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The geometry of curves of a complex Finsler space
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Abstract

In some previous papers ([Mu, Mul, Mu2]), our attention focused on
the general theory of holomorphic subspaces in a complex Finsler space.
In the present paper two approaches in the study of complex curves of a
complex Finsler space will be proposed.

In the first section we study curves on the holomorphic tangent bundle
T'M depending on the arc length parameter s. This study is in some sense
through analogy with that made for curves in real Finsler spaces ([B-F]),
by which an orthonormal moving frame of Frenet type is introduced.

In the second part of the paper we study the geometry of a complex curve
(Riemannian surface) viewed as a particular one dimensional holomorphic
subspace. The induced tangent and normal Chern-Finsler connections and
the Gauss-Weingarden formulas will be obtained. A special attention is
devoted to its geodesic curvature.

Key Words: Complex Finsler, folomorphic subspaces.
2000 Mathematics Subject Classification: Primary 53B40, Se-
condary 53C60.

The study of curves of a Riemannian space, or more generally of a real Finsler
space, is mainly based on the fact that the tangent vector along the curve is
unitary with respect to the arc length parameter. In the classical theory, by
differentiating this tangent vector the first principal normal vector is obtained
and afterwards successive differentiations of the principal normals finally get a
moving Frenet frame along the curve.

When we pass to the study of curves in a complex Finsler space (M, F), the
first remark is that the arc length parameter is real valued and hence an onset
of the geometry of curves as in the classical way can not include the class of
complex curves. And this class is indubitably one of interest for the geometry
of holomorphic mappings, for example. Hereby, in the study of complex curves
we are lead to the general theory of holomorphic subspaces of a complex Finsler
space, with the particularities derived from the fact that they are one dimensional.
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However, we appreciate that both approaches are of interest for the applica-
tions.

1 Curves depending on the arc length parameter

Let (M, F) be a n—dimensional complex Finsler space. Recall (see [A-P, Ai,
Mu],...) it means that on the nonzero sections of the holomorphic tangent bundle
T'M of the complex manifold M, a metric function F : 7'M — RT is ho-
mogeneous in 7 direction, i.e. F(z,Anp) =| A | F(z,n) for any A € C, and F
satisfies a strong pseudoconvexity condition that implies the Hermitian metric
tensor g;; = 8?L/0n'0i is positively nondegenerate, where L = F?.

Consider ¢ : t — (2%(t)) a curve on the manifold M, where ( 4

are coordi—

nates in a local chart, t € RY. It follows immediately that s(t fo , ‘Lﬁ )dt
does not depend on changes of parameter ¢ and also % F(z(t), dt) It follows
that 2¢ = 2%(s) , i = 1,n, is a natural parametrization along the curve c for
s € [a,b].

Since s is a real positive parameter, is obvious that ¢ is not a Riemannian
surface on M.

Let 6 = ‘g be the tangent vector at ¢ and (s, ) a coordinate system on the
manifold ¢* = T'¢, tangent to the curve c.

Now, let us consider 7'M the vector bundle of (1, 0) vectors (the holomorphic
tangent bundle) and (z%,7?) local coordinates in a chart on T'M. Forasmuch
nt = dz*/dt = 6dz'/ds, along the curve c the following parametric equations of
the curve ¢* on T'M hold:

zln

i i i dz’
2'=2%s) ; ' =0— , s€]a,b]. (1.1)
ds
Subsequently, as a rule, by prime it will be denoted the derivative with respect
to parameter s, that is to say 2" = ‘Z—Z;.
From the homogeneity of Finsler function F and since ds/dt is positive, we
easily check that F(z(s),2'(s)) = 1. At the same time, we know ([A-P, Mu])

that L(z,n) = g;;n', where L = F?. So we conclude that g;;2'"z"7 = 1, that is

| d

Now, let us consider VT' M the vertical distribution of TcT' M, locally spanned
by {9 := Bn }izt; and HT'M the Chern-Finsler complex nonlinear connection
(in brief (¢.n.c.)) which is generated by the adapted frame

