexicographic order.

Note that all minimal generators 2” of I have the same degree a < e; and
Sy Yig = ag for each 0 < ¢ < s. Also all minimal generators 7 of Ji have
the same degree ey < e; and Z?:l Yig = a4 for each t < q < s. It follows
deg(z®) > deg(z") and so B; > ~y; for some i. Choose a maximal ¢ < s such
that Biq > viq for some i. Thus B;; = ~;; for j > g. It follows B;q > ;e since
(Biss - -+ Bio) Ziew (Vis,---,%i0)- If ¢ <t then we have

n n n
Qg = Z'Yiq < Zﬂiq = Z/\iq < ay,
=1 =1 =1

which is not possible. It follows ¢ < t and so 8;; = v+ for each i. But this is not
possible because we get a;y = Y 1| Vit = Dopy Ait =z — 1. Hence z° ¢ I + Jy.
Suppose now t' > t. If ey > e, then G(J;) N G(Jy) = O by degree reason.
Assume e; = ep. If follows n = 2 by the previous remark. If 3311%52 eG(J)NJy
we necessarily get x11x§2 € G(J;) N G(Jy) again by degree reason. But this is
not possible since it implies that ay — 1 = Bip + Bopr = ay.
2. and 3. follows from 1. 0

Theorem 2.4. Let u = HZ=1 ac?l", where 2 <141 <2 < --- <, <n. Let

I =<u>q= H 1‘[(11,1£1<11'])¢Jau'7

¢=1j=0
where g = ijo og;d;. Suppose i, =n. Let 1 < a <r be an integer and
P (I):={(Mt) e N* x N1 <A1 < - < Ag=r,tg > -+ > t1,00,1, #0,
forl1<v<a}l.
Let J=3%"_, Y unera(n T, where Jo gy is the ideal

a a

_ ds,, das ;o ldesNan. o —
@i, - ziy_ 42)% IHmE\ + H(m& hyases (el o -1,

v v v

e=1 v=1 >ty

A, -1
H H (mgdj])aqj,

g=Av—1+1 52t

where we denote m!%a+1l = S Then Soc(S/I) = (J + I)/I.



326 Mircea Cimpoeag

Proof: The proof will be given by induction on r, the case r = 1 being done in
Lemma 2.1. Suppose that r > 1. For 1 < ¢ <, let: I, = [[?_, H‘;:O(mgdj])aef
and S; = k[z1,%2,...,2;,] For t with oy # 0, denote:

M = de—t]l (m!%

j<t
Let J® be an ideal in S,_; such that Soc(S,_;/I®) = (J® + 1®)/1(®) The
induction step is given in the following lemma:

Lemma 2.5. Suppose i, = n and let

— ilyard dil yar_1,; t]\Qrt —
J= Y (@i [J e [T @mlb)ers mltdyer=t g,

=0,an¢ #0 >t i>t
Then Soc(S/I) = (J +I)/1.

Proof: Let w € S\ I be a monomial such that m,w C I. As in the proof of
lemma 2.1, we choose for each 1 < p <n, e, = maz{e: z%'|lw}. Renumbering
variables {z,,...,z;_,41} (it does not affect I, J and I?)), we may suppose
en < ep1 < --- < e, _,41. Set t = e,. We claim that a,; # 0. Indeed, if

¢ = 0 then from z,w € I we get z,w/z% 1 e T = Hj>t(m[de])aff I._1 because

k-1l e Hj<t(m[rd"])aff. Since t = e, is maximal chosen, we get w/z%*1 € T
and so w € I a contradiction.
Reduction to the case that zd does not divide w. Suppose that w = z%®
and set
F= (it t T] mldhe,
€<0,e#t

We see that mw € I & mw € I. Replacing w and I with w and I, , we reduce
our problem to a new ¢ < ¢t. The above argument implies that a, ; # 0, where &
is the 'new’ a of I.

