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Abstract

In this paper the solution of nonlinear programming problems (NLP) by
a two-parameter penalty function method is considered. An algorithm that
combines penalty concepts and sequential quadratic programming tech-
niques is presented. The approach taken is to replace the initial problem by
the more tractable one of minimizing a non-differentiable penalty function
chosen so that the solutions of the NLP are also solutions of the penalty
function problem.
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1 Preliminaries

In recent years, a large amount of work has been devoted to the problem of solving
nonlinear programming problems. Important contributors in this field are Rosen
[13], [14], Han [5], Mayne and Polak [8], Sahba [15], Preda [12] and many others.
The reason of this interest is the fact that such problems arise in a wide variety
of technical and scientific applications. There has been a resurgence of interest
in exact penalty methods, because of their ability to handle degenerate problems
and inconsistent constraint linearizations, see for example Chen and Goldfarb [1],
Coope and Price [2], Gould et al. [4], Hu and Ralph [7], Mongeau and Sartenaer
[9],Pantoja and Mayne [10].

Penalty methods have undergone three stages of development. They were
first seen as vehicles for solving constrained optimization problems by means of
unconstrained optimization techniques. This approach has not proved to be ef-
fective, except for special classes of applications. In the second stage, the penalty
problem is replaced by a sequence of linearly constrained subproblems. These for-
mulations, which are related to the sequential quadratic programming approach,
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are much more effective than the unconstrained approach but they leave open
the question of how to choose the penalty parameter. In the most recent stage
of development, penalty methods adjust the penalty parameter at every iteration
S0 as to achieve a prescribed level of linear feasibility. The choice of the penalty
parameter then ceases to be a heuristic and becomes an integral part of the step
computation. In Section 2 a penalty strategy is presented and theorems the al-
gorithm presented in Section 3 is based on. Initially, the algorithm follows the
approach in Coope and Price [2]; the updating strategy for the parameters refers
to a better way to handle the infeasibility in the context of sequential quadratic
programming (SQP) methods.
The nonlinear programming problem considered is of the form:

min f ()
a<c(z)<b (1)
z €R"

where f : R® - R, ¢: R® - R™, ¢ = (¢, ..., ¢ are continuously differentiable
functions, a = (a1, as, ..., am)" € R™, b= (b1,bs,....,bm)” € R™ and a < b means
a; S bz,VZ = l,m.

Throughout this paper we assume that at each local minimizer of the nonlinear
programming problem 1 an appropriate constraint qualification hold, thereby en-
suring that any optimal point z* of the nonlinear programming problem 1 satisfies
the following Karush-Kuhn-Tucker conditions: there exists a vector of Lagrange
multipliers A* = (A}, A3) € R™ x R™, where A\ = (Ajy, Alq, ..., AT,,) € R™,
Ay = (A3, Adgs oy A3,) € R™ such that

c; (z*
a; — C;

)(—)biSO; AL >05 Af; -

(
) <05 A5, 205 A, -(ai—c(x

2 The Penalty Function Problem

The nonlinear programming problem is not solved directly; instead a non-diffe-
rentiable exact penalty function ® is minimized, where the exact penalty function
is constructed so that local minimizers of the nonlinear programming problem are
also local minimizers of the penalty function ®. The penalty function is

B (@) = f (@) +p0(x) + gv 0 (a), 3)

with g > 0,7 > 0 and the degree of infeasibility, 6 (), is defined as
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0 (z) = 1rgnzagxm{ [ei (x) — b3l s ai — e (2)], ), (4)
where [y], = max {0;y}.

The penalty function & may be viewed as a hybrid of a quadratic penalty
function based on the infinity norm and the single parameter exact penalty func-
tion of [8], [10] and [15]. Clearly 6 is continuous Yz € R", but it is usually not
differentiable for some x. However, the directional derivative

D,6 (z) = lim 0(x+a-p)—0(x)
a0 (%

exists for any x,p € R™. The definition 4 imply that, Vz,p € R",

)
Ve (z); —pT'Ve; }
max{ien}fx(}acc)p ci (x) zg}%)( p'Ve (x))

if0(z)>0, I(z) # o

D8 (z) = 4 { T .. . T, } (5)
max iér}?(};) [P Ve (x)]+,iér}%) [-pTVe; (x)]+
if(z)=0, I(x)# o
L 0ifI(z)=o
where

{ I(z)=0L(z)Ul (),
L) ={ilci(x)=b;=0(x)}, L(x)={ila;—ci(z)=6(x)}.

Definition 2.1. For fized values of p > 0 and v > 0, a point z* is a critical
point of ® if and only if, for all p € R™, the directional derivative Dp® (x*) is
non-negative.

Given a suitable choice of the penalty parameters, problem 1 may be replaced
by the problem

{ min & (z) ©)

T € R™.

Definition 2.2. The solution set of the penalty function problem 6 with fized
values for > 0,v > 0 is defined as the set of critical points of ®.