1) 0 i 0
P = = _NJ_’:]_’ ’ 1.2
0 0zt 9zt t o ' " 0

where N/ = g™

d?L
FERT (see [A-P, Mu]). Hence TcT'M splits into TcT'M =
HT'M @ HT'M @ VI'M © VI'M.
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Let T'c* be the real tangent space of the manifold ¢* and let {dis, d%} be a
local frame in (2*(s),n"(s,0)). From (1.1) we deduce the link between the bases
{%; d%} and {4;, 8;,9;,0;} (where 8;,9; are obtained by conjugation everywhere
in 61', 6,)

d dzt dz' d dzt. dz'.
£—£i+£57, @_E&JFE&' (1.3)

From this formula we remark that {} spans a vertical distribution VTc*,
which is a subdistribution of TrT"' M.

Let {dz*,6n'} be the dual adapted frame to (1.2) and G' = g;3dz* ® dz7 +
9:70m" ® 67 the Sasaki type lift of the Finsler metric tensor g;;.

G defines a Hermitian metric structure on fibres of TcT' M and hereby Re G
is a metric structure on TrT'M.

Like in [A-P], p. 98, let us consider the following vertical and horizontal lifts
along the curve c¢*,

v dz* . h dz*
T = Eak , T = E(Sk
and TV , T" their conjugates.

Then (1.3) says that &= =T" +Th and & =TV + T".

According to [B-F], p. 153, a Finsler field X is said to be projectable if
X = X'(s)d; and hence, in view of the isomorphism VT'M ~ T'M, it is derived
from a vector X* = X*(s)0/0z".

It is well known ([A-P, Mu, Ai]) that on the sections of T¢T'M a remarkable
linear connection of (1,0)-type is acting, namely the Chern-Finsler complex linear
connection, and let us denote it by DT(N) = (L, Lt =0, Ciys Ct = 0),
where Li;, = g™i6g;m and Ci; = g™ 0gjm. In our terminology from [Mu], this
connection is a N — (c.l.c.), i.e. D5, &; = Li,6; and Ds,0; = Liy0;, etc.

Let X be projectable. An immediate computation gets that Dg X=X J C;E
and DrvX = X72'*C},. Because C; = 0 and n*Cj, = 0 (the last identity
results from the 0-homogeneity of g;3), it follows that DyvX = D7.X = 0 along
the curve c*, and hence D r X = 0 for any projectable complex Finsler vector
field X.

Since DxY = DxY , & =T% + T% and 4 is projectable, it follows

Proposition 1.1. We have:

D i:O;D

57 =0. (1.4)

d
5 ds

53

By taking into account that Ds, 6; = D(g,ﬁj = 0, direct calculus gives that

D%T’U = (Z”i + L;kzljzlk)ﬁl = (Z”i + Noz)az
Dif’v — 2//1'6'7 ,
ds
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which are the (1,0) and respectively (0,1) components of

Dy L= (" 4 Nis + 2", (15)

0

n.‘n_

Since D is a N — (c.l.c) it results that D ¢ T" = (2" + N§)J; and D%T" =
z"1§;. Thus, we have also

D d% = (""" + N§)6; + "5, (1.6)

s

Now, from (1.4), (1.5) and (1.6) we infer that the Chern-Finsler N — (c.n.c.)
induces a derivative law along the curve c¢*, which is still denoted by D. From a
geometrical point of view, since D is vertically vanishing, its vertical derivative
is not of interest.

Because D is metrical with respect to G (ie. XG(Y,Z) = D(DxY,Z) +
G(Y,DxZ) for VX,Y,Z € TTcT'M), and G is Hermitian, i.e. G(X,Y) =
G(X,Y), it can be concluded that the induced connection D along the curve
is also metrical with respect to Re G = (G + G). Now the claim g;;2'z" =1
implies that G(&, &) = G(&, 4) = 2, and this formula suggests that a more
suitable choice for a real metric along the curve ¢* is G = %Re G. Now we have
I 45 =l & lle= 1.