Reduction to the case when a,; = a,—1,; =0for j > ¢, oy =1 and @14 =
0. From z,w € I, we see that there exists p < n such that mﬁj |lw for j > tif
oar; #0,0r j =t if oy > 1. Choose such maximal possible p. Set w' = w/mﬁj,

I'= (mthes=t I (mitd)arr,_,.
€20,

We see that mw C I & muw' C I, because from z,w € I, we get z,w' € I' from
the maximality of p.
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Let ay.; = apj — 1 and oy, = aye for (g,€) # (r,j). o is the 'new’ a for I'. If

we show that
wel= 3 (@nmi_a)h

€>0,07. .70
. H(mg‘de])arf H(m[rd_j]l)ar_u (dee])are—l J(t)7
e>e j>e

then w = :vﬁj w' € m[rdj]J' C J. Using this procedure, by recurrence we arrive to

the case a,; =0 for j >t and a,s = 1. Again from z,w € I, we note that there
exists p < i,_1 such that :czj |w for j >t with a,_1,; # 0. Choose such maximal
possible p and note that mw C I if and only if mw"” € I" for w" = w/xgj, where

"= (my )=+ [T @l T @it 1, .
€20, e£j >0

As above, we reduce our problem to I"” and the o, which is the new a of I", is
given by a;_,; ; ge = aqc for (g, €) # (r—1, 7). Using this procedure,
by recurrence we end our reduction.

Case a,j = a,_1; =0for j > t, a,y =1, a,_1; = 0 and z& does not divide
w. Let express w = (z,, ---z;,_,+1)% 'y. We will show that y does not depend
on {Z,,...,%;_,+1}- Indeed, if n = 4,1 + 1 then there is nothing to show since
z% does not divide w. Suppose that n > i,_1 + 1, then from z,w € I we get
y € I,_; because 7! € Hj<t(mfj)a”' and the variables x,,...,%;,_,+1 are
regular on S/I,_1S. If y = z,y' for n > 4,_1, then as above y' € I,_;. Thus
w e gl ab 1y C I for any p #1,i,—1 < p < n, a contradiction.

Note that m,w € I = m, 1y € IV) and so w € (@, ---x4,_,41)%1JD,
Since ayj = ar_1; = 0for j > t and @y = 1 and a,—1; = 0, we get w € J.
Conversely, if y € J®), then it is clear that w € J. O

= Qp—1,j-1, &

We see by the above lemma that:

(x) J = Z (@5 - @iy 1) H(m[r(ifll)arj

e>0,0,.7#0 j>e
[T @i}y iyt 6,
jze

Since A, = r — 1, by the induction hypothesis applied to I(®) we get:

r—1

JO=37T [, i)™ Tyt

a=1 (\t) EPa(I(®)),ta=e 5=1

a
+ Z H(xm ---;U,l-)‘s_l_'_l)dts—l . ('i\,t)], where

(Mt)EPL (1) ta<e 5=1
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Aa—1

J{)\,t) = H H a“ J()\ 1) and

g=Xa_1+1j>e

e—1 Aa—1

de di\a i dig]\a b — i1\ oqi T
Tho = ml® [T @Ehmes @mfthoree— T T (mlth)2e Ty ), and
J>ta g=Aa—1+1j>ta
[d ] | Av—1
tu d . dt,, ty, —
J(A t) = H m, " H E\Z])a*”” (m[)w )Rty L H H ) ¥
J>ty q=Xy—1+1j>t,

Ift, = e, set X, =\, for v < a, A}, = r and see that (X', t) € P,(I). If t, <e,
then put A = A, for v <a, X, =r,t, =t, for v <a and t;,;, = e and then

(X', t) € P,y1(I). Substituting J(¢) in (x), we get the following expression for J:

r—1 a
y — djlNays 5 delyayr . —
DORED DI | (CIVEEEE N Lty | [ R G D At

a=1 (M t)E€Pa(I) v=1 i>e
a+1
d di, —1
H H el Jow + E E H Tigy iy )T
g=X,_;+175>e a=1 (A" t")EPyq1(I) v=1
)‘u j [dtll+1] Qyrr 11 —1
m at+1tat1
T mf el et ™
J>e
AL -1
{di” ] d:]\a\rm . [dtu] ~
a s @ -1
[m)\u + H (m[AI-Z]) )‘a+1 ! (m)\”a ) Agt,@l H H C(q] J(}\,t)'
a a
2ty =X+t

Since all the pairs of Py(I) have the form (X', t) or (A", ¢") for a pair (\,t) € Py(I)
or (A, t) € P,_1(I) respectively, it is not hard to see that the expression above is
the formula of J as stated. g

Let s, = maz{jlag; # 0}, dge =Y 0, quzt Qejdj, Dg =dgs, + (ig — 1)(ds, — 1)
forl<g<r.