Theorem 2.3. Let z* be an optimal solution of the nonlinear programming pro-
blem 1 at which Karush-Kuhn-Tucker conditions 2 hold and let \* = (A}, )\5) €
R™ x R™be a vector of Lagrange multipliers satisfying these conditions for which
[[(AT, A3)y is minimal. If p > [[(AT, A3)||, then z*is a critical point of ®. Con-
versely, if £*is both feasible and a critical point of ® for some > 0,v > 0, then

z* is a Karush-Kuhn-Tucker point of the nonlinear programming problem 1.
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Proof: The Karush-Kuhn-Tucker conditions 2 and the definition 4 imply 6 (z*) =
0, A}; =0,Vi¢ I (z*) and A5, =0, Vi ¢ I, (2*) . Therefore, combining 2 with 5

2 m
and [|(AL, M)l = > > |)\§‘j , for any p € R™ we have
=1

i=1j=

Dp® (z*) = p" Vf (2*) + pDyf (z*) =
=p" |- Z AiVei (z%) +p" Z A3 Ve (z%) | +
i€I (z*) i€lx(z*)

+ 1Dy () >

> (= Z Al — Z A3i +p| Dpb (z*) =

iEIl(.Z*) iEIQ(w*)
T T
= Ve; ; —p Ve :
max{iér}la();) (p c (a:))+ zen}?(ﬁ)( p' Ve (m))+}

(1= 1A A2)[]) = 0.

We obtained D,® (z*) > 0,Vp € R™ and thus, z* is a critical point of .
Conversely, if x*is a critical point of ® for some fixed p > 0,v > 0, then
D,® (z*) > 0,Vp € R™. For any z sufficiently close to z* we have

()= (") + Dy 0@ (") + 0|z —2%|| > @ (2*) + 0|z — x| . (7

If z is a feasible point, ® (z) = f (z) and z* satisfies Karush-Kuhn-Tucker con-
ditions 2. 0

The penalty problem 6 is solved by an iterative process. In order to determine
a suitable descent direction at the k-th iterate, a continuous piecewise quadratic
approximation to ® near the current point is defined:

W (p) = f (z*) +p" -V (w'“)+%pT-H’“-p+u’“-C(p)+%V’“-C2(p),

where

¢(p) = max {0;¢; (2F) —b; + p"Vei (2*) 5 ai — ¢; (%) — p"'Ve; (2%)}
1<i<m
and H” is a positive definite matrix. Clearly, 1* is strictly convex in p, and the
level set {p € R" |¢* (p) < ¥ (0) } is bounded for all > 0,» > 0. Thus, *
has an unique global minimizer p* which also solves the quadratic programming
problem:
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minp”Vf (z%) + 3p7 - H* -p +pk-C+ 30k ¢

D,

(P*) ai —( <ci(z%) +pTVe; (2F) <b;+ ¢ i=T,m
¢>0.

Theorem 2.4. Let (pk,Ck)be the unique solution of the quadratic programming
problem (Pk), with H* positive definite matriz. Let (/\'f,/\é)denote an optimal
Lagrange multiplier vector, which need not be unique, for which ||(/\’f,/\’2“)||1is
least. If p* #0, ¢F <6 (mk) and p + vl (Z‘k) > || ()\’f,)\é) H1 then, p* is a descent
direction for ® at z*.

Proof: The Karush-Kuhn-Tucker conditions for problem (P*) are

¢ (wk) —b; +pT'Ve; (a:k) —¢F<0; X >0;
A (e (2%) = bi+p"Ve (2F) = ¢F) =0; i=1,m
a; —¢; (zF) —=pT'Ve; (2%) = ¢F <05 A5, >0 (8)
pLAS (ai —c (w’? —pTV¢ (mk) — Ck) =0; ¢=1m
(F>0; A <05 A¢F=0

and

V1 (&%) + HE - ph+ 50 M- Ve (%) — 30 Mk - Ve (2%) = 0
i=1 i=1

m m 9)
PP+ VRCE = 3TN = A5+ A =0.
=1 =1
Therefore, combining 8 and 9 we find
Dpd (z%) = — (") H*-pk+
+ DA (e (2%) = bi = ) + 3 OM (@i — e (2F) = ¢F) +
i=1 i=1
+ (u* + %0 (2%)) D6 (2*) . (10)

Since ( is convex on R™, we have

C(r) = 6(a*) = ¢ (1) = C(0) 2 DyeC (0) = Dyet (3*).
Applying this result to 10 we obtain

Dyd (z8) < — (") H*-pk+
m

R (ZA SO kg <:c’“>) (¢ =0 (a")).

i=1
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Therefore, we have

Dy (2%) < — (o) H* - pF + (u* + 6 (%) — [ (M, M) |,) < 0

and thus, p* is a descent direction of ® in z*. a

The following algorithm is based on the results of the preceding section.