Let R = {T",No},—35; be an orthonormal frame in VI'M with respect to
G and let VT'c*! be the subdistribution of V7'M spanned by {N,} Tts

conjugate frame is denoted by R = {T?, N,}

a=2,n"
a=2,n"

Since the 1nduced connection D is metrical with respect to G, we can easily
check that G(D 1 d0’ do) = 0, which says that D 445 18 orthogonal to %. But

Ddi 75 € VRT’M ~ Re VT'M, and hence we have

Da— =kM (1.7)

&=

d
d

where k1 : ¢ — Rt and V] € Re
I Mo flg=1.

On the other hand, the N — (c.l.c.) D is metrical on T'M with respect to G
and from G(T",T") = 1 it follows 0 = G(D o T",T") + G(T",D 4 T"), that is
2Re G(D « T?,T?) = 0. Thus we have D 4 T” VT'c*t, which means DaT" =
k' N with N | = N{®N, a normal vector that can be assumed unitary, || N1 l|la=

<

T'M is assumed an unitary vertical field,

Completely analogously we prove that D rl T° € VT'c*L, and hence D rl T
= KYN{ with || M{' ||g= 1. Again using the fact DxY = DY and & is an
unitary real vector field, it is deduced that (1.7) can be rewritten as:

kN = KN + KN with BT = KYAY and | & |=| &
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We made this short digression because in [A-P], p. 101, D +ThTh =0is
a necessary and sufficient condition such that ¢ be a geodesic curve in a weakly
Kahler Finsler space. Corroborating the above discussion with (1.5), we infer

Proposition 1.2. i) k; = 0 if and only if ¢* is an affine horizontal curve, i.e.
2" =0 and Li, 2"2'* = 0.

it) If (M,F) is an weakly Kdhler Finsler space and ki = 0, then ¢* is a
geodesic curve with respect to Chern-Finsler connection.

Assuming that k; # 0 on an interval (—e¢,¢), the vector Nj = kl—lD 4 d% will
be called the first principal normal of the curve ¢* in (M, F) and k; the first
principal curvature function.

Now, recall that in (1.7) we assumed that G(Ni,N7) = 1 and we saw that

M L & ie. GV, &) = 0. From the first assertion and (Ddié) (M1, N1) =0is
obtained immediately G(D 4 N1,N1) = 0, which means that D 4 M1 is orthogonal
to Ni. The second assertion and (Dd%é) (M, &) = 0 yields G(D%Nl, 4y =

—ky. Thus, D 4 N1, in the points of ¢*, admits a decomposition by d% and by an
orthogonal direction to N7,

d ~
D%Nl =—k1@ + Ns. (1.8)

Let ks =|| Na lle=Il D%Nl + k1N || &, called the second principal curvature.

Next, if k2(s) # 0 on a small (—¢,¢), let us define N := ,3—2/\7;, and conse-
quently we have

Ddis./\/l = —k1N0 +N2,

where we set N := <. Note that A5 is an unitary vector field, orthogonal to
M.

Further on the algorithm is classical ([An, B-F]). Inductively, for ¢ < n and
ki,ko,...,k; # 0 on (—¢,¢) is obtained

Ddi-/\/ifl = —ki_iNi—a + kNG,

and for ¢ = n is obtained that D%N = —kyNp_1.

The curvature functions k; are deduced inductively from kirq =|| Nip1 lla
=[| Da Ni + kiN; || - In order to obtain an explicit writing for k;, first ob-
serve that for any projectable vector X = X7(s)d; is obtained D X = (djii +

Lj- L X2 )d; + dd—f& and hence, tacking into account that X = N is projectable,
it is deduced a recurrent formula for k; starting with &y =|| (2"1+N2)d;i+2"0; || -

The above algorithm furnishes an orthonormal frame {Np, N1, ..., N, } along
the points of ¢* and called the Frenet frame of the complex Finsler space (M, F).
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If k; is identically zero for an i < n, then Dd%./\fi_l = —k;_1N,_; and the
Frenet frame reduces to {No, N1,..., Ni_1}.