Corollary 2.6. With the notation and hypothesis of above theorem, for (A, t) €
P,(I) let:

a Av
ding = Z Z Z og;jd;. Then :
v=1g=X\, 141 j>t,

1. Soc(I,_1S/I) = Soc(S/I).

2. (J+I)/T)c #0, if and only if e = d(x4) + 30 (i, —ia,_y)(de, —1) —dsy,
for some 1 < a<r and (\,t) € P,(I).
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3. c=max{e|(J+I)/I)e #0} =drs, + (n—1)(ds, —1) —1=D, — 1.
Proof: 1.Note that J(, ¢ is contained in

T

H d ] Qqj H[H ax,, J( V a,\,, t,,—l] H dt::l'l‘

=1, {A1,.., Aq } v=1 j#t,

Since mi‘:“ C mi*: for t.y1 > t. and A, = r if follows that

JcC H d ] arJ dt“])a”“_lIrfl,
J#ta

as desired.

2.If ((J+I)/I)e # 0 then there exists a monomial v € J \ I of degree e.
But uw € J, implies that there exists a € {1,...,7} and (A,t) € P,(I) such that
u € Jxy). Thus the degree of uis e = d(x ) + Y 5 (ix, —ix,_,)(de, — 1) — dy,,
as required.

Conversely, let e = dx g + > p_i(in, — ix,_,)(dy, — 1) — dy, for some a €
{1,...,7} and (\,t) € P,(I). We show that the monomial

a

— d —d
w= H(mixy o 'xi,\u_1+1)dt" ' wl(A’t) "e J\I

v=1
Obvious w € J. Let us assume that w ¢ I. Then

dy, —1
w wz:“ € H ‘““I,\ 1
Jj>ta

because msz_l € [, (m[ij])akai and z;, ¢ m; for j < A,. Inductively we
get that:

Aa
_ d; .
w/(@iy, - win,_ ) e [ T @i,

q=Aa—1+1j>ta

Following the same reduction and using that ¢, > - -- > t; we obtain that:

d(x 1y —dty c H H H [d] )% |

v=1g=A,_1+1j>t,

So d( ) — di, > da ), a contradiction.
3.Note that ¢ = d(y ) for (X', #') € Pi(I) with X' = Ay =r and t' = t; = s,.
We have to show that:

c=dy, +(n—1)(d,, —1) =1 <dpys + Z(ixy —ixn,_i)(dg, — 1) —dy,

v=1
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for any 1 < a <r and (A, t) € Po(I). Since dy, — 1 < (dy, — 1) + 372, ag;d; for
all ¢ with 4, < g <4, we see that: -

D, —12>dny) + Z(ixy —ix_y)(di, = 1) + (in, — 1)(dy, — 1) — 1.

v=2

On the other hand, (ix, —ix,)(di; —1) = (ix, — 1)(dy, — 1) +dy, — 1, and replacing
that in the above relation we obtained what is required. a

Example 2.7. Let d : 1|2]4|12.
1. Letu=x3'". Wehaveag=1,a; =0, as =2 and a3 =1 so:
I'=<u >a= (.’23'1,5172,55'3)(517‘11,5133,$§)2($i2,$é2,$%2).

Let J =310 0,50 Jt, where

Jt — ($1m2m3)dt—1(mllit’wgt , Ilfgt)at_l H(mfj , .'L'gj , :L.gj)aj .
i>t

_ — d; d; _dj .
Jo = (w1maws)' ™" - (21,79, 33)" - [[ (27, 257, 257 =
St

= (xliv mgv .’17%)2(.’1:%2, $%27 '/1‘%2)

Jo = (271.’[!2:173)4_1(:811, .’L'%, $§)2_1 (1%2’ $%27 .Z'é2)

= (.1'1,2;‘2,'53)3(.%“11, x37 .'Eg)(;l;’%, .’L‘%, xiliz)

and
J3 = (w12223)127! = (w12223) . From 2.1, Soc(S/I) = (J +1)/I.