3 Exact Penalty Function Algorithm

Step 1. Initialization. k=1, pu' =1, v =1, H' =1, =107%, p = 0.02,
§ =107, Guross = 1, Oeap = 10, k1 = 1.5, ks = 2, ks = 1.2, kg = 5,6 = 10-5.

Step 2. Update H and the penalty parameters. This step is omitted
from the first iteration. The matrix H is updated using The Broyden-Fletcher-
Goldfarb-Shanno update provided this maintains positive definiteness; otherwise
H is not updated. The penalty parameters are updated as follows:

(i) If 0% < Ocross and pk < Ky ||[(AF,A5)||,, then ph+! = Ky ||(AF,A8) ||,
and v+ = vk,
(ii)  If 0F > O.rossand pf + vFOF < ks ||()\’f,)\’2“)||1, then p*t1 = u* and

k1 _ kal|(AEAS) ||, —s*
— s bR

Otherwise, the penalty parameters are not altered.

v

Step 3. Solve the (P*) problem. If §¥ < 6.,,, then solve (P¥); the solution
will be denoted by (p*,¢*) and the algorithm proceeds to Step 4.

If 6% > 6.4, then the capping constraint ( < 6* is also imposed in (P*).
Then this problem is solved and the solution is denoted by (p*,¢*). If the cap-
ping constraint is not active at the (P¥)’s solution, then the algorithm proceeds
directly to Step 4. Otherwise, the penalty parameters are updated as described
in Step 2, except that ||(AF,A§)||, is replaced by p* + v*6% + || ,where £ is the
Lagrange multiplier of the capping constraint. The (P¥) problem is then solved
again.

Step 4. Attempt the proposed step. If (i)® (mk) - (:Uk +pk) >
p[T*(0) — T* (p*)]

(i5) 6 (z* + p¥) < 6 (2*) are satisfied, then the proposed step is accepted and
the algorithm proceeds to step 7. Otherwise, the execution continues at the next
step.
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Step 5. Calculate the Maratos effect correction vector. Solve the fol-
lowing quadratic problem for the second order correction t* :

. 2
min || ¢l

ci (F +p*) = b; + tTVe; (2%) >0
a; —c; (g% +p*) —tTVe; (a%) >0, VieT

where T is the set of indices of the constraints active at the (P*)’s solution in

1/2
Step 3 and || #[|, = (z W) || 4], > [|p* | then set ¢+ =o0.
1=

Step 6. Arc search. Consider successive values of the sequence 1,1, 1, %, ..as

trial values of a. The number of trial values for « is counted in N,. If t* = 0,
then omit the first member of the sequence. Accept the first trial value which
satisfies

(i) @ (z*) — @ (z* + ¢* (a)) > pa [TF (0) — T (p*)] where

¢* (@) = ap® + o?t*

(i) 0 (z* + ¢* (@) < 6.

After a satisfactory value of a has been found, set z**! = z* + ¢* (o) and go
to Step 7. If N, > 20 without finding a satisfactory value for « then, in order to
get a feasible point, Rosen’s method [13], [14] is employed; the new direction is
p* = N(NTN )_1 w, where w is the vector whose components are the absolute
values of the constraint functions for the violated constraints and N is the matrix
of unit column vectors of the gradients of the violated constraints. Then, go to
Step 5.

Step 7. Check the stopping conditions. The algorithm halts if either
the length of the previous step ||a:k — gkt ||2 < § or both of the following condi-
tions hold:

(i) OF < ¢

(it) |V («%) + X MV (a%) = X MVe; (2F)

ic Ak jEB*

< € where
2

A =il e (@*) —bi|<e},B¥ = {j||aj—¢; (aF) |< e }.

Otherwise, k is incremented, and the algorithm proceeds to Step 2.
The convergence properties of the algorithm are summarized in the following:

Theorem 3.1. Assume that the sequence of iterates {mk} is bounded in norm,
the sequence of matrices {Hk} generated is bounded in morm and the penalty
parameters p, v are altered only a finite number of times. Then, every cluster
point of the sequence of iterates {xk} generated by the algorithm is a critical point
of ® (z; p,v)where p, v are at their final values.
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4 Concluding Remarks

The purpose of this paper is to show that there are some advantages to be gained
from using a two-parameter exact penalty function based on the infinity norm of
constraint violations. This function has an advantage over one-norm based exact
penalty function in that only the gradients of the most violated constraints need
be calculated in order to find a search direction: for one-norm exact penalty func-
tions, the gradients of all active and violated constraints may be required. The
use of a two-parameter penalty function has the additional advantage that, the
quadratic subproblems are strictly convex; this enlarges the class of subroutines
capable of solving them.

The algorithm generates convergent sequences under mild conditions; it is
effective in practice and the use of the second penalty parameter significantly
reduces the effort required to solve constraint nonlinear programs.
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