Finally, using the general theory of complex system equations, the following
theorem is proved through analogy with that from real Finsler spaces ([B-F]).

Theorem 1.1. Let (M, F) be a complex Finsler space and let (zq9,10) be a fized
point of T'M. If {Vo,V1,...,Vn} is an orthonormal frame in Re VT'M and
ki,kay . kn : (—€,6) — RY are positive smooth functions, then there erists a
unique curve ¢ : s — (24(s)), s € (—e,€), with 2*(0) = 2}, such that k; are its
curvature functions and N;(0) = V; along the points of c*, Vi = 1,n.

2 The geometry of a Riemannian surface in a complex Finsler space

It is well known that complex Finsler geometry has been motivated by the
Kobayashi metric which is the image on T'M of the Poicaré metric via holomor-
phic maps. The study of holomorphic maps in a complex Finsler space, which are
complex curves from a geometrical point of view, impetuously imposed. Recently
Nishikawa, [Ni], studied some geometrical aspects (first variations, critical points,
etc.) for a holomorphic map in a complex Finsler space.

Our aim is to make here an intrinsic study of a holomorphic map, regarded
as a complex curve of the complex Finsler space. A complex curve is a one
dimensional holomorphic subspace and since 7'M is a complex manifold it will
be called also a Riemannian surface of the complex Finsler space.

Further on we use our terminology from the general theory of holomorphic
subspaces. For details see [Mu].

Let M be a complex manifold, dim M = n, (%) k=T coordinates in a local
chart and ¢ : t — 2F(t), t € [a,b], a curve on M, n*(t) = dz*/dt the tangent
vector in z(t). If ¢ varies arbitrary in the class of smooth curves, then (z%,n*)
define local coordinates in a chart on 7'M, the holomorphic tangent bundle of
M.

Now, let (M, F) be a complex Finsler space. We saw in the preceding section
that the length arc s defines a real parameter on the curves of (M, F) and this is
an inconvenient for the study of complex curves. .

Next we will consider M a Riemannian surface of M, that means dimg M
=1,and i : M — M the inclusion map. Let w be the local coordinate in a chart
of M and thus i : w — z¥(w) will be a local parametrization of M. Since M is

. . . . . k sk
a Riemannian surface it is a holomorphic subspace, and hence %7; = % =0.
dw

Ifc:t— w(t)isin M, by 6 = &7 we denote its tangent vector. Then,
the complexified tangent inclusion map i.c : 7'M — T'M, with i, c(w,6) =

(z(w),n(w, d)), has the following local expression:

k
& dz

= 0. (2.1)

2 =2Fw) ; g
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F(w,8) = F(z(w),n(w,)) defines a complex Finsler function on M. It follows
that (M ,F) is a one dimensional holomorphic subspace of (M, F) [Mu, Mul,
Mu2]. Henceforth we will apply the geometry of holomorphic subspaces to our
particular situation dim M=1.

Let TcT'M and TcT'M be the corresponding complexified tangent spaces.
From (2.1) we obtain the links between their local frames

o 9 .8 o .0
E— _Bz . _BZ _— . — = _Bz - 2.2
w0z %y 89 " g (2.2)

where we kept our notations from general theory,

. d2t o d2
¢ _— Bz -_— - 2'
B' = » and B 50 (2.3)

By conjugation everywhere in these formulas we obtain the links between
(. 2} and {, 2.