2. Letu = mgmée. We have r = 2, i1 =2 and io = 3. Also a9 =1, a2 = 2,
azs =1, azg = 1 and the other components of a are zero. Then

I'=<u>g=< .Z'g >a< ‘7%6 >da= (a:l,xg)(m‘f,a:%f(m‘f,:c%,m%)(:c?,x?,:c?).

We have two possible partitions: (a) (2) and (b) (1 < 2).

(a)N =X =2, t =t such that as; # 0. We have two possible t: t = 2 or
t=3.

(i)For t = 2 we obtain (according to the Theorem 2.4) the following part of
the socle:

J(2a2) = (1'12721'3)3(1'}27 1'527 1%2)(1'[117 $3)4
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(i) For t = 3 we obtain:

J(2,3) = (@17223)"

(Ol =X < Xg =2, t = (t1,t2) such that ax, ;. # 0 for1 < e <2 and
t1 < ty. According to our expressions for a; we have three possible cases:
tl =0,t2 =2 OT'tl =0,t2=3 OTtl :2,t2 =3.

(i)For t; =0 and ty = 2 we obtain:

J(1,2),(0,2) = 37:; (m%a w%)(xélg $§)2($%27 $é27$;}2)'

(ii)For t; = 0 and to = 3 we obtain:
Ja,2),09) = 3 (217, 23°) (21, 73)”
(i1i)For t1 = 2 and t2 = 3 we obtain:

Ja.2),23 = wizizs (@1, 25°) (21, 23)

From 2.4 it fOllO’U)S that ’Lf J = J(Q’Q) + J(2’3) + J(1,2)7(0’2) + J(172)’(0’3) +
J(]_,Q),(g,g) then SOC(S/I) = (I+ J)/J

3 A generalization of Pardue’s formula.

In this section, we give a generalization of a theorem proved by Aramova-Herzog
[1] and Herzog-Popescu [4] which is known as ”Pardue’s formula”.

Let 1 <41 <42 < -+ <4 = n and let ag,...,a, some positive integers.
Let u = [[;_; z;* € S = K[z1,...,2y,). Our goal is to give a formula for the

regularity of the ideal

q s
I'=<u>a= [] J](ml®0)e,

r=1j=0

where oy = 37 _gagd;. If iy = 1, it follows that I = z{"I', where I' =

1, H‘;Zo(mgd"])aqf, and therefore reg(I) = ay +reg(I'). Thus, we may assume
11 > 2.
If N is a graded S-module of finite length, we denote s(N) = max{i|N; # 0}.
Let s, = maz{jlag; # 0} and dyy = 30| 3775, @ejdj. Let Dy = dys, + (ig —
1)(ds, — 1), for 1 < ¢ < r. With this notations we have:

Theorem 3.1. reg(I) = mazi<q<,Dy. In particular, if I =< 28 >q and a =
i aedy with as # 0 then reg(I) = a,ds + (n — 1)(ds — 1).
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Proof: Let I = [[/Zt [[)_o(mi?)%, for 0 < ¢ < 7. Then I =L C I, C
--- C I, = S is the sequential chain of ideals of I, i.e. Ipy1 = (I¢ : x5 ), where
ng = i,_¢. Moreover, from the Remark 1.13, we see that this chain is in fact the
chain from the definition of a sequentially Cohen-Macauly module for S/I. Let
S¢ = k[z1,...,2pn,] and my = (21,...,2Zp,).

The corollary 2.6 implies that ¢, = D, —1 is the maximal degree for a nonzero
element of Soc(S¢/J;). [3, Corollary 2.7] implies

reg(I) = maz{s(L;S;*/1;S¢) | £=0,...,7 — 1)} + 1.
Also, from the corollary 2.6, we get
SOC(S[/I[S@) = SOC(I(.HSZ/IZSK) = (IZ-H : me)Sg/IgSe = I[Sfat/IgSg,

which complete the proof. a

Corollary 3.2. reg(I) < n-deg(u) = n-deg(I), where deg(I) = maz{deg(w)|w €
G(I)}.