Let us consider VT'M = {2} and VI'M = {aim}izﬂ the correspond-
ing vertical distributions, and VT'M~ an orthogonal distribgtion to VT'M in
VT'M with respect to Hermitian metric structure G* = g;3dn* ® dij’ . By {N, =
Bflaini a3 is denoted a basis in VT" M+, which we can choose to be orthonor-
mal. Thus we have, g,-;B"Bé =0 and gﬁB};Bg = gp-

The frame R = [B*® B!] is a moving frame along M and let R ' = [B; B?]
be the inverse matrix of R.It follows that

B;B'=1; B;B. =0; B!B"=0; B!B} = d}. (2.4)

It can be easily checked that 8?7, = i% + B¢ N, and also that we have the
following links between the dual bases

dz' = Bidw ; dn' = Bidw + B'db. (2.5)

Let N J’ be the coefficients of the Chern-Finsler complex nonlinear connection,
like in the above section, and dn* = dn’ + Nidz’ be its adapted dual cobasis. An

induced (c.n.c) on M is defined by 86 = B;0ni, where 6 = df + Ndw. From the
general theory, [Mu], p. 130, it results

Proposition 2.1. N = B;( B} + BINY).

s _ 8 _NO b _ 08 _ NI O i
For the adapted frames S0 = Bw N 50 and 37 = B N; B according

to Proposition 5.4.2 from [Mu], we have

Proposition 2.2. i) d2' = Bidw ; én' = B30 + B: M*dw ;

ii) & =B + BiM % 5 & = B';%:, where M* = B{(Bj + B*N}).
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It is proved in [Mu] that the induced (c.n.c.) coincides with the intrinsic
(c.n.c.) of (M, F), that is N = g=*82L/0wdd, where L = F2 and g = 95B'B7 is
the induced metric on (M F).

Let DT'(N) = (L ]k,O C]k, 0) be the Chern-Finsler linear connection like in
the preceding section

e =9 0kgim 3 Clp = g™ Okgjm. (2.6)
According to Theorem 5.4.4, the induced tangent connection of Chern-Finsler
linear connection is DT'(N) = (L, 0, C,0), where

og _199
1 1

— ; C= —=.

sw’ T 79 e

Since N is induced by N, the horizontal distribution spanned by 5. will be

preserved by DT'(N) and hence, on the sections of ToT" M it holds the following
decomposition

DxY =DxY + H(X,Y) , VX e (TcT'M) , Y € T(VoT'M) , (2.8)

L=g~ (2.7)

where DxY € T(VoT'M) and H(X,Y) € T(VoT'M*). The bilinear operator H
is called the second fundamental form.
In adapted frames of Chern-Finsler (c.n.c.), let H be given by

6 0 o 0
H®N, H —) = K°®N,.
(o 38) = and H(zg, 59)
Direct calculus proves that H (5, ga) =H(Z, %) =0 and
H® = B}(B} + B'B*L; + BIBfM"C},) ; K* = B{ B'B*C},. (2.9)

Further, in [Mu] for any normal vector field X we defined the normal induced
connection DLT(N) satisfying D+ X% = BDX'. Thus for VX € T(TcT'M) , W €
T(VeT'M*), we have
DxW = —AwX + DxW , (2.10)

where Aw X € T(VoT'M) and DxW € T(VoT'M*1).
The formulas (2.8) and (2.10) are the well known Gauss- Weingarten formulas.
If we set for simplicity Ay, := A, and consider the following local expression
for the Weingarten operator A

) o} 0 0
Aa_ =Aa_ ; Aa_ = Vag,
(6w) o6 (80) Ve o6
then a direct computation proves that Aq(5=) = Aa(%) =0 and

SN? . _

Ao = -5 BYNILY, — M*ByNiCY,

0
Vo = _ 9N — B*N]C}y,

80
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where N, = NI 2.

The Gauss, Codazzi and Ricci equations of the Riemannian surface (M, F)
can be obtained directly from [Mul], particularizing the general framework of
holomorphic subspaces. We will leave out these technical elements here.

Further on we focus in some lines on the study of induced holomorphic sec-
tional curvature. Recall that, [A-P, Mu], the holomorphic sectional curvature of
a complex Finsler space (M, L = F?) is given by

2 N
Kr(z,m) = 73G(Q06X)x X) (2.11)
where G is the Hermitian metric structure, {2 is the curvature form of Chern-
Finsler connection and x = nk% is the horizontal lift of the radial vertical

vector n = nk ag’c

K in 7 direction is written as a function of Ricci tensor as follows,

2 SN}
Kr(z,m) = ﬁRjkﬂJnk , where Rjk = —gzjg;f’?h- (2.12)
In [Mul] we found for a general holomorphic subspace (]Tf y ﬁ’) the relationship
between Kr and intrinsic holomorphic sectional curvature K. Particularizing
this result it follows that Kz in 4 = (w,0), with 6 a tangent direction of the
Riemann surface, and Kr in u = (2(w),n(w,d)) are connected by

. 2 L
K (@) = Kr(u) — 73 BLB{QG + Pt gmin " n® (2.13)

— &z
For instance, if (M, F) is a Riemannian surface of a locally Minkowsky space
(M, F), then there exists a local chart in any point » in which N;™ = 0 and con-

where QT2 = <& (NJ*) and pt = B—BWP(N,:”).

sequently, in such charts, the intrinsic holomorphic curvature of (M , F") coincide
with that of (M, F).

Now, the last problem in discussion here is to determine the circumstances
in which (M, F) is totally geodesic immersed in (M, F). Roughly speaking, a
c—complezx geodesic of complex Finsler space (M, F) is a geodesic curve with
respect to Chern-Finsler connection which corresponds via holomorphic maps to
a geodesic curve on unitary disc A with respect to Poincaré metric. According
to [A-P] a curve ¢ : t — 2z*(t) on M is lifted, as we did at the beginning of this
section, to a complex curve on (M, F') which is a ¢c—complex geodesic (c is a real
constant) iff (M, F') is weakly K&hler and along the points of the lifted curve the
torsion of Chern-Finsler connection satisfies an additional condition. Recall that
the weakly Kahler request means g;Tj,n’7' = 0, where T}, = L%, — L} is the
horizontal torsion. .

In [Mul] we proved that a holomorphic subspace (M ,}3’) is complexly to-

tally geodesic immersed in (M, L), that is to say any c— geodesic of (H ,F)isa
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c—geodesic of (M, F), if and only if the weakly K&hler request for (M, F') is sent
off to the holomorphic subspace (M ,ﬁ’) and vT (h, h) torsion is one normal. In
our particular case of Riemannian surfaces, the necessary and sufficient conditions
such that (M, F) be complexly totally geodesic immersed in (M, F) are written as
follow. The weakly Kéahler condition for (JTAf , ") with respect to induced tangent
Chern-Finsler connection DT'(N) means gT80 = 0. But T = L — I, = 0 and hence
it follows that any Riemannian surface (M ,F) is weakly Kihler. The second
requirement is translate by B,-G);'.,—gnj 7* = 0 and it remains the essential condition

for (]Tf , ") be complexly totally geodesic immersed in (M, F). We point out, as
it is deduced from the above, that the c—complex geodesic notion is also a spe-
cial one. In a recent paper [Mu2], we studied a more general notion of geodesic
complex curves in a holomorphic subspace by using the complex Berwald connec-
tion instead of Chern-Finsler connection. In the present study, such an approach
needs a bit more space and for this reason here we leave out this topic.

Finally, let us point that in [Ni] is studied a similar problem concerning the
complex geodesics of a Riemannian compact surface in a Finsler-K&hler space
(M, F), called the harmonic maps of (M, F), starting from the metric (Oc, dc) =
9i7 (w)%‘fi—i (where g;;(w) = g;3(2(w),n(w,#)) is the metric tensor of (M, F'))
and from the variation of d—energy Ejz(c) = [;(dc, 0c)dVyz.
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