Corollary 3.3. S/I has at most r-corners among (ig, Dy — 1) for 1 < q < r.
If iy = 1 we replace (i1,D1 — 1) with (1,a1). The corresponding extremal Betti
numbers are Biq,Dqu_l.

Proof: By Theorem 1.14 combined with the proof of Theorem 3.1, S/I has at
most r-corners among (ng, s(Ip+15¢/1¢S;)) and is enough to apply Corollary 2.6.
0

Example 3.4. Let d : 1|2]4|12.

1. Letu = 3! € k[z1,22,73]. Wehave21=1-14+0-2+2-4+1-12. From
3.1, we get:

reg(<u>q)=1-124+3-1)-(12-1) = 34.

2. Letu = z3x38z}. Then reg(< u >4) = 2+reg(< u' >4), where u' = u/z3.
We compute reg(< u' >q). With the notations above, we have i; = 2,
2 =3, r=2, a0 =16 and as = 9. We have a7 = 1-4+4+1-12 and
ar=1-142-4 thuss; =3 and s2 =2. Dy =dis+(2-1)(ds —1) =
12411 =23 and Dy = dys + (3 —1)(dy — 1) = 24+ 6 = 30. In conclusion,
reg(< u >q) = 2+ mazx{23,30} = 32.

In the following, we show that if I is a principal d-fixed ideal generated by
the power of a variable, then I, is stable for any e > reg([).

Lemma 3.5. Let I =< z& >q and o = Y, oudy with o, #0. Ife > reg(I)+1
then for every monomial v € Is. there exists w € G(I) and a monomial y € S
such that v =w -y and m(v) = m(y).
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Proof: We may assume e = reg(I) + 1 and v € I,. Then v = w' -y’ for some
w' € G(I) and a monomial y' € S. Suppose w' = [[;_,[I}j-, j‘”'dt, where
0 < \j and Z;L 1A\j = a4 Suppose n = m(v) = m(w') > m(y’). Then
y =z .. B" 1'. Let m = min{t|\sn, # 0}.

We claim that there exists some 1 < ¢ < n such that d,,, — ;": 51 Aiidy < B;.
Otherwise, it follows that dy, — Y 1g' Aidy > fi+1for any i =1,...,n — 1. So,

n—1m-—1
(n —1)d,, ZZ)\tzdt>61+ +Bpr+n—1=reg)+1—-a+n—-1¢&
i=1 t=0
m—1 s—1
(n—1)(d oud, n—l)(ds—l)—Zatdt—Fl@
t=0 t=0

s—1
D ondy > (n—1)(ds — dm) + 1
t=m

because reg(l) = asds + (n — 1)(ds — 1) from Theorem 3.1. But on the other
hand, dy — dp, = S0t (dig1/dy — 1)d; > S5_} ayd; and this contradict the
above inequality.

Thus, we may choose i < n such that vy =d,, — > ;- 61 Aiidy < B;. Therefore,
we can write: v =w' -y’ =w -y, where w =w' -] [z} and y = w' -z} /z]. It is
easy to see that w € G(I) and m(v) = m(y) = n. O

Corollary 3.6. If I =< z% >4 and e > reg(I) then I>. is stable.

Proof: Let v € I>.. Let i < m(v). Since ;- v € I>¢yq it follows from the above
lemma that z;v = w - y for some w € G(I) and y € S such that m(z;v) = m(y).
But m(v) = m(z;v) and thus 2;v/Tpm ) = W - Y/Tm) € 1. O

The converse is also true. Indeed we have the following more general result
of Eisenbud-Reeves-Totaro:

Proposition 3.7. [2, Proposition 12] Let I be a monomial ideal with deg(I) = d
and let e > d such that I>. is stable. Then reg(I) <e

Remark 3.8. 3.6 gives another proof for the "<” inequality of the generalised
Pardue’s formula in the case when I =< z% >q. Indeed, considering e = asds +
(n—1)(ds—1) from 3.6 it follows that I's. is stable and thus 3.7 implies reg(I) < e

Corollary 3.9. If I =<z >q then reg(I) = min{e| I>. is stable }.